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H I G H L I G H T S

• A FANET based on a fleet of drones provides the connectivity to IoT-enabled devices.

• A battery charge station supplied by a wind generator enables persistent mission without any human intervention.

• Reinforcement Learning optimally manage the use of the fleet to meet bandwidth request.

• Reinforcement Learning reduces the wasted energy and enables the use of the wind generator.

• Wireless power transfer based charge station has been used to face hostile environmental conditions.
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A B S T R A C T

The optimal management of a fleet of drones is proposed in this paper for providing connectivity to sensors and
actuators in Industrial Internet of Things (IIoT) scenarios. The persistent mission without any human inter-
vention on the battery charge is obtained by means of an on-field wind generator supplying a charge station that
adopts resonant wireless power transfer. The objective of the fleet management is to provide the best con-
nectivity over the time considering the variability of both the bandwidth request and the wind energy avail-
ability. The optimal management is performed by a system controller adopting reinforcement learning (RL) for
deciding the number of drones to take off and, consequently, the instantaneous provided bandwidth. A constant
charge time of drone battery represents a key element of the system because this enables to strongly reduce the
complexity of the system controller task. To this purpose, an adaptive current control for the charge station is
introduced to compensate charge time variabilities due to the coupling factor changes caused by misalignments
that can occur between a pad and a drone. The results have highlighted that the RL provides good performance
improvement in case of green generation. An important aspect arose from this study is the ability of RL to
increase the saved energy even if it is not considered as a target of the controller.

1. Introduction

With the widespread deployment of wireless sensor networks and
embedded systems, as well as the introduction of the Internet of Things
(IoT) in industrial application scenarios, industrial automation is un-
dergoing a tremendous change, shifting the manufacturing companies’
environment toward smart factories. This trend is fostering the rise of
Industrial IoT (IIoT) [1–3] as the first step towards the implementation
of Industry 4.0 [4,5]. For example, smart agriculture is a challenging
IIoT scenario that needs smart control and intelligent decision making
based on accurate real-time field data and smart warehouse manage-
ment [6,7]. Nevertheless, there are many cases in which providing

connectivity for IoT devices is challenging for the wide deployment of
these technologies. A typical case is when the devices are dispersed in
very large areas without infrastructure coverage due to, for example,
severe shadowing by mountainous terrain [8], and often not covered by
grid power supply. Some solutions analyzed in the past are based on the
use of high-altitude platforms (HAPs), such as balloons, which usually
operate tens of kilometers above the Earth’s surface. Unfortunately,
sources of information in IoT scenarios are typically small battery-
limited devices, so typically unable to transmit over a long distance due
to their energy constraints [8]. To this purpose, a very promising so-
lution that has received significant attention recently in such scenarios
is the use of unmanned aerial vehicles (UAVs), also commonly referred
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to as drones [9–11]. According to both the specific peculiarities and
performance requirements of the considered scenarios, UAVs can be
organized in fleet. In this way, they can be used as wireless relays to
create flying wireless communication platforms aiming to achieve
connectivity between ground wireless devices [12], or act as mobile
aerial base stations to provide reliable downlink and uplink commu-
nications for ground users and boost the capacity of wireless commu-
nications networks (WCN) [13–16].

The previous scenarios ask for persistent mission without any
human intervention. Consequently, on-field autonomous power systems
for charging drones’ batteries are necessary [17–19]. Different strate-
gies could be adopted in the charge station: charging batteries left from
drones that have substituted them with previously charged ones [20],
or directly charging on-board the drones’ battery. The first strategy
presents the advantage of reducing the drone parking time, provided
that a full battery is available when it lands on the station. On the other
hand, this would require standardizing the battery types, the commu-
nications protocol and so on, with the additional difficulty of ensuring
hot-battery swapping. Moreover, the change may be difficult due to
hostile environmental conditions. On the contrary, on-board battery
charge enables to overcome some of these problems at cost of a longer
parking period. The battery can be charged either through contactors
[21,22], or by a wireless power transfer (WPT) converter [23–28]. The
former strategy presents the disadvantage of contactor corrosions,
while the inductive WPT [26–28] represents the best contactless char-
ging strategy because it avoids the safety issues arising in case of ca-
pacitive WPT [25].

Another important peculiarity in the considered scenarios is the lack
of the main electrical network, which implies the use of on field gen-
eration. To this purpose, using conventional generators (e.g. diesel)
would be the best solution from the “island” adequacy point of view,
but this would lead to environmental issues [29]. In this paper, an IIoT
framework constituted by a huge number of sensors and actuators for
application scenarios concerning Industry 4.0 has been considered.
They are located in a large area where telecommunication infra-
structure is not available, and a Flying Ad-hoc NETwork (FANET) made
of a fleet of drones realizes the connectivity platform [30]. A charge
station adopting WPT for recharging drones’ batteries and supplied by a
wind generator (WG) has been considered. A System Controller (SC)
decides how many fully-charged drones are enabled to fly in order to
satisfy the time-variant bandwidth demand of the IoT devices while
accounting for the time-variant power availability from the WG. A
constant charge time of drone battery has been considered because this
enables to strongly reduce the complexity of the SC task, so making
feasible the proposed management approach. This has been obtained by
implementing a current tuning mechanism on each pad able to com-
pensate for the coupling factor variability due to different misalignment
occurrence. The SC also manages the pads to properly implement the
current tuning mechanism. Limited economical investments are re-
quired by using only one inverter to supply all the pads. Therefore, the
adaptive power control has to be designed properly for enabling the
battery charging in a fixed time chosen a priori for any drone and
whatever the pad of the charge station. A current tuning mechanism is
proposed in this work to achieve this objective. Finally, other UAV
applications may be supported by a similar system [31,32].

The main contributions of this paper can be synthesized as follows.
First, the novelty of the whole drone-based IIoT system framework, a
platform for IoT-enabled devices exploiting the connectivity provided
by a fleet of drones. Second, the application of Reinforcement Learning
(RL) to optimally manage the use of the fleet considering the variability
of both the connectivity demand and the wind energy availability.
Third, the design of the aforesaid single-inverter multi-pad charge
station using resonant inductive WPT in adaptive converters. The paper
is structured as follows. Section 2 describes the system under study
focusing on targets and constraints. Section 3 presents the system
modeling and controlling strategy. The single-inverter multi-pad station

is described in Section 4. The results of the system optimal management
as well as the simulation of the single-inverter-multi-pad charge station
are reported in Section 5.

