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A B S T R A C T

In automotive paint shops, changes of colors between consecutive production orders cause costs for cleaning the
painting robots. It is a significant task to re-sequence orders and group orders with identical color as a color
batch to minimize the color changeover costs. In this paper, a Color-batching Resequencing Problem (CRP) with
mix bank buffer systems is considered. We propose a Color-Histogram (CH) model to describe the CRP as a
Markov decision process and a Deep Q-Network (DQN) algorithm to solve the CRP integrated with the virtual car
resequencing technique. The CH model significantly reduces the number of possible actions of the DQN agent, so
that the DQN algorithm can be applied to the CRP at a practical scale. A DQN agent is trained in a deep
reinforcement learning environment to minimize the costs of color changeovers for the CRP. Two experiments
with different assumptions on the order attribute distributions and cost metrics were conducted and evaluated.
Experimental results show that the proposed approach outperformed conventional algorithms under both con-
ditions. The proposed agent can run in real time on a regular personal computer with a GPU. Hence, the pro-
posed approach can be readily applied in the production control of automotive paint shops to resolve order-
resequencing problems.

1. Introduction

Reinforcement Learning (RL) has made tremendous progress in
board games [1], image processing [2], and real-time strategy games
[3]. Nevertheless, there are few applications in the production control
of the automotive manufacturing industry. Determining how to in-
tegrate advanced artificial intelligence algorithms into the conventional
manufacturing industry has provoked extensive attention in recent
years [4]. In this paper, we apply Deep Reinforcement Learning (DRL)
to the production control of the Color-batching Resequencing Problem
(CRP) of automotive paint shops.

In automotive manufacturing plants, production control engineers
strive for high production sequence adherence of the body shop, paint
shop and assembly line to prescheduled assembly production dates and
sequences to ease the management and operation of a mixed-model
paint shop production line [5,6]. However, in real-world paint shop
applications, if consecutive production orders do share an identical
painting color, this explicitly causes costs for solvent-cleaning the ro-
bots and painting nozzles [7]. Therefore, production engineers of paint
shops pursue grouping orders with the same color as an identical color
block, named color-batching, to minimize the consumption of paint
cleaning and water pollution [7]. The problem of minimizing the total

costs of color changeovers by resequencing the production sequence is
defined as the CRP in this paper.

The objective of the CRP can be evaluated by the minimal Number
of Color changeovers (NC) and the minimal Cost of Color changeovers
(CC) criteria. On the one hand, the NC objective assumes that the color
changeover costs are the same regardless of colors. In this case, the
objective of the CRP is simply to minimize the number of color chan-
geovers [8,9]. On the other hand, the CC objective assumes that the
color changeover costs vary from color to color. In this case, the ob-
jective of the CRP is to reduce the sequence-dependent costs of paint
color changeovers [10,11].

To obtain color-oriented batches of orders, mix bank (MB) buffer
systems, also named selectivity banks, are widely used for color-
batching resequencing [7]. MBs are installed in production lines in the
format of parallel in-line conveyors. MBs have the advantages of low
investment [7] and high similarity to the real-world industry applica-
tions [8,12]. Each order refers to one car body, as shown in Fig. 1. Car-
bodies from the upstream conveyor enter parallel lanes of an MB fol-
lowing a storage strategy at the storage junction. Car-bodies are re-
leased from lanes of the MB by a release strategy to the downstream
conveyor at the retrieval junction. This complex storage and release
control strategy alters the upstream storage-sequence to be a
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downstream color-batched release-sequence. At a practical scale, the
CRP is a non-trivial problem because the number of cars with the same
color is usually more than spaces per lane and because the number of
colors is more than the number of lanes. Therefore, it is mandatory to
develop control strategies of resequencing orders to format an optimal
color-batched order sequence.

In an MB, an order cannot pass another order in its lane. If orders
with the same color are inevitably split by orders with other colors in
the same lane, they would incur color changeovers. A Virtual Car
Resequencing (VCR) technique was proposed [13] to improve the
flexibility of MBs. VCR kept the physical positions of the car-bodies and
switched the color attributes of orders that have the identical car-model
attributes to reduce the color changeover costs. The CRP integrated
with VCR is known to be an NP-hard problem [7,13–15]. Though many
studies have implemented optimization methods [8–11,16,17] for sol-
ving the CRP, these methods have obvious limitations in solving large-
sized instances in real-world applications.

To address these issues at a practical scale, in this paper, we applied
a Deep Q-Network (DQN) algorithm to the CRP integrated with the VCR
technique. We proposed a Color-Histogram (CH) model to significantly
reduce the number of possible actions from the factorial to the MB
capacity to the number of color attributes so that the DQN algorithm
can be used to solve the CRP integrated with the VCR technique. A DQN
agent, which utilizes deep neural networks to learn a Q-value function,
is trained in an RL environment to minimize the costs of color chan-
geovers for the CRP.

Two experiments were conducted and evaluated in terms of mini-
mizing NC and CC. In experiment I, the objective was set to minimize
the NC from the perspective of theoretical exploration. The attributes of
orders were set to be uniformly distributed. This setup has been widely
used in academic studies of the CRP. The experimental results showed
that the proposed approach outperforms benchmarks in terms of per-
formance and processing time. In experiment II, the objective was set to
minimize the CC objective from the perspective of the practical appli-
cation of the CRP in paint shops. The CRP parameters, which included
the distributions of color and car-model attributes and the sequence-
dependent cost matrix, were derived from historical data of a real-
world paint shop. The experimental results proved that the agent could
learn and adapt to the CRP parameters and achieved significantly better
performance than the benchmark methods. The proposed approach
fulfilled the gap between theoretical exploration and practical appli-
cation of the CRP.

There are two contributions in this paper. First, a CH model is
proposed to describe the CRP as a Markov Decision Process (MDP).
Compared to directly applying a DQN to the problem, our model re-
duces the number of possible actions so that the DQN algorithm can
solve this NP-hard problem. Second, we propose a DQN-based DRL
algorithm to solve the CRP integrated with the VCR technique. The
DQN agent, based on the convolutional neural network, can learn and
adapt to the practical CRP parameters, i.e., the distribution of orders

and the metric of color changeover costs, and outperformed the
benchmark approaches in a practical-scale simulated environment.