2. System targets, features and operation challenges

A FANET realized by a fleet of drones provides connectivity to a
huge number of IoT devices distributed on a territory that is subdivided
in adjacent zones. Each zone is served by a WPT station supplied by an
on-field WG. Drones of the fleet periodically land in the station for
charging. In the following, the model of one zone of the system (sket-
ched in Fig. 1) is described. It is worth to note that the model is valid for
each zone but the optimal management policy of each zone may differ
from the others even when there is a small difference on the variability
of the connectivity request, on the availability of power from the on-
field WG, and on the number of drones and pads.

The drones serving a given zone are assumed to be equal to each
other. Moreover, it is assumed that each drone provides the same
connectivity contribution to the IoT devices deployed on the ground.
Since the IoT devices operating in that zone need a time-variant
bandwidth, then the number of drones necessary to guarantee the re-
quested connectivity changes over the time. A SC decides how many
drones have to take off among the ones fully charged, accounting for
the required bandwidth trend and the variability of the available power
from the WG.

The management challenge arises from the trade-off between the
connectivity request occurring at the instant the choice has to be per-
formed and the future requests. The problem difficulty is increased from
the stochastic availability of drones with a charged battery due to the
variability of wind power production [33]. RL is a well-suited approach
for this kind of problems [34]. This is the reason why we adopted it as
the core of the SC in order to select the optimal management policy
from a long-term point of view. An appropriate model of the system
elements is the key for a successful use of the RL because a very com-
plex model could prevent RL to converge to a solution in a limited time.
As described in the next section, the RL problem is formalized by using
a Markov decision process (MDP) framework. At the planning stage of
the SC, the best policy is found by means of RL in off-line mode by
modeling the behavior of the system components and their interactions
(historical or forecasted data) by using a MDP [35]. The information
about the states of the discrete model with the RL choice for each state
will be stored in the SC. At operation stage, the SC works online: it
observes system conditions (power available from the WG, connectivity
request and so on), then identifies the most similar state of the discrete
model and, finally, commands some drones to take-off. The number of
drones that receive the command is found by RL at planning stage as
the optimal policy for the specific state identified by the SC. Notwith-
standing, SC could also apply on-line RL starting from the results ob-
tained in off-line mode.

Although the MDP is subject to the “curse of dimensionality” pro-
blem [36], assuming a fixed charge time of drone battery allows the use

Fig. 1. Drone lifecycle phases in the system under study.
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of a discrete-time MDP, thus strongly reducing the complexity of the
model without affecting its exactness. Therefore, a fixed charge time is
chosen according to the electric characteristics of the station and
drones. To this purpose, the pads of the charge station adaptively
change the absorbed power from the WG to meet this time constraint
regardless the coupling factor value that depends on the different
misalignments between the pad and the drone landed on it.

A Lithium Ion battery (LIB) is the best candidate for the considered
application since it provides high energy density and light weight [37].
Typically, LIB charging is initially performed at constant current and
increasing voltage. When the voltage reaches the nominal value, it is
kept constant and the current rapidly decreases. Consequently, the
characteristic of the absorbed power changes during the charge in-
terval. On the other hand, the average value of this characteristic, PAVG,
must be fixed and assigned a priori to ensure the aforesaid target, i.e. a
constant charge interval. To reach this target the average charge power
must be independent from the different coupling between drone and
pad because it must be equal to PAVG. The use of adaptive absorption at
the pad stage instead of at the inverter stage enables to meet the con-
stant-charge-interval constraint with the use of only one inverter. The
single-inverter multi-pad station will be described in Section 4.

3. System modeling and controlling strategy

As said in the previous section, the management role of the con-
sidered framework is played by the SC. In Section 3.1 we will define a
Markov model of the whole system. This model will be used in Section
3.2 to introduce the optimal management policy that is based on a RL
approach. Table 1 summarizes the notation adopted in this section,

3.1. Model of the Markov Decision Process (MDP)

Let the battery charge time, ΔEF, i.e. the period needed to change the
battery status from Empty to Full, be constant thanks to the technique
presented in Section 4.2. Let ΔFE be the mean flight time that includes
take-off, climb, cruise, descendent and landing. This interval will be
also referred to as the discharging time. As discussed so far, in order to

reduce the complexity of the model to be applicable by the SC, we use a
discrete-time MDP. The charging time, ΔEF, is assumed as the system
time slot, Δ, while ΔFE is assumed, on average, equal to H∙Δ, with H a
positive integer.

The time-variant bandwidth requested by the IoT devices, indicated
as B(n), is assumed to be an independent stochastic process. Instead, the
number of drones, G(n), that can be concurrently supplied for battery
charging depends on the WG. A first in, first out (FIFO) policy is adopted
for choosing the drones to be charged.

The drone behavior can be modeled by a 3-state Markov model, as
depicted in Fig. 2, where some state transitions, highlighted with ‘⇒’,
depend on external conditions, as explained below. When a flying drone
on air (state A) reaches a low state of charge (SOC), it lands on a pad of
the charge station and waits for charge. This is represented by the
permanence on the state “Empty Battery” (E), where it remains until the
pad is not supplied. When the pad is supplied, in the successive slot the
drone enters the state “Full Battery” (F). The drone will stay in this state
until the SC does not authorize its take off, thus the cycle restarts.
Therefore, the transitions ⇒E E and ⇒E F depend on the available
power from the WG, while the transitions ⇒F F and ⇒F A depend on
the SC decision.

The processes G(n) and B(n) are modeled with Switched Batch
Bernoulli Processes (SBBP) [38], which are the most general event-oc-
currence processes whose behavior is modulated by Markov chains in
the discrete-time domain. The system state at the generic slot n is re-
presented as:

=S n S n S n S n( ) ( ( ), ( ), ̲ ( ))G B D(Σ) ( ) ( ) ( ) (1)

where S n( )G( ) and S n( )B( ) are the underlying Markov chains of the SBBP
processes G(n) and B(n), respectively, whereas S n̲ ( )D( ) represents the
battery state of all the drones. It is defined as an array of three Markov
chains representing the number of drones in each of the three states
described in Fig. 2, that is:

=S n S n S n S n̲ ( ) [ ( ), ( ), ( )]D
E

D
F

D
A
D( ) ( ) ( ) ( ) (2)

As described in [38], the processes G(n) and B(n) are characterized by
the transition probability matrix of their modulating Markov chains,
and by the matrix containing, on its rows, the event-occurrence prob-
ability distribution array for each state of the Markov chain. Let I G( ) and
I B( ) be the state space of the processes S n( )G( ) and S n( )B( ) , respectively.
Moreover, if we indicate the number of drones in the fleet as N, the state
space of the processes S n( )E

D( ) , S n( )F
D( ) and S n( )A

D( ) is N[0, ], and

+ + =S n S n S n N( ) ( ) ( )E
D

F
D

A
D( ) ( ) ( ) (3)

Therefore, the state space is:

I I I I= × ×G B D(Σ) ( ) ( ) ( ) (4)

where

Table 1
Notation of the Markov Decision Process.

Symbol Meaning

ΔEF Period needed to change the battery
ΔFE Mean flight time
B(n) time-variant bandwidth requested by the IoT

devices
G(n) number of drones that can be concurrently

supplied for battery charging

S n̲ ( )D( ) Battery state of the drones in the three states E, F
and A

S n( )B( ) Underlying Markov chain of B(n)

S n( )G( ) Underlying Markov chain of G(n)

S n( )(Σ) State of the whole system

I B( ), I G( ), I D( ) State space of the processes S n( )B( ) , S n( )G( )

andS n( )D( )

I(Σ) State space of the whole system

I n( )A( ) Action space

N Number of drones in the fleet
f d( )R Reward function

P B( ), P G( ), ′P s a( , )D G( ) P a( )(Σ) Transition probability matrix of the processes

S n( )B( ) , S n( )G( ) andS n( )D( )

′′ ′r a( )
s s[ Σ, Σ]
(Σ) Expected immediate reward

R n( ) Reward achieved at the slot n
′v s( )͠ Σ State-value function

∗v s( )͠ ρ Σ Optimal state-value function

γ Discount factor

Fig. 2. Drone battery states.
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I = ⎧
⎨⎩

⎧
⎨⎩

∈
+ + =

⎫
⎬⎭

j j j
j j j N
j j j N

( , , ):
, , [0, ]D( )

1 2 3
1 2 3

1 2 3 (5)

The action space is state-dependent since it is defined as
I =n S n( ) [0, ( )]A

F
D( ) ( ) . Its upper limit is given by the state variable

S n( )F
D( ) , representing the maximum number of drones that the SC can

select for taking off.
Now we can define the transition probability matrix for the Markov

chain S n( )(Σ) . To this purpose, let us indicate the generic state at the slot
n as ′ = = ′ ′ ′s S n s s s( ) ( , , ̲ )G B DΣ

(Σ) , and the state at the slot +n 1 as
′ = + = ′ ′ ′′ ′ ′ ′s S n s s s( 1) ( , , ̲ )G B DΣ

(Σ) . The elements ′s̲ D and ′′s̲ D are as
defined so far, that is:

′ = = ′ ′ ′s S n s s s̲ ( ) [ , , ]D
D

E F A
( )

′ = + = ′ ′ ′′ ′ ′ ′s S n s s s̲ ( 1) [ , , ]D
D

E F A
( )

The system state evolution depends on the bandwidth requested by the
IoT devices and the power availability from the WG, as well as on the
decisions taken by the SC, which applies RL to choose how many drones
have to take off among the ones on ground with full battery. This de-
cision is taken adopting a policy that maximizes the mean reward based
on a reward function f d( )R . This function, which is an input of the
problem, associates a reward to each 2-uple constituted by the current
system state, S n( )(Σ) , and the action a chosen for that state by the
considered policy. More specifically, we consider f d( )R as a function of
the variable d defined as the difference between the number of drones
on air, +S n a( )A

D( ) , and the mean value of the required bandwidth by
the IoT devices:

= + −d S n a b( )A
D( ) (6)

where =a A n( ) is the number of drones that take off due to the decision
taken by the SC at the slot n, and b is defined as:

=b E B n S n{ ( )| ( )}B( ) (7)

E{ · \} being the expected-value operator.
The reward function has to be chosen according to the target of the

system to be optimized, then fR (d) is defined in the case study, more
specifically in (21).

The generic element of the transition probability matrix for a given
action a can be defined as follows:

= ′
′ ′ ′ ′′ ′ ′ ′′ ′ ′ ′P a P P P s a( ) · · ( , )

s s s s
G

s s
B

s s
D

G[ , ]
(Σ)

[ , ]
( )

[ , ]
( )

[ ̲ , ̲ ]
( )

G G B B D DΣ Σ (8)

′′ ′P
s s
G

[ , ]
( )

G G
, ′′ ′P

s s
B

[ , ]
( )

B B
and ′

′′ ′P s a( , )
s s
D

G[ ̲ , ̲ ]
( )

D D
being the transition probabilities

of the processes S n( )G( ) , S n( )B( ) and S n̲ ( )D( ) , respectively. The first two
matrices are known as input, while the last one depends on ′sG, i.e. the
state of the WG-based charge station, and a, i.e. the number of drones
decided by the SC to take off. It is derived in the Appendix A.

3.2. Reinforcement learning based optimal management

The optimal policy is obtained by means of the maximization of the
cumulative reward based on the reward function f d( )R introduced in
the previous section. To this end, in this paper we use a RL approach in
offline mode, by solving a system of equations, called Bellman optim-
ality equations [39], derived by the Markov model defined so far.

To this purpose, we define the expected immediate reward as follows:

= ⎧
⎨⎩

+ + = ′ = ′
+ =

⎫
⎬⎭

′′

′

′r a R n S n s S n s
A n a

( ) E ( 1) ( 1) , ( ) ,
( 1)s s[ , ]

(Σ)
(Σ)

Σ
(Σ)

Σ
Σ Σ (9)

where +R n( 1) is the reward achieved through the function f d( )R , and
corresponding to the transition from the state ′sΣ at the slot n to the state

′′sΣ at the slot +n 1, when the action a is performed by the SC.
The optimal policy for the system is achieved by solving the linear

equation system whose generic equation is the Bellman optimality

equation that allows evaluating the optimal state-value function ′v s( )͠ Σ in
the generic state ′sΣ as follows [39]:

I
I

∑′ =
⎛

⎝
⎜ + ′

⎞

⎠
⎟

′
′ ′∈ ∈

′ ′
′

′ ′v s P a r a γ v s( ) max ( )·[ ( ) ( )]͠ ͠
a s

s s s sΣ [ , ]
(Σ)

[ , ]
(Σ)

Σ
s
A
Σ

( )
Σ (Σ) Σ Σ Σ Σ

(10)

where ′′ ′P a( )
s s[ , ]
(Σ)

Σ Σ
is the generic element of the transition probability

matrix defined in (8) from the state ′sΣ to the state ′′sΣ , while ′′ ′r a( )
s s[ , ]
(Σ)

Σ Σ
is

the expected immediate reward defined in (9). The term ∈γ [0, 1[ is the
so-called discount-rate parameter, used in the RL to define how far
ahead in time the algorithm looks.