The remainder of the paper is organized as follows. Literature re-
view is given in Section 2. In section 3, we describe the CH model and
model the CRP as an MDP, which can be solved by the DQN algorithm.
The details of the DQN algorithm are outlined in section 4. In section 5,
we describe the experiments and analysis of the results. Section 6 in-
volves our conclusions.

2. Literature review

2.1. Color-batching resequencing problem

Numerous studies have focused on the paint shop CRP in combi-
nation with MB buffer systems. Some studies have developed storage
and release strategies to alter order sequences [8–11,16,17]. These
studies adopted mathematical programming methods such as exact
branch-and-bound algorithms [18], mixed-integer linear program
[9,10], heuristics [10,16], integrated simulation and mathematical
programming approaches [8], integrated simulation and heuristic al-
gorithms [17], and dynamic programming algorithms [10,11]. How-
ever, the performance of these algorithms is limited without involving
VCR.

The VCR technique was proposed to improve the color-batching
performance of the CRP [13–15]. As proven in [14], the CRP in com-
bination with VCR has a complexity ofO a( )n when solved by a dynamic
programming approach, where a denotes the number of orders in total
and n denotes the product of the number of colors and the number of
models. In a typical paint shop application in the real world, the scale of
the CRP is considered to be approximately = =a n1000, 200. Xu and
Zhou provided four heuristic rules and a beam search algorithm to solve
VCR of the CRP [13]. However, the algorithm was applied only to
limited-scale experiments ( = =a n56, 200). Sun and Han [15] pro-
posed a heuristic rule for the CRP with VCR and applied the algorithm
at a practical scale. Their computational results outperformed those of
simple rules and branch-and-bound algorithms proposed in [18].
However, their VCR technique was based on randomly swapping the
color attributes of two orders each time; this approach used non-trivial
computational time and was highly unstable as the number of orders
increased, thus limiting its performance.

To simplify the problem, some studies [8,9,15,16] have considered
that the objective of the CRP is to minimize the NC. These studies as-
sumed that the cost of different color changeovers was an identical
value and described by a binary variable. However, in the real-world
paint shops, the cost of color changeovers varies from color to color.
This is because the cost of color-changing depends on the sequence of
the two colors. For example, if the color changes from a light color to a
dark color, the dark paint can cover the residual light paint, but when a
darker color changes to a lighter one, the first few painted bodies after
the switch will incur fatal painting defects [17,19]. A high percentage

Fig. 1. An MB with four lanes, each having five spaces.
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of defects will cause a reduction in the production volume, increasing
the cycle time and waste the energy of the overall plant. Therefore,
algorithms in [10,11] have used a sequence-dependent cost matrix to
describe the setup costs for different colors and minimize the CC ob-
jective. However, these algorithms have not been thoroughly in-
vestigated in a practical-scale production environment. In this paper,
we evaluate the proposed approach using both the NC and CC objec-
tives at a practical scale.

2.2. Deep reinforcement learning

Since existing algorithms based on dynamic programming or heur-
istic rules struggle to solve the CRP at a practical scale, we propose
using DRL for the CRP. DRL has already been studied in the production
scheduling field [20–25]. In particular, the Deep Q-Network (DQN)
algorithm [26] proposed by Google DeepMind has been widely used
due to its ability to fit various types of problems. For example, Woo
et al. proposed a DQN approach for earthwork scheduling [23].
Waschneck [24] proposed multiple DQN agents to solve a global pro-
duction scheduling problem. Lin et al. proposed a multi-class DQN for a
job-shop scheduling problem [25]. Considering the great success that
was achieved by applying DQNs to many scheduling problems, it is
tempting to apply the DQN algorithm to the CRP integrated with VCR
technique. However, directly applying DQN to the CRP integrated with
VCR can be challenging, since during VCR process, the action space of
swapping the color attributes of orders has tremendously large di-
mensions. In the worst cases, the number of possible actions is factorial
to the MB capacity. If the DQN algorithm is directly implemented, the
dimension of the output vector of the Q-network will be unacceptably
large.

3. Modeling

3.1. Problem characterization of the CRP

A color changeover is counted if two consecutive orders are painted
in different colors. A painting color changeover will incur an additional
cost. To minimize the consumption of spray robots cleaning and water
pollution, color-oriented batches of bodies are applied. Conventionally,
the CRP can be described as follows.

A storage-sequence contains G orders that are to be filled in and
then released from an MB. Each order is marked by two attributes: car-
model and color. Let M denote the number of different car-models and
C denote the number of different colors, index

= =c C m M1,2, ... , 1,2, ... .
The storage-sequence is described as two attribute-based sequences:

= …IC ic ic ic g G ic C[ , , , ], [1, ], 1G g1 2 (1)

= …IM im im im g G im M[ , , , ], [1, ], 1G g1 2 (2)

Where, IC denotes the color attributes of orders in the storage-se-
quence, and IM denotes the car-model attributes of orders in the sto-
rage-sequence.

The orders in the storage-sequence are popped out and filled into an
MB which consists of L lanes, with index =l L1,2, ... , each of which is a
linear First-In-First-Out (FIFO) conveyor of lengthN , with index

=n N1,2, ... . The size of the MB is defined as = ×MB size L N_ . The MB
is initialized with a storage level, i.e., work-in-process (WIP) inventory,
of orders. Each time, one order from the storage-sequence is filled into
the MB. After each storage process, one order will be released from the
MB. We assume that the total number of orders in the MB is constantly
equal to WIP. The storage and release processes continue until the
storage-sequence is empty; thus, an episode of the CRP is completed,
and a release-sequence of length G is formed.

The color and car-model attributes of a release-sequence are do-
nated as the following two sequences:

= …RC rc rc rc g G rc C[ , , , ], [1, ], 1G g1 2 (3)

= …RM rm rm rm g G rm M[ , , , ], [1, ], 1G g1 2 (4)

Note that VCR is conducted before each release and exchanges the
color attributes among orders with identical car-model attributes.

Three decisions have to be made in each iteration: the storage
procedure, the VCR process and the release procedure. The storage
procedure decides to which lane an order should go, and the release
procedure decides from which lane an order should be released. In an
episode of the CRP, three decision sequences IL RL, and VL are gen-
erated.