Actually, (10) is a system of equations, one for each state. The so-
lution of this system gives the optimal state-value function ∗v s( )͠ ρ Σ , for
each state I∈sΣ

(Σ). Once the optimal state-value function ∗v s( )͠ ρ Σ is
known for all the states, we have derived the optimal policy by using
asynchronous dynamic programming [39]. For each state sΣ there will
be one or more actions at which the maximum is obtained in the
Bellman optimality equation. Any policy that assigns non-zero prob-
ability only to these actions is an optimal policy. However, let us note
that, since ∗v s( )͠ ρ Σ already takes into account the reward consequences
of all possible future behavior, by means of ∗v s( )͠ ρ Σ , the optimal ex-
pected long-term return is turned into a quantity that is locally and
immediately available for each state. Hence, a one-step-ahead search
yields the (discounted) long-term optimal actions.

Let us note that it is not possible to express the best policy in closed
form. Indeed, it is constituted by the set of the best actions, i.e. the
number of charged drones that can take off among the ones already
charged, for all the system states in the state space, and this is evaluated
numerically. Instead, as anticipated in the previous section, we can
define the action space I n( )A( ) . It is the set of all possible actions that
the SC can perform, and depends on the current system state because it
is given by the interval [0, S n( )F

D( ) ].

4. WPT system enabling drone-based IIoT

The use of RL for optimally facing the management issues arising
from the considered emerging application has the additional advantage
of avoiding any human intervention. Therefore, an autonomous charge
station is also necessary in view of a persistent mission without any
human intervention [17–19]. In this perspective, as discussed in the
Introduction section, two strategies can be adopted: substitute the
empty battery with one previously charged [20], or directly charge the
drone battery. The latter solution is the most popular and can be per-
formed either through contactors [21,22], or using different WPT so-
lutions: beam-based WPT [23,24], capacitive [25] and inductive WPT
[26–28].

An overview of the charge station based on resonant inductive WPT
is presented in Section 4.1. Then, Section 4.2 describes the design of the
single-inverter multi-pad configuration, with the theoretical bases of
the adaptive technique enabling constant charging time.

4.1. Charge station based on resonant inductive WPT

The considered charge station is supplied by a variable-speed wind
turbine configuration with full-scale power converters [40]. The WG
supplies the pads that, in turns, charge the drones according to the
current sharing policy described in the next section. The block diagram
of the overall system is drawn in Fig. 3, where the area delimited by a
dotted line represents one pad, while the area enclosed in a dashed
rectangle refers to one drone.

Fig. 4a details the electrical circuit of a generic pad structure where
the coupled coils are partially represented by both their primary circuit
self-inductance, LT1, and winding resistance, RT1. The MOSFET con-
nected to the input terminals of the pad, named M1, is switched on by
the SC when it desires to charge the drone located on the pad. On the
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other hand, it is switched off when the drone battery is full or when the
SC can not to charge it (e.g. there is not sufficient power). Moreover,M1

is forced to stay open when there is no any drone on the pad. The
control signal on the MOSFET M2 is complementary to the one applied
to M1 in order to short the terminals when M1 is switched off. Finally,
LF-CF is a filter operating at resonance, and CT1 is the compensation
capacitor of the primary circuit self-inductance.

Without loss of generality, in the following it is assumed that each
drone is charged at a constant power equal to PAVG. This assumption
simplifies the description of the current sharing mechanism adopted to
ensure that a drone is charged in a time interval Δ regardless of the
coupling factor. Notwithstanding, the idea behind this mechanism can
be mixed with charging systems accounting for the actual charging
profile [41]. In other words, a given power characteristic with a vari-
able power during the charge process can be achieved by performing
the tuning during the whole charge period, considering that this char-
acteristic is fixed a priori according to the actual charging profile and
the charge time interval Δ.

4.2. Single-inverter-multi-pad Current Sharing Control

Fig. 4b shows the pad when it is supplied by closing M1 (and con-
currently opening M2), where VG is the input voltage and Z represents
the impedance “seen” downstream from the filter.

The current flowing towards Z can be expressed as:

= − −I V V
jϖL

jϖC VF
G F

F
F F

(11)

The current value is independent from Z at resonance [42]:

= − =I j V
ϖ L

ϖ
L C

with 1
FR

G

R F
R

F F (12)

Fig. 5 shows the drone model where VS is an equivalent voltage
source whose value depends only on IFR and the mutual inductance. In
the figure, LT2 and RT2 represent the secondary circuit self-inductance
and winding resistance, respectively. Finally, CT2 is the compensation
capacitor and RD is the drone equivalent resistance seen at the rectifier

input port.
By assuming the self-inductance of both primary and secondary

circuits equal to LT, and considering the coupling factor k, VS can be
expressed as:

= =V jϖ kL I k L
L

Vs R T FR
T

F
G (13)

Then, the power absorbed by the drone can be expressed as follows:

⎜ ⎟=
+

=
+

⎛
⎝

⎞
⎠

P R
R R

V R
R R

k L
L

V
( ) ( )D

D

D T
S

D

D T

T

F
G

2
2

2

2
2

2
2

2

(14)

Moreover, by considering that all the pads are equivalent to each
other as well as the drones, the absorbed power depends on the cou-
pling factor only. The coupling factor changes as the landing position
changes, thus the drones well aligned with the pad can be charged in a
time interval smaller than the misaligned ones. The drone could be
moved as proposed in [19] to avoid misalignment so also obtaining an
equal charging time. However, such a solution requires the use of ac-
tuators and additional hardware in each pad and, in the considered
scenario, has the additional disadvantage of consuming part of the
power available from the WG.

Therefore, the use of a variable value for LF is the solution adopted
to ensure the same charging time for all drones. More specifically, given
a reference value of inductance, LFR, the SC increases the inductance in
the pads where the drones are well aligned, while the SC reduces the
inductance in case of low coupling factor. The variation of the in-
ductance leads to a change in the current along the various pads, then
the current sharing control is adopted to transmit the same power re-
gardless of the coupling factor.