= …IL il il il g G il L[ , , , ], [1, ], 1G g1 2 (5)

= …RL rl rl rl g G rl L[ , , , ], [1, ], 1G g1 2 (6)

Where, IL denotes the storage decision sequence, and RL denotes the
release decision sequence. For the VCR process, each decision is de-
scribed by a matrix ×V WIP WIP, whose element V {0,1}i j, denotes
whether an order i in the MB will transfer its color attribute to an order
j. The VCR decision sequence is denoted as

= … ×VL vl vl vl g G vl[ , , , ], [1, ],G g
WIP WIP

1 2 (7)

A color changeover from color i to color j is denoted by CCMi j, ,
which is an element of the color cost matrix ×CCM C C . If the ob-
jective of the CRP is the NC, the color cost matrix can be assumed to be

=CCM E1 (8)

where E is an identical matrix.
If the objective is the CC, the cost matrix is derived from production

experience.
The overall objective of the CRP is to determine the three decision

sequences (5, 6, 7) to minimize the cost of total color changeovers of
the release-sequence.

=
+CCMmin

g

G

rc rc
IL,RL,VL 1

1

,g g 1
(9)

This is subject to the following constraints:

1) Storage distribution:

The elements of IC and IM follow the color and car-model dis-
tributions Dc and Dm, respectively. These distributions can be assumed
to be uniform or derived from the historical data.

2) The FIFO constraints:

The lanes of the MB are FIFO conveyors; therefore, orders can only
be released from the front of a lane or filled into the end of a lane.

3) Storage constraints:

Orders must be filled into a lane that contains less than N orders.

4) Release constraints:

Orders must be released from a non-empty lane.

5) VCR constraints:

Orders can only transfer their color attributes to orders that have
identical car-model attributes.

Fig. 2. presents an illustration of the formulation of the CRP. In this
example = = = = = = =L N MB WIP C M G3, 5, 15, 3, 3, 10size .

In practice, the scale of the CRP is usually large, e.g.,
= = = = = = =L N MB size WIP C M G10, 10, _ 100, 70, 20, 10, 1000.
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Since conventional programming algorithms do not fit large-scale
problems, we proposed using a DQN to solve the CRP in a practical
scale. In this paper, because the CRP has a discrete action space, the
dimension of the output vector of the Q-network of the DQN algorithm
[26] is equal to the number of possible actions. Considering a case of

= =L WIP10, 70, the output of the Q-network will have a length of
× ×L L WIP! 10100, which is not implementable. Since the DQN al-

gorithm cannot be directly applied to the CRP with VCR, we proposed a
CH model for the CRP with VCR to reduce the possible actions to an
implementable size.

3.2. Color-histogram modeling of the problem

We find that it is not necessary to record all colors of orders in the
MB independently. In contrast to modeling orders in the MB with both
color and car-model attributes as in previous studies [15], we propose a
new model that records a histogram of the color attributes of all orders
in the MB, named a color-histogram (CH) model. The CH model is
compatible with VCR because the color attributes of orders with the
same model attributes can be arbitrarily exchanged without explicit
color exchange actions. With the proposed model, the number of pos-
sible actions of the DQN agent can be significantly reduced. This model
consists of a tensor SM and matrix MC that are integrated to describe
the state of the MB, as shown in Fig. 3.

We record the car-model attributes of orders rather than the color
attributes. Tensor SM describes the car-model distribution of orders in
the MB. Element SMl n m, , of tensor SM represents that an order with the

car-model attribute m is located in lane l and position n of the MB.
We employ a matrix MC to describe the distribution of colors in

each type of car-models. The rows of MC correspond to each color, and
the columns of MC correspond to each type of car-models. The matrix
can be interpreted as a job list that indicates how many orders of each
color and car-model must be produced from the unpainted orders in the
MB. By modeling the MB in such a manner, orders with the same car-
model attributes can switch their color freely. The matrix is initialized
with zeros when the MB is empty. Every time that an order with color c
and car-model m is filled into an MB, the element MCc m, , which cor-
responds to the color and model attributes of the order, will increase by
1.

Based on the CH description of the MB, we redefine the corre-
sponding storage and release procedures of the color-batching re-
sequencing with an MB to suit the CRP to the DQN algorithm.

We separate the release procedure into two steps: Step 1. Color
selection: selecting a color to be the current color Cc. The DQN agent
conducts the color selection step, which is explained in Section 3; Step
2. Release by color: finding an order that can be painted in the color Cc.
Considering Cc = c, an order with car-model m in an arbitrary lane l
that is subject to >MC 0c m, , >SM 0l m,1, , will be selected. The corre-
sponding element in the MC decreases by 1. If no orders can be se-
lected, one color change will happen. Then step 1 will be called. Fig. 4
shows the pseudo-code of the release-by-color process.

The storage procedure delivers the first order of the storage-se-
quence and inserts it into a certain lane of the MB. The storage process
aims to cluster orders with identical car-model attributes in one lane. By

Fig. 2. An illustration of the CRP with an MB buffer system.

Fig. 3. Illustration of the CH model.
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creating large order clusters, the car-model distribution of the orders in
position =n 1 of each line can be diversified. This increases the selec-
tion options in step 2 of the release procedure. The pseudo-code of the
storage process is shown in Fig. 5.

In this way of modeling, the VCR process needs no swapping deci-
sions anymore. The storage procedure follows an Algorithm 2, which
does not require any decisions. The only decision needed in the CRP is
selecting the current color. The CRP can now be described as follows.

The definitions of IC IM RC and RM, , , are the identical to (1), (2),
(3) and (4), respectively. The storage procedure following Algorithm 2
and the release-by-color procedure following Algorithm 1 are itera-
tively processed. If Algorithm 1 returns False, a color selection decision
is made, and then the release-by-color procedure will be processed
again. The color selection decision sequence is defined as

= …CS cs cs cs[ , , , ]G1 2 (10)

Each decision csg is defined as

=cs
Algorithm returns True

c Algorithm returns False select color c
c C g G

0 1
1 ,

, [1, ], [0, ]g

(11)

The color change cost is defined identically to that in the previous
model. With the proposed a CH model, the objective of the CRP is to
find the optimal decision sequence (10) that minimizes the cost of total
color changeovers of the release sequence:

=
+CCMmin

g

G

rc rc
CS 1

1

,g g 1
(12)

This is subject to the following constraints:

1) Storage distribution:

The elements of IC and IM follow the color and car-model dis-
tribution Dc and Dm, respectively. These distributions can be assumed to
be uniform or derived from the historical data.

2) The FIFO constraints:

The lanes of the MB are FIFO conveyors; therefore, orders can only
be released from the front of a lane or filled into the end of a lane.

3) Storage constraints:

Orders must be filled into a lane that contains less than N orders.

4) Release constraints:

Orders must be released from a non-empty lane.

5) Color selection constraints:

For any selected color c, there must be at least one order in the MB
subject to >l L m M MC[1, ], [1, ] 0c m, , >SM 0l m,1, .

Under practical conditions, i.e., = = =L N MB10, 10, 100,size
= = = =WIP C M and G70, 20, 10, 1000, with the proposed a CH

model, the number of possible decisions is =C 20. Therefore, the DQN
algorithm can be implemented for the CRP with a reasonable dimension
of the output vector of the Q-network. To solve the CRP with the DQN,
the CRP must be modeled as an MDP.

3.3. Markov decision process

The MDP is a subclass of discrete-time systems that requires a se-
quence of decisions to achieve a certain goal [27,28]. Considering an
agent that interacts with an environment, an MDP consists of four
elements.

< >S A T r, , , (13)

Where, S is the state of the system, A is a set of possible choices for the
decision, T is the transition probability distribution from one state to
another, and r is the immediate reward between two consecutive ac-
tions. By definition, an MDP is subject to

=T s a s p s s a( , , ') ( '| , )s (14)

Where, s denotes the current state of the system; a denotes the decision
made in the current state; s' denotes the next state of the system; and ps
denotes the transition probability distribution. This can be interpreted
as that the next state of the system depends only on the state of the
system and the decision made for the current moment. The agent will
receive an immediate reward r from the environment after every action
a is executed under state s, which is subject to

=p p s a r( , , )r r (15)

Where, pr represents the probability of obtaining reward r at state s
given action. In an MDP, the agent observes the state s of the en-
vironment and takes action a based on policy .

=a s( ) (16)

Then, the environment will accept the action and return a new state
s and an immediate reward r . s is taken as a new state, and the process
will iteratively continue until reaching the end condition =t . The

Fig. 4. Pseudo-code of the release by color procedure.

Fig. 5. Pseudo-code of the storage procedure.
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overall goal of an MDP is to maximize the accumulated reward with an
optimal decision policy *.

= = = =
=

+r p T s a s p p s a r a sarg max [ | ( , , ), ( , , ), ( )]p p
t

t s t t t r r t t t t t
*

,
1

1s r

(17)

3.4. Modeling the CRP as an MDP

We consider the release-by-color procedure and the storage proce-
dure as the environment in an MDP. An agent based on a DQN algo-
rithm proposed in [26] will observe the state of the MB and select the
current color to be painted as an action. Fig. 6 shows the flow chart of
the simulated environment and the agent.

In iteration t , the state St is observed by the agent. The agent will
output an action at , which represents the current color Cc. The action at
will be passed to the simulated environment. The simulator will simu-
late the storage and release procedures until the color has to be changed
again. Then, a reward rt will be calculated and recorded in a database.
The details of how to initialize and update the reward are introduced in
Section 3.4.3. The next state +St 1 will be ready to be observed by the
agent in the next iteration.

3.4.1. Parameterization of states
We define the state as four variables:

= × × × ×s SM MC LC SS{ , , , }L N M C M C 1 1 .
Concretely, tensor SM describes the car-model distribution of the

orders in the MB. The car-model of each order is one-hot encoded at the
corresponding position of the MB.

=SM l n1 order in lane on position have car model attribute m
0 otherwisel n m, ,

(18)

Matrix MC is precisely the matrix that describes the distribution of
colors in each type of car-models. Element MCc m, of matrix MC re-
presents the number of orders in color c and car-model m that are re-
quired to be produced from the unpainted orders in the MB.

Vector LC is a one-hot-encoded vector of the color of the last
painted order, whose element is LCc.

=LC c1 is the last painted color
0 otherwisec (19)

Scalar SS is the ratio of the length of the storage-sequence to the
number of all planned orders.

=SS
L

L
in seq

plan seq (20)

Where, Lplan seq denotes the number of orders planned to be produced
and is equal to the total length of the storage-sequence at the beginning.
Lin seq is the length of unpainted orders. The orders are popped from
the front of the storage-sequence one by one until the storage-sequence
is empty.

3.4.2. Parameterization of actions
Action a is a one-hot- encoded vector of the current selected color

and is coded by a binary vector of length C.

= …a a a a[ , , , ]C1 2 (21)

= ={a c is the selected color
otherwise c C1

0 , 1. ..c
(22)

After an action is taken, the orders in the selected color will be
painted, and the environment will transit to the next state.

3.4.3. Parameterization of rewards
A sequence-independent cost matrix CCM is introduced to describe

the color changeover costs between different colors.CCMi j, , which is the
element on row i and column j of CM , denotes the cost of color
changeovers from the color i to color j.

Based on the flowchart on the left in Fig. 6, when an action changes
the current color from =C ic to Cc = j, the reward r is initialized as

CCMi j, , and the r increases by 1 every time an order in color j is
released. The reward r is only recorded when no orders can be released
by the Release-by-color step. The recorded reward r is equal to:

= +r uc CCM( )i j, (23)

where uc denotes the number of orders that have been painted between
the current state and the next state. r is positively correlated with the
number of orders and negatively correlated with the cost.

3.4.4. Parameterization of the goal function
The goal of an MDP is to find an optimal policy *, which can be

described in (17). In this CRP, in (17) is the total number of color
changeovers. The summation in (17) covers from the beginning to the
end of the CRP. = +p T s a s( , , )s t t t 1 represents the probability distribu-
tion of transitions. =p p s a r( , , )r r t t t represents the probability of ob-
taining reward rt at state st given action =a where a s, ( )t t t is the action
taken under state st following policy . Following the optimal policy *,
the agent can maximize the expected accumulated reward for the whole
process.