For a given probability density function (pdf) related to the values
of k, the average value of the coupling factor, kAVG, can be obtained.
Then, the reference value of LF is calculated from (14) as:

=
+

L R
P R R

k L V1
FR

D

AVG D T AVG
T G

(15)

and, for a given k, the inductance LF has to be changed according to the
following expression to ensure a charging power equal to PAVG:

=L k
k

LF
AVG

FR (16)

The fundamentals and basic operating principles of some variable
inductors have been reviewed in [43]. Some methods specifically de-
signed for WPT systems have been also proposed in the last years

Fig. 3. Charge station main blocks with the representation of M pad-drone subsystems.

Fig. 4. Circuit model of the generic pad.

Fig. 5. Simplified circuit model of a drone.
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[44,45]. Finally, a tunable capacitor [46] is also necessary, thus the
capacitance can be modified in order to maintain the resonance con-
dition.

Eq. (16) has the merit to highlight that the filter inductance has to
be modified proportionally as the coupling factor changes. On the other
hand, a relation providing the criterion to change the inductance ac-
cording to the measure of the absorbed power, PD, is more effective.
Therefore, from an operating point of view, the following expression,
derived from (14), is considered:

=L P
P

LF
D

AVG
FR

(17)

Therefore, the SC increases the inductance at the pad terminals to
reduce the current and, consequently, the transmitted power when the
one measured towards the drone is greater than the target value (i.e.
PD > PAVG since k > kAVG). Otherwise, when the absorbed power is
too low (i.e. PD < PAVG since k < kAVG), the inductance is reduced to
increase the current in the primary circuit in order to transmit a greater
power to the secondary one. It is worth to note that this mechanism can
be easily readapted when the actual charging profile is considered in-
stead of using the average charging power PAVG. Finally, it is to be
noticed that the implementation of the proposed current sharing me-
chanism requires a wireless communication system between the pad
and the drone [47] or the adoption of techniques not requiring any
communication neither information about the coupling [48], but this is
out of the scope of this paper.

5. System simulation

In this section, firstly, the ability of RL in optimally managing the
use of the fleet is investigated in different cases by means of MATLAB®
simulations. Proved the benefits deriving from the RL application, the
ability of the power system to charge in a fixed time whatever the drone
pad misalignment is shown through simulations performed in the
Simscape Power Systems™ module of Simulink®.

5.1. Drone fleet optimal management: some case studies

The reference case considers a zone served by a charge station with
=M 30 pads, and covered by a fleet of N = 50 technologically advanced

drones, with a battery charge time of 20 min and an average flight
autonomy of 1 h. Accordingly, we considered a slot duration
Δ = 20 min. Moreover, it has been assumed that, on average, 300 W
from the WG are necessary to charge a drone, and that a drone provides
a bandwidth of 10 Mbit/s. The requested connectivity has been mod-
eled with a 2-state SBBP model, where the states BL and BH represent
the periods with low- and high- bandwidth requests, respectively. The
duration of these states are assumed geometrically distributed random
variables with mean values of 5 h (15 slots) and 1 h 40 m (5 slots),
respectively. The bandwidth request during BL is assumed geome-
trically distributed in the interval [190,250] Mbit/s, while the band-
width requested during the BH state ranges in the interval [310,370]
Mbit/s. As far as the WG power, we considered a real trace derived from
historical log files [29], with an average generation power of 3537 W
and a peak of 9000 W. Remembering that charging a drone requires a
power of 300 W (on average) from the WG, we can express the power
generation as a function of the number of drones that can be simulta-
neously charged. So, we have an average generation power of 11.79
drones (i.e. 3537/300) and a peak of 30 drones (i.e. 9000/300), equal
to 39.3% and 100% of the pads in the reference case, respectively. We
modeled the generation process with a 4-state SBBP obtained by ap-
plying the inverse eigenvalue problem [49] to the real trace. The four
states represent four different power availability levels that, expressed
in number of drones that can be charged simultaneously, are: [0,10],
[8,18], [16,26] and [22,30].

Let us note that, according to (1) and (2), the state space cardinality,
i.e. the total number of states of the Markov model of the system is:

=U U U U· ·G B DΣ (18)

where UG and UB are the number of states of the underlying Markov
chains of SBBP processes G(n) and B(n), respectively, while UD is the
number of battery states of all the drones. From (2), and considering
that each of the three components of S n̲ ( )D( ) ranges between 0 and N,
and that their sum is equal to N, it is easy to demonstrate that:
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(19)

with = ⌊ + ⌋k N N( 1)max , where ⌊ ⌋x is the floor operator, defined as the
largest integer less than or equal to x. In our case, the cardinality of the
state space is:

= =U 4·2·1326 10.608Σ (20)

Actually, let us note that, after the optimization process obtained by RL,
some states result not reachable due to the chosen action set. More
specifically, in our case the state space is reduced to 8.008 states.

In the following, we will carry out two kinds of analysis: the first,
presented in Section 5.1.1, is obtained from the reference case de-
scribed above, by varying the range of BH. This will be done by in-
dicating this range as ±μ[ 30]B H, Mbit/s, and varying μB H, between 250
Mbit/s and 400 Mbit/s. Therefore =μB H, 340 Mbit/s gives the reference
case. The second analysis, presented in Section 5.1.2, is done by varying
the number of pads in the charge station between 5 and 50.

In order to evaluate the gain obtained by applying the optimization
management achieved by using the RL-based policy, in the following
referred to as best policy (BP), we compare it with the case when all-
charged drones take off, in the following indicated as ACTOP. For the BP
case, we considered =γ 0.95 as the discount factor, and we assumed the
following reward function:

= ⎧
⎨⎩

− ⩽
>

f d
d d

d d
( )

if 0
if 0R

2

(21)

where d has been defined in (6).
For the reference case, Fig. 6 reports in red the number of drones

available for taking off at each system state, S n( )F
D( ) , that it is equal to

the ones taking off when the SC operates according to the ACTOP. For
each state is also reported in blue the number of drones that the BP
chooses to take off. The state are firstly sorted in ascending order ac-
cording to S n( )F

D( ) , and then sorted in ascending order according to the
number of drones related to the BP. From the figure, it is evident that
the BP acts similar to ACTOP in the state where the number of available
drones is small (bottom-left in the figure). On the other hand, it is in-
teresting to note that, in some of these states, all drones in the station
are left there, even when they are ready for takeoff being their battery
completely charged.