Fig. 6. Dataflow between the DQN agent and the environment.
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Considering (23) and (17), since the first term uc in (23) is the
number of orders painted in each batch, the summation of uc through
the whole process must be Lplan seq, which is constant. Therefore, to
maximize the accumulated reward is to minimize the color changeovers
costs. Finding * in (17) can be interpreted as finding a strategy to paint
the orders with the minimal total cost of color changeovers.

4. Solving the CRP with deep reinforcement learning

4.1. Deep reinforcement learning

With the rapid development of deep learning techniques, DRL has
been widely used to solve MDP problems. We employ a DQN algorithm
[26] to solve the CRP. Define Q function as:

= =

= = +

= +
+Q s a r p T s a s p

p s a r a s r

( , ) , ( , , ),

( , , ), ( )

now p p
t now

t s t t t r

r t t t t t now

0 ,
1

1s r

(24)

Given the state snow and the action a0, the Q-function expects the
accumulated reward from now to the end of the MDP. The first term in
(24) represents the expectation of the accumulated reward from

+now 1 to the end of the MDP. The other term
= =r r p p s a r[ ( , , )]now p t r r now t0r represents the expectation of the im-

mediate reward by the current action a0.
In the CRP, the possible actions given by any state are discrete. If the

Q -value for all actions given any states can be estimated, the decision
can be made by comparing every Q s a( , ) value of all possible actions
and selecting the action with the maximum Q-value Q s a( , )* . We ap-
proximate the Q function with a neural network.

=Y N s( ; ) (25)

Where, N denotes the neural network with parameters ; the output
vector ×Y C 1 denotes the Q-value corresponding to each possible
action. The network can be optimized by the Bellman Equation,

= + +Q s a r Q s a( , ) ( , )t t t* * 1
* (26)

Where, * denotes the optimal policy and = +a s( )t
* *

1 denotes the ac-
tion that will be taken by the optimal policy. Considering (25), the
optimal policy is to apply the action that maximizes the Q-value,

=a Y sarg max ( ; )
a

t a
*

(27)

where Y s( ; )t a denotes the element of vector Y s( ; )t .

4.2. Architecture of the network

We use a convolutional neural network, namely a Q-network, to
approximate the Q function. The architecture of the Q-network is
shown in Fig. 7. All layers are attached with a Rectified Linear Unit
(ReLU) function as the activation function.

Input tensor SM contains the car-model information of the orders in
the MB, and the matrix MC contains the color information of the orders
in the MB. The vector LC represents the last painted color. These three
inputs must be considered together to decide which color is the best to
paint. We proposed a Correlation Module (CM) to correlate this in-
formation. The output of the CM is a tensor that contains the correlated
information of these inputs.

The network contains two convolutional blocks: Conv0 consists of 4
convolutional layers, whose kernel sizes are ×3 3. The first three layers
have 256 kernels and the last layer has 32 kernels. Conv1 consists of 4
convolutional layers. The kernel sizes of the first and last layers are

×1 1. The kernel sizes of the other two layers are ×3 3. The first three

layers have 256 kernels, and the last layer has 32 kernels. The output of
the two convolutional blocks is flattened and reduced to 256 dimen-
sions by two fully connected layers, i.e., FC0 and FC1 in Fig. 7, and then
fused by another fully connected layer, i.e., FC-fuse in Fig. 7.

The rest of the network is based on Dueling DQN [29]. Note that the
input scalar SS represents the progress of the total work and is only
related to the V-value instead of the advantage value. Therefore, this
scalar is only fed to the layer corresponding to the estimation of the V-
value. The definitions of the V-value and advantage value can be re-
ferred to in [29].

Fig. 8 shows the layout of the CM. The input tensor SM represents
the car-model attribute distribution of orders in the MB. Since lanes in
the MB are FIFO conveyors, only the order at position =n 1 of a lane
can be immediately released. It is very important to consider the orders
near position =n 1 of each lane when selecting the next painting color
because these orders are very likely to be released shortly.

Three sub-tensors are extracted from tensor SM , representing the
car-model distributions of orders at positions =n 1, positions =n 1, 2
and positions =n 1, 2, 3 of the corresponding lanes. These sub-tensors
are summed on the first dimension and then merged as a tensor of size

× × M3 1 . This tensor, which contains only car-model information, is
then merged by element-wise minimization with tensor MC , which
contains the information of both car-model and color. Note that these
tensors are repeated to match the dimension before merging. Finally,
the last painted color must be considered due to the different color
changeover costs between different colors. Thus, vector LC is repeated
and merged by concatenation.

Theoretically, adding more layers to the neural network can achieve
a comparable capacity of the network as applying the proposed CM
does. However, in practice, we found that compared with adding more
layers, applying the proposed CM can stabilize the training and sig-
nificantly improve the performance.

4.3. Training

The training of the neural network is based on the double DQN
method used in [30]. The network was initialized with two copies:
N ( )q q as the target network, N ( )p p as the policy network. Different
from [30], some actions in the CRP may be invalid. When the agent
needs to select a color, the environment tries every color with the re-
lease-by-color step virtually. If no orders can be released by any color
attribute, these colors are marked as invalid. A binary vector

= …mask ma ma ma[ , , , ]t C1 2 is provided to the agent to avoid invalid
colors.

= {ma c1 is the available color
0 otherwisec (28)

The agent read the state st from the environment and take action at
*,

=a N s maskargmax ( ) *t
a

q t a t
*

(29)

As shown in Fig. 6, the environment paints as many orders with the
selected color as possible. Then the environment provides a new state

+st 1, a new mask +maskt 1, a binary number indicates whether it is the
end of an episode endt , and a reward rt of this action.

=end 0 t is the end of an episode
1 otherwiset (30)

The environment records a set = + +EX s r{ , mask , s , mask , a , ,t t t t t t1 1
end }t every time when a decision is made by the agent. All records are
stored in a set named replay buffer = …Rep EX EX EX{ , , , }now1 2 , where
now is the number of decisions made in an episode of the simulation
(from the start to the current state).

The parameters of network Nq are updated every U steps. A mini-
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batch of experiences are sampled from the replay buffer. The losses are
averaged among the mini-batch. The loss is defined as,

= × =+ + +N s a N s end r a N s maskLoss || ( , ) ( ) , argmax ( ) * ||q t t p t a t t
a

q t a t1 * * 1 1 2

(31)

The target network Nq and the policy network Np synchronizes every
Y episodes.

The pseudo-code of the training process is shown in Fig. 9.

5. Numerical study

Two experiments are conducted and evaluated in terms of the NC
and CC objectives of the CRP, respectively. In experiment I, the ob-
jective is set to minimize the NC from the perspective of theoretical
exploration. The attributes of orders are set to be uniformly distributed.
This setup is widely used in academic studies of the CRP. In experiment
II, the objective is set to minimize the CC from the perspective of the
practical application of the CRP. The CRP parameters, which include
the distributions of color and car-model attributes and the sequence-

dependent cost matrix, are derived from historical data of a real-world
paint shop.

5.1. Data generation and setup

To test the effectiveness and performance of the proposed DQN al-
gorithm, we conduct a series of tests based on the parameters that are
listed in Table 1. We take [15] as our benchmark. We use the same
settings as the benchmark to facilitate an accurate comparison of the
performance of the proposed algorithm. The MB in each test consisted
of L lanes with length N ;Cpre presents the storage percentage of the MB,
which is = × ×C WIP L N/( ) 100%pre . Reference [15] proposed that the
best Cpre level for color-batching performance was 60 % (for MB

× ×7 8, 10 10) and 70 % (for MB ×5 6). Hence, we compare the per-
formance based on this best Cpre level. All experiments were conducted
in a computer-simulated environment. The car-model attribute of
planned orders obeys the distribution Dm, and the color attribute obeys
the distribution Dc; these distributions are generated in different ex-
periments. In each experiment, =L 1000.plan seq Initially, the =WIP 0 in
the MB. Orders are not released until filled-in orders increase the WIP

Fig. 7. The architecture of the Q-network.

Fig. 8. The layout of the Correlation Module.
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and the desiredCpre is reached. The experiments end when the length of
the storage-sequence =L 0in seq .

The hyperparameters in RL are fixed among all experiments. The
learning rate is 0.0001, the target network synchronizes every 10 epi-
sodes, the replay buffer size is 10000, and the min-batch size of the
training is 128. The Q-network is trained independently in each ex-
periment. In each experiment, the network is trained for 200 episodes,
and the mean cost of the 10 latest episodes is taken as the validation
criterion. Six tests are conducted in the experiments. Each test is per-
formed for 10 episodes, and the results are averaged.

Experiments were performed on a desktop with an Intel I7 Central
Processing Unit (CPU), NVIDIA 1080Ti graphics card and 64 GB of
Random Access Memory (RAM). The program was coded in Python 3.6

[31] and the interference of the Q-network was executed on the gra-
phics card. The operating system was Ubuntu 14.04.

5.2. Experiment I: Performance of the algorithm for the NC objective

5.2.1. Benchmarks
We take [15] as a benchmark for comparison with our proposed

DQN algorithm to investigate the performance of the color-batching
control strategy under uniform distributions of the color and car-model
attributes of the orders. The benchmark and our work have similar
backgrounds and assumptions but differ in the modeling of the CRP and
color-batching strategies. On the one hand, the CRP in the MB in the
benchmark is modeled with both car-model and color attributes. Our
proposed approach employs a CH model. On the other hand, the color-
batching control strategies in the benchmark are based on integrated
heuristic rules and the VCR technique. Our proposed control strategies
are conducted by a DQN agent that is trained by the DQN algorithm.

Based on the assumption that orders in the MB with the same car-
model attribute can swap their color attributes, the benchmark pro-
posed VCR in combination with the MB and randomly swapped the
color attributes between orders with the same car-model attribute to
improve the performance. The termination condition of the random
swapping was originally proposed to be reaching the maximum number
of iterations or reaching the lower bound of the color changeover costs.
The performance and efficiency of the VCR can be balanced by ad-
justing the maximum number of iterations.

In experiment I, we implement the benchmark in three ways, which
are named bench [15], bench10, and bench0, to explore the different
preferences between performance and efficiency. Bench [15] and
bench10 conduct integrated heuristic algorithms and the VCR tech-
nique to optimize the color-batching problem, and the maximum
numbers of iterations in these algorithms are 100 and 10, respectively.
Bench0 only applies the heuristic rule-based storage and release ap-
proach of [15] and skips the VCR technique.

5.2.2. Results analysis
In this experiment, the performance of the proposed DQN algorithm

is evaluated via the NC objective, which is set to minimize the total
number of color changeovers. For two color attributes i and j, the
number of color changeovers is defined as (8).

The results of the numerical study and a comparison with bench
[15], bench10 and bench0 are tubulated in Table 2. In all 12 tests of
experiment I, the colors and car-models of the orders follow two uni-
form integer distributions =D unif C(1, )c1 and =D unif M(1, )m1 , re-
spectively. Adv% 1 represents the improved color-batching performance
(NC) of the proposed DQN algorithm compared with that of a heuristic
algorithm and is formulated as (32). Adv% 2 represents the improved
color-batching performance (NC) of bench [15] compared with that of
bench0. Adv% 3 represents the improved color-batching performance
(NC) of the proposed DQN algorithm compared with that of the heur-
istic rules of bench0.

= ×Adv% 1 (Bench [15] NC DQN NC)
DQN NC

100%
(32)

Fig. 9. The pseudo-code of the training process.

Table 1
Parameter values for computational experiments.

Parameter Notations Benchmark [15] Values in experiment I Values in experiment II

MB configuration ×L N ×5 6, ×7 8, ×10 10 ×5 6, ×7 8, ×10 10 ×5 6, ×7 8, ×10 10
Storage percentage Cpre 60 %, 70 % 60 %, 70 % 60 %, 70 %
Number of colors C 10, 20 10, 20 14
Color distribution Dc D D,c c1 2 Dc1 Dc2
Number of car-models M 5, 10 5, 10 7, 10
Car-model distribution Dm D D D, ,m m m1 2 3 Dm1 D Dm m2, 3
Number of orders in the upstream storage-sequence Lplan seq 1000 1000 1000
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In most tests, the proposed DQN algorithm achieves the smallest NC,
except in test 2. Especially in tests 3, 5, and 6, Adv% 1 shows that the
proposed algorithm performs 72 %,110 %, 56 % better than the best
benchmarks [15]. Note that the ratios ×L N M/ in these tests are larger
than those in other tests; thus, the orders with the desired car-model
attributes are less likely to be blocked by other orders. In test 2, the NC
of the proposed algorithm is 11 % worse than that of the best bench-
marks since the second test has the smallest ratio × N M/ . The effec-
tiveness of the proposed algorithm is limited because the orders with
the desired car-model attributes could very likely be blocked by other
orders.