The BP acts differently from ACTOP in the state where the number
of available drones is wide (up-right in the figure). In fact, the number
of drones that the BP keep at the station increases as the available
number of drones increases.

5.1.1. System performance versus the high-bandwidth request
Fig. 7 shows the mean reward obtained against the mean bandwidth

request, μB H, , during high-bandwidth request periods. The analysis has
been carried out for the system described before as the reference case,
where the charge station is supplied by a WG. Moreover, the case in
which the charge station is supplied by a conventional generator (CG)
with a constant power output, e.g. diesel, has been also considered.
More specifically, we have analyzed a subcase where the CG power
output is equal to the mean power (CGmean) of the WG, and another
one where it is equal to the WG maximum power (CGpeak). The results
show that the BP always improves the SC performance with respect to
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the ACTOP, and the impact of using the RL is more relevant when the
WG is considered. In other words, the RL is very suitable in mitigating
the variability of WG power output accounting also for the bandwidth
request variability. Finally, as expected, the use of conventional gen-
erators increases the reward, but we have to take into account that this

is obtained at cost of environmental pollution [50]. Fig. 8 presents the
average normalized bandwidth surplus, ψ. It is defined as the expected
value of the difference between the offered bandwidth and the required
bandwidth, normalized with the latter. It can be derived as follows:

= =
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In all the cases under analysis, the ACTOP provides a greater sur-
plus. This result is strictly related to the average bandwidth provided by
the SC: when using ACTOP, a higher value is obtained since all avail-
able drones take off regardless they are necessary or not. On the other
hand, the SC using the BP leaves some drones at the station when they
are not necessary on air. Therefore, this “store of drones” can meet
future higher bandwidth requests and, consequently, the BP achieves
better average reward at cost of providing lower average bandwidth. In
other words, ACTOP maximizes the average bandwidth, while BP
maximizes the ability of SC to meet the bandwidth request.

5.1.2. System performance versus the number of pads in the charge station
In this section, starting from the reference case, the analysis is

performed against the number of pads M ∈ [5–50]. Three power sup-
plies have been considered:

• WG50: a wind generator with a peak power that is able to charge 50
drones simultaneously; in this case, the mean power output is equal
to the power necessary to charge 19.65 drones (the WG power trace
has been modified proportionally to the reference case);

• WGpad: a wind generator with a peak power that is able to supply
all the pads simultaneously, that is, the peak power varies with M
(once again, the WG power trace of the reference case is modified
accordingly);

• CG50: a conventional generator with a power able to charge always
50 drones simultaneously.

As in the previous section, we compare the BP against the ACTOP.
Fig. 9 presents the obtained statistics regarding the rewards. More

specifically, Fig. 9.a reports the mean reward obtained by the BP and
ACTOP in the aforesaid three cases, while Fig. 9b shows the improve-
ment, in terms of mean reward increment, achieved thanks to the BP.
Fig. 9a reveals that there is not any improvement in the SC performance
when a charge station with more than 12–13 pads is adopted in case of
oversized WG (i.e. WG50) and conventional generator (i.e. CG50). In
other words, from the point of view of the charge station design, 12–13

Fig. 6. Number of drone available to take off (red) and selected by BP to take off (blue).

Fig. 7. Mean reward versus the mean high-bandwidth request.

Fig. 8. Normalized bandwidth surplus.
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pads are enough when an oversized WG or a conventional generator are
adopted. This is due to the number of drones as well as to the mean time
on air. In fact, the ACTOP, at each time slot, tends to equalize the
number of drones landing and the ones taking off. Indicating the
number of drones on air as NA, we have that N HA is the expected
number of landing drones, and these drones will be replaced by the
same number of charged drones, NC . Therefore, we have:

= + = +N N N N N
HA C A

A
(23)

and, consequently:

=
+

N N
H 1C (24)

Thus, since we have N= 50 and H= 3, during a time slot, about 3/4 of
drones are on air (37–38), while the remaining 1/4 are in charge
(12–13) when using ACTOP in the case a CG is adopted. Considering
that 37 drones are sufficient for satisfying the maximum bandwidth
request of the reference case, no more than 13 pads are necessary in
case of CG. Such a consideration is confirmed by Fig. 9a. Therefore, the
BP improves the performance of ACTOP only when the number of pads
is less than 13 since it enables to account for the pdf of the bandwidth
request (Fig. 9b).

Referring to Fig. 9a, similar considerations are valid in case of the
WG50, with the difference that the BP accounts for both bandwidth
request variability and (oversized) WG power output pdf. Therefore, the
margin of performance improvement is maximum when the number of
pads is about 10 for both CG and WG50 cases (Fig. 9b). On the other
hand, when the number of pads is smaller, the BP provides slightly
greater improvement in case of (oversized) WG with respect to CG, as
highlighted in Fig. 9b, since the BP faces also the wind variability.
When the number of pads is too small (5–6), only few drones are
charged and available at each time slot, thus also the BP requires to take
off all of them, that is, the BP coincides with ACTOP. When the number
of pads is greater than 13, the BP does not provide any advantage in
case of CG since, as highlighted before, it coincides with ACTOP. Si-
milarly, the improvement is negligible when considering an oversized
WG.

In case of WG with power output changed proportionally with the
number of pads (case labeled as WGpad), similar considerations are
valid for the curves in Fig. 9a. More specifically, when there are about
31–33 pads in the charge station, the SC performance converges
(Fig. 9a). The similarity with the previous cases is due to the fact that
31–33 pads imply a WGpad mean power equal to the power necessary
to supply about 12–13 pads.

When the number of pads is less than 15, the WGpad can

simultaneously supply less than 6 pads on average. In this case, the BP
coincides with ACTOP. It is worth to note that such result is similar to
the one obtained when considering CG or WG50 with less than 6 pads
(Fig. 9b). The improvement achieved by the BP increases with the
number of pads. In fact, there is more power available from the WGpad
when the number of pads increases, and the BP optimizes the man-
agement of both bandwidth request and power output variability
(Fig. 9b). On the other hand, when there are many pads, WGpad tends
towards WG50. Consequently, the improvement due to the BP de-
creases for the same reasons reported for WG50 (Fig. 9b).