Adv% 2 shows the advantage in the NC of bench [15] compared with
that of bench0 in tests 1, 2, 4, and 6. However, in tests 3 and 5, the
results are the opposite. Although the VCR technique is effective in
reducing the number of color changeovers, the optimization perfor-
mance is unstable. The virtual resequencing of bench [15] in tests 3 and
5 hurts the color-batching performance since randomly swapping the
color attributes of the orders in bench [15] is only used for pursuing a
short-term reduction in the NC (the orders inside the bank). Minimizing
the short-term NC can lead to adverse effects on the long-term color-
batching performance. In contrast, Adv% 3 shows that the proposed DQN
algorithm performs better than bench0 for all tests because the DQN
agent was trained to maximize the Q-value, which is the long-term
target. By the proposed approach, we solve the CRP in a long-term-
oriented and stable way.

The proposed algorithm takes less computational time than bench
[15] and bench10, and this result proves the effectiveness of the pro-
posed DQN algorithm in all 6 tests. The bench [15] takes more time
when the MB size is larger because the number of VCR iterative op-
erations increases with the size of the MB. In contrast, based on the CH
model, the proposed DQN algorithm does not need iterative operations.
Therefore, the proposed algorithm is not affected in terms of compu-
tational time when the MB size increases. In tests 5 and 6, the com-
putational time of the proposed algorithm is even shorter than of
bench0. The proposed algorithm takes less time when the total NC is
smaller because the agent only reacts with the environment if the
current color has to be changed. Therefore, the proposed algorithm
achieves excellent performance with trivial costs in computational
time.

Furthermore, Fig. 10 displays comparisons of the training curves of
the DQN algorithm and the heuristic algorithm of the benchmark [15].
The dotted lines show the color-batching performance of the bench-
mark algorithm.

The training curves of comparative tests 1, 3, 5 vs. 2, 4, 6 show that
when the numbers of car-model and color attributes of orders are the
same, the larger the size of the MB is, the lower the NC and the better
the corresponding color-batching performance. Although the con-
vergence speed slightly slows down with an increase in the size of the
MB, the proposed algorithm can still converge stably within 100 epi-
sodes and 30 min., even in the case of an MB of size ×10 10 of the MB.

The training curves of comparative tests 1 vs. 2, 3 vs. 4, and 5 vs. 6
point out that when the size and configuration of the MB are the same,
increasing the number of car-model and color attributes of orders will
increase the NC, but the convergence speed is unaffected. Therefore, the
proposed DQN algorithm outperforms in terms of color-batching per-
formance and computational time.

5.3. Experiment II: Performance of the algorithm for the CC objective

As shown above, experiment I illustrates the performance of the
proposed approach with uniformly distributed attributes under the NC
objective, which is commonly assumed in academic research [8,9]. In
practice, the cost of color changeovers is asymmetrical because the
difference between two colors can influence the difficulty of cleaning
and the risk of reworking. The benchmarks were not proposed to deal
with asymmetrical color changeover costs. We change the criterion of
VCR from minimizing the NC to minimizing the CC so that the bench-
marks can adapt to the asymmetrical CCM in this experiment.

In experiment II, we push the experimental environment closer to
reality. The discrete distributions of the colors and car-models were
based on real-world paint shop production data, as shown in Fig. 11.
The cost matrix CCM used in this experiment is shown in Table 3. The
benchmark was originally proposed to pursue the NC; thus, we im-
plemented the benchmark algorithms with the CC target for compar-
ison. In this implementation, the criterion of VCR is changed from the
NC to the CC. The other parameters and the experimental platform are
the same as those in experiment I.

Table 4 lists the costs of color changeovers and computational time
of the proposed DQN algorithm and the heuristic algorithm of [15] in
terms of the CC objective.

As shown in Table 4, the proposed DQN algorithm outperforms the

Table 2
Comparison of NCs and computational time at different MB configuration.

Test ×L N Cpre (C D M D, , ,c m) Bench [15] Bench10 Bench0 DQN Adv%

NC Time (s) NC Time
(s)

NC Time
(s)

NC Time
(s)

1 2 3

1 ×5 6 70 % ( D D10, , 5,c m1 1) 304.6 56.05 315.1 27.16 336.8 0.328 249.2 0.776 22% 11 % 35 %
2 ( D D20, , 10,c m1 1) 462.4 311.6 470.1 52.36 524.9 0.385 514.8 1.380 −10% 14 % 2%
3 ×7 8 60 % ( D D10, , 5,c m1 1) 223.6 103.7 235.1 58.61 206 0.488 129.9 0.520 72 % −8% 59 %
4 ( D D20, , 10,c m1 1) 365.5 398.0 383.4 102.0 416.9 0.581 338.5 1.066 8% 14 % 23 %
5 ×10 10 60 % ( D D10, , 5,c m1 1) 145.9 1292 179.4 308.2 118 0.843 69.4 0.413 110 % −19% 70 %
6 ( D D20, , 10,c m1 1) 274.5 959.6 304.7 349.9 283.6 0.888 175.9 0.788 56 % 3% 61 %

In all test results, bench [15] consistently performs better than bench10, and these results prove that the number of iterations can affect the color-batching
performance when conducting the benchmark algorithm.

Fig. 10. The training curves of each test in experiment I.
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benchmarks in all tests in terms of color-batching performance and
computational time. The advantages of the proposed approach are
much more significant. As the car-models, colors and cost matrix of
color changeovers are not uniformly distributed, the importance of
every color attribute and car-model attribute is different. The bench-
marks treat every color and car-model evenly. However, the proposed
approach can learn the distribution and make decisions by considering
the differing importance of the color and car-model attributes.

As shown in Table 4, the conclusions in terms of computational time
are similar to those in experiment I. In all 6 tests, the proposed algo-
rithm takes less computational time than bench [15] and bench10. In
tests 5 and 6, the computational time of the proposed algorithm is even
shorter than that of bench0. In addition, for each test setup, the pro-
posed algorithm takes similar computational times in experiment I and
experiment II, while the bench [15] takes much more time in experi-
ment II than in experiment I. In summary, the proposed algorithm can
consistently achieve excellent performance with short computational
time in all the setups.

The set of plots in Fig. 12. show a comparison of the color-batching
performance distributions of 10 episodes in each test. The Y-axis is the
total number of color changeovers, and the X-axis is the bench [15],
bench10, bench0 and the proposed approach. The smaller the NC of an
approach is, the better the performance of that approach.

The proposed approach outperformed all benchmarks and is re-
markably faster than bench [15] and bench10. Note that the proposed
approach had a smaller variance in performance among the 10 re-
petitive runs in performance than the benchmarks in all tests. Because
the parameters, e.g., color changeover costs and the distributions of the
color and car-model attributes, are not uniformly distributed, these
unevenly distributed parameters could potentially add variance to the
performance. The benchmarks relied on randomly swapping color at-
tributes and suffered from the variance of the parameters; in contrast,
the proposed DQN algorithm could learn and adapt to the uneven
distributions and achieved consistently high performance.

Fig. 13 shows the training curves of the DQN in each test. Although
the convergence speed is different in each test, the DQN can con-
sistently converge within 100 episodes. The performance at the be-
ginning represents the inherent difficulty of the problem because the
agent makes nearly arbitrary decisions to explore the environment. The
more improvement there is from the beginning to convergence, the
more effective the algorithm is. The performance improvements from
the beginnings (episodes 0–5) to the convergences in this experiment
are far greater than those in the experiment I. This result indicates that
the proposed algorithm is more effective under practical experimental
parameters. In addition, although tests 1,2,3 and 4 exhibit different
performance at the beginning, the performance converges at a similar
level in these tests. This results indicates that increasing the bank size
from ×5 6 to ×7 8 is not as effective as an increase from ×7 8 to

×10 10, which is possibly a valuable indicator for the planning of a
paint shop layout.

6. Conclusion

In this paper, we proposed a RL-based algorithm for the CRP. We
used a CH model to describe the CRP to reduce the dimension of the
action space so that the DQN algorithm can be applied to the CRP. The
DQN agent is trained and tested in a simulated environment at a
practical scale. Two experiments were conducted to evaluate the pro-
posed approach. In experiment I, the color and car-model attributes of
the orders follow uniform distributions, and the target is set as mini-
mizing the NC. Compared with benchmarks, the proposed policy
achieved better performance in 5 out of 6 tests in experiment I. In ex-
periment II, the distribution of colors and car-models and the cost of
color changeovers were set according to the real production data. The
objective of the CRP was to minimize the CC. The proposed algorithm

Fig. 11. Distribution of colors and car-models in experiment II.

Table 3
The cost matrix of color changeovers (CCM) in experiment II.

j i

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 2.1 2.1 0.8 0.1 0.1 0.8 0.1 1.5 1.5 0.1 2.1 0.1 0.1
2 3.4 0 3.4 0.8 1.5 3.4 0.8 0.1 0.1 0.1 0.1 3.4 0.1 0.1
3 6.1 6.1 0 0.1 0.8 0.1 0.1 0.1 1.5 0.1 0.1 0.8 0.1 0.1
4 2.8 2.8 0.8 0 0.1 2.8 0.1 0.8 0.1 2.8 2.8 0.1 0.1 0.8
5 2.1 2.1 0.8 0.1 0 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1
6 2.1 2.1 0.1 0.1 0.1 0 0.1 0.1 0.8 0.1 0.8 0.8 0.1 0.1
7 4.8 0.8 0.8 0.8 0.1 2.8 0 4.8 0.1 2.8 2.8 0.1 0.1 0.1
8 2.8 2.8 2.8 2.8 0.1 0.1 2.8 0 0.1 0.1 0.1 0.1 0.1 0.1
9 2.1 2.1 2.1 0.8 0.8 0.8 0.8 0.8 0 0.1 0.1 0.1 0.1 0.1
10 2.8 2.8 2.8 6.1 0.1 2.8 6.1 0.1 0.1 0 0.1 0.1 0.1 0.1
11 2.8 0.1 0.1 2.8 0.8 0.1 2.8 2.8 0.8 0.1 0 0.1 0.1 0.1
12 2.1 0.1 0.1 2.1 0.1 0.8 2.1 0.1 0.8 0.8 0.8 0 0.1 0.1
13 1.5 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0.1 1.5 0.1 0.1 0 0.1
14 3.4 3.4 0.8 2.8 0.1 2.8 2.8 0.1 0.1 0.1 0.1 0.1 0.1 0

Table 4
Comparison of CCs and computational time at different MB configuration.

Test ×L N Cpre (C D M D, , ,c m) Bench [15] Bench10 Bench0 DQN Adv%

CC time CC time CC time CC time 1 2 3

1 ×5 6 70 % (14 D D, , 7,c m2 2) 168.4 533.9 270.4 60.69 517.2 0.374 101.5 1.223 66% 207 % 410 %
2 (14 D D, , 10,c m2 3) 192.3 540.5 289.2 62.07 525.7 0.373 116.6 1.367 65 % 173 % 351 %
3 ×7 8 60 % (14 D D, , 7,c m2 2) 135.1 1189 238.9 138.2 356.5 0.551 69.4 0.859 95% 164 % 414 %
4 (14 D D, , 10,c m2 3) 139.4 1187 230.4 138.1 378.5 0.549 76.6 0.962 82% 172 % 394 %
5 ×10 10 60 % (14 D D, , 7,c m2 2) 131.3 3406 215.6 389.2 219.5 0.861 52.7 0.599 149 % 67 % 317 %
6 (14 D D, , 10,c m2 3) 129.3 3476 214.9 374.5 221.2 0.838 66.8 0.716 94% 71 % 231 %
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had a 65 %–149 % advantage in performance compared with the
benchmarks in all the tests. In both experiments, our policy not only has
performed better than most of the benchmarks but also used less
computational time. We observed that the proposed RL-based color-
batching policy provides production and operation management with
stronger sequence flexibility, cost reduction, and environmental
friendliness in daily operation.
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