When the drones to be charged are less than the ones that can be
charged, the available power surplus (saved power) may be used to
supply other local loads. The difference between the available power to
charge drones and the actual number of drones on the ground to be
charged is referred to as mean saved power (MSP). It is computed by
weighing this difference on all the states of the system Markov model,
and then dividing by the mean value of the available power provided by
the generator, that is:
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Fig. 10a shows such a quantity as a function of the number of pads.
The difference in the MSP among the three cases (CG50, WG50 and
WGpad) is mainly due to the different size of generators. Therefore, it is
more interesting the comparison between SC policies, for each gen-
eration unit. Such a comparison is performed in Fig. 10b where the
saved power gain, η, is shown:

= −η MSP MSPBP ACTOP (26)

The CG can supply 50 pads but no more than 12–13 drones are charged
in the station according to the previous considerations (Fig. 9a).
Therefore, the difference represents the power remained available for
other loads, which is about 75% of CG power output, as also confirmed
by Fig. 10a in the interval [12–50]. When the number of pads is less
than 12, all of them are used for charging the drones landed in the
station. As the number of pads decreases, the percentage of power
surplus linearly increases. When the number of pads is greater than 12,
the improvement obtained thank to the BP is constant (Fig. 10b). The
improvement is due to the fact that the ACTOP imposes all available
drones take off regardless they are necessary or not, while the BP leaves
some drones at the station when they are not necessary on air and,
consequently, it saves energy. As said before, when the number of pads
is less than 12, the BP tends towards ACTOP as the number of pads
decreases, then the advantages obtained by RL become negligible

Fig. 9. Reward statistics. (a) Mean reward for different generation units; (b) Improvement obtained thanks to the best policy indicated by RL.
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(Fig. 10b). Also, when an oversized WG is considered (WG50), if the
number of pads is greater than 12, MSP converges to 40% (Fig. 10a).
With a reasoning similar to CG, such a value is due to the difference
with the mean power output of WG50 (equivalent to 19.65 drones).
Moreover, when the number of pads is less than 12, MSP increases as
the number of pads decreases likewise CG50 (Fig. 10a). Recalling that
the WGpad power output is proportional to the number of pads, a low
power is available from the WGpad when there are few pads. Therefore,
there is no saved power if there are few pads since it is used only for
battery charging (Fig. 10a). For a higher number of pads, the BP enables
to save more power since, as said before, the BP leaves some drones at
the station when they are not necessary on air.

Therefore, such an approach has the double positive effect of having
a “store of drones” for satisfying higher bandwidth request and saving
energy. This fact is more evident in case of a WG designed according to
the actual number of pads (Fig. 10b).

5.2. Single-inverter-multi-pad charge station

Fig. 11 shows the analyzed circuit, with evidence of the main blocks
of the converter, while Table 2 reports the values of the components
and the other considered quantities. According to the considered single-
inverter multi-pad structure (Fig. 3), the inverter in the green box (I) in
Fig. 11 is shared by all the pads, then the circuitry downstream from it
represents a single pad in Fig. 11.

The voltage at its output terminals (corresponding to VG in Fig. 4) is

equal to the one of the other pads because they are connected in par-
allel. Consequently, a pad can be simulated independently from the
others if the inverter is able to set its output voltage regardless of the
load level (i.e. irrespective of the number of pads and their absorption).
Then, the total current absorption can be obtained by summing the one
obtained by simulating each pad. Therefore, the simulation of only one
pad is sufficient to demonstrate the suitability of the adopted current
tuning techniques, provided that the voltage input is independent of the
load.

The coupling factor variation has been emulated by means of mul-
tiple coupling coils whose primary (and secondary) circuits are con-
nected in series (gold box, IV, in Fig. 11). The upper coupling coil
emulates the lowest value of coupling factor. Two ideal switches are

Fig. 10. Saved power: (a) Mean value for different generation units; (b) Improvement obtained thanks to the best policy indicated by RL.

Fig. 11. Circuit simulated by Simscape Power Systems in MATLAB-Simulink. The inverter (I) is in the green box; the variable inductance (II) and capacitance (III) are
in the blue and red boxes, respectively; the variable coupling (IV) is emulated in the gold box, the rectifier and the battery (V) are in the violet box.

Table 2
Main quantities used for WPT system simulation.

Quantity value Quantity Value

VDC 48 V a.m.r. 0.6
fR 1 MHz RT1 – RT2 0.5 Ω
LT1 – LT2 5μH CT1 – CT2 5.07 nF
kAVG 0.1 k1 0.05
k2 0.05 k3 0.1
LFR 222 nH CFR 114 nF
LF1 – LF2 444 nH CF1 – CF2 57 nF
LF3 222 nH CF3 114 nF
RB 10 Ω CB 1 μF
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placed in parallel with each additional coupling coils. When these
switches are set to the closed status, the coupling coils are short-
circuited and then they do not contribute to the overall coupling factor.
Otherwise, the status of the switches is set to open when the con-
tribution on the coupling factor of the related coupling coils has to be
considered.

The variable inductance (blue box, II, in Fig. 11) and capacitance
(red box, III, in Fig. 11) are obtained by parallel connection of inductors
and capacitors, respectively. Two MOSFETs are associated to each ad-
ditional inductor to enable its connection or disconnection from the
main circuit. More specifically, one MOSFET is connected in series with
the inductor and the other in parallel. The SC operates these switches by
complementary control signals. When the first is turned on, the second
one is turned off, then the inductor is connected to the main circuit
enabling to increase the current towards the primary circuit of the
coupling coils. On the other hand, when a current reduction is neces-
sary, the MOSFET in series is turned off to disconnect the inductor, and
the other MOSFET is turned on to enable inductive energy storage
dissipation. A capacitor is associated to each inductor to ensure that the
filter always operates at the resonance condition. Therefore, a MOSFET
is connected in series with the capacitor and another one in parallel,
and they are operated through the same signal controlling the MOSFETs
of the related inductor. More specifically, CF2 and LF2 are both con-
nected in parallel with, respectively, CF1 and LF1 when signal a2 = 1.
Similarly, CF3 and LF3 are also connected when signal a3 = 1 (in this
case it is necessary – but it is not sufficient – that a2 = 1).

When the pad is supplied by closing M1, there is no knowledge of
the alignment condition. Therefore, any configuration of LF-CF may be
adopted, provided that resonance is guaranteed. The configuration LFR-
CFR (i.e. the one to be set when a coupling factor equal to the average
one occurs, hereafter called basic scenario) has been chosen as the in-
itial one. This configuration is obtained by connecting LF2 and CF2 while
leaving both LF3 and CF3 disconnected (signal a2 = 1 and a3 = 0).

Three scenarios have been emulated. The basic one has been ob-
tained by keeping open the upper couple of ideal switches in the gold
box (IV) of Fig. 11 (i.e. s2 = 0), while the lower ones are closed (i.e.
s3 = 1 in Fig. 11). The scenario with a worse alignment has been
emulated by keeping closed both couples of ideal switches (i.e.
s2 = s3 = 1). When the SC detects this scenario by means of ela-
boration of the received information about the power delivered to the
drone, it connects LF3 and CF3 to increase the current through the pri-
mary circuit, thus counterbalancing the poor alignment. The SC reaches
this result by setting a3 = 1. The scenario with a better alignment than
the basic one has been emulated by leaving open both couples of ideal
switches (i.e. s2 = s3 = 0). Unlike the previous scenario, in this case,
the SC disconnects LF2 and CF2 to reduce the current when it detects a
power transfer exceeding the reference one. In this case it sets a2 = 0
(consequently, a3 = 0).

In the following, as mentioned before, it has been assumed that the
battery charge is performed with a charging power equal to PAVG. This
is obtained by setting the voltage across the battery equal to the
nominal one, VNOM:

=P
V

RAVG
NOM

B

2

(27)

In this case study a nominal voltage equal to 48 V has been con-
sidered. Then, according to the quantities in Table 2 and Eq. (27), the
power absorbed by the battery is about 230 W. The simulations have
been initially performed considering ideal MOSFETs and ideal passive
components. Therefore, the power that the WG has to provide to charge
the battery of a drone is greater than 230 W considering the efficiency
of the overall conversion system as well as the actual coupling. In view
of an overall efficiency of about 77% for the system, the assumption of
300 W necessary on average for charging a drone is valid.

It is worth to note that the value of the DC voltage supplying the

inverter is also 48 V. Therefore, given the quantities related to the
coupling coils and the battery in Table 2, the values of inductance and
capacitance in the filter have been chosen in order to obtain the
aforesaid voltage equality.

Figs. 12–14 show the amplitude of the current in the primary circuit
of the coupling coils (gold waveform), the DC voltage at the inverter
input terminals (green waveform) and the voltage across the battery
(red waveform).

Fig. 12 shows the basic scenario, k = 0.1, where it is not necessary
any change in the primary current because the coupling factor equals
the average value, kavg. More specifically, the voltage across the battery
tends towards the desired value.

Fig. 13 shows the case with a poor alignment, k = 0.05. When the
SC detects a voltage across the battery less than the nominal one, it
reduces the inductance (and increases the capacitance accordingly) of
the filter to increase the current in the primary circuit of the coupled
coils to obtain the desired voltage level.

Fig. 13b and c report the amplitude of this current, respectively,

Fig. 12. Basic scenario: VDC and battery nominal voltage (green), voltage across
the battery (red), amplitude of the current in the primary circuit, IF, (gold).

Fig. 13. Poor alignment: VDC and battery nominal voltage (green), voltage
across the battery (red), amplitude of the current in the primary circuit, IF,
(gold).
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before and after the change. By comparing Fig. 13b with Fig. 12b, it can
be noted that the initial current in the primary circuit is equal to the
basic scenario, thus confirming that this current does not depend on the
circuit downstream from the filter. Moreover, in Fig. 13c it is shown
that the current has to be increased in order to deliver the desired
power. By comparing the current amplitude of Fig. 13b and c, it is also
evident that the current amplitude has been doubled to keep constant
the product with the coupling factor (which is half of kavg).

The amplitudes obtained for the scenario with a better alignment,
k = 0.2, are reported in Fig. 14. Once again, the results confirm the

expected behavior of the charge system.

6. Conclusions

The adoption of a fleet of drones that provides connectivity to a
large number of distributed IoT devices is an innovative scenario to-
wards the Industry 4.0 framework. A charge station based on wireless
power transfer is necessary to avoid any human intervention for battery
charging. Moreover, the use of on field renewable generators to supply
the station is recommended for green Industry 4.0 development.

In this paper, RL has been adopted in the system controller to op-
timally manage the fleet usage considering the variability of both the
bandwidth demand and the green power availability. The results ob-
tained in different test cases and scenarios have highlighted the effec-
tiveness of the proposed tool. The results have highlighted that the RL
provides positive effects, more evident in case of wind generators. In
the framework of green power generation, the improvement obtained
thanks to the RL is greater in case of generator power output propor-
tional to the number of pads instead of oversized generation. An im-
portant aspect is the ability of RL to increase the saved energy even
when it is not considered as a target of the RL.

A single-inverter-multi-pad power converter has been also adopted
to guarantee a constant charge time with the goal of making the system
controller task easier. The inductance and capacitance of the filter in a
pad are tuned to obtain, through a wireless power transfer link, the
same current towards its drone battery regardless of the misalignment.
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Appendix A

Let us derive the generic element of the matrix ′P s a( , )D
G

( ) , used in (8). From the definition of the state S n̲ ( )D( ) in (2), and applying the total
probability theorem on both the number β of pads that can be supplied simultaneously among the M that are available in the charge station, and the
number c of drones that can land in a slot because needing to be charged among the ′sA drones that are flying, we have:
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The term ′B s β
G

[ , ]
( )

G
represents the probability that β pads can be supplied when the underlying Markov chain of the WG is = ′S n s( )G

G
( ) .

The terms ′
′′ ′P β s c( , , )

s s
D

A[ , ]
( )

E E
E , ′

′′ ′P a β s( , , )
s s
D

E[ , ]
( )

F F
F and ′′ ′P a c( , )

s s
D

[ , ]
( )

A A
A are the transition probabilities of the component states of S n̲ ( )D( ) .

Finally, the term ′p s( )c
Land

A[ ]
( ) is the probability that c drones, among the ′sA ones that are flying, land in a slot because needing to be charged. In

order to calculate it, since the drone battery SOCs are independent of each other, we can model the landing probability for a drone in a slot as a
Bernoulli process with parameter ρDown. This parameter depends on the mean time on air. Assuming that in the slot when a drone takes off does not
land, the per-slot landing probability starting from the second slot on air is = −ρ H1 ( 1)Down . Therefore, considering that ′sA represents the number
of drones that are already on air at the beginning of the slot, they potentially may land with probability ′p s( )c

Land
A[ ]

( ) following a Binomial dis-
tribution:

′ = ⎛
⎝

′ ⎞
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− ′ −p s s
c

ρ ρ( ) ·( ) ·(1 )c
Land

A A
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c
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