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H I G H L I G H T S

• Introducing an event-triggered paradigm for learning and control.

• Formulating micro-climate control as a continuing task based on SMDPs.

• Learning and controlling, only when needed, reduce variance in learning.

• Efficient learning allows plug & play deployment of learning-based controllers.
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Abstract: Smart buildings have great potential for shaping an energy-efficient, sustainable, and more economic
future for our planet as buildings account for approximately 40% of the global energy consumption. Future of the
smart buildings lies in using sensory data for adaptive decision making and control that is currently gloomed by
the key challenge of learning a good control policy in a short period of time in an online and continuing fashion.
To tackle this challenge, an event-triggered – as opposed to classic time-triggered – paradigm, is proposed in
which learning and control decisions are made when events occur and enough information is collected. Events
are characterized by certain design conditions and they occur when the conditions are met, for instance, when a
certain state threshold is reached. By systematically adjusting the time of learning and control decisions, the
proposed framework can potentially reduce the variance in learning, and consequently, improve the control
process. We formulate the micro-climate control problem based on semi-Markov decision processes that allow
for variable-time state transitions and decision making. Using extended policy gradient theorems and temporal
difference methods in a reinforcement learning set-up, we propose two learning algorithms for event-triggered
control of micro-climate in buildings. We show the efficacy of our proposed approach via designing a smart
learning thermostat that simultaneously optimizes energy consumption and occupants’ comfort in a test
building.

1. Introduction

Buildings account for approximately 40% of global energy con-
sumption about half of which is used by heating, ventilation, and air
conditioning (HVAC) systems [1,2], the primary means to control
micro-climate in buildings. Furthermore, buildings are responsible for
one-third of global energy-related greenhouse gas emissions [1]. Hence,
even an incremental improvement in the energy efficiency of buildings
and HVAC systems goes a long way towards building a sustainable,

more economic, and energy-efficient future. In addition to their eco-
nomic and environmental impacts, HVAC systems can also affect pro-
ductivity and decision-making performance of occupants in buildings
through controlling indoor thermal and air quality [3,4]. For all these
reasons micro-climate control in buildings is an important issue for its
large-scale economic, environmental, and health-related and societal
effects.

The main goal of the micro-climate control in buildings is to mini-
mize the building’s (mainly HVAC’s) energy consumption while
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improving or respecting some notion of occupants’ comfort. Despite its
immense importance, micro-climate control in buildings is often very
energy-inefficient. HVAC systems are traditionally controlled by rule-
based strategies and heuristics where an expert uses best practices to
create a set of rules that control different HVAC components such as
rule-based ON/OFF and conventional PID controllers [5,6]. These
control methods are often far from optimal as they do not take into
account the building thermodynamics and stochasticities such as
weather conditions or occupancy status. To overcome some of these
shortcomings, more advanced model-based approaches have been
proposed. In this category, model predictive control (MPC) is perhaps
the most promising and extensively-studied method in the context of
buildings climate control [7–10].

Despite its potential benefits, performance and reliability of MPC
and other model-based control methods depend highly on the accuracy
of the building thermodynamics model and prediction of the stochastic
disturbances. However, developing an accurate model for a building is
extremely time-consuming and resource-intensive, and hence, not
practical in most cases. Moreover, a once accurately developed model
of a building could become fairly inaccurate over time due to, for in-
stance, renovation or wear and tear of the building. Furthermore, at
large scales, MPC like many other advanced model-based techniques
may require formidable computational power if a real-time (or near
real-time) solution is required [11]. Last but not least, traditional and
model-based techniques are inherently building-specific and not easily
transferable to other buildings.

To remedy the above-mentioned issues of the model-based climate
control in buildings and towards building smart homes, data-driven
approaches for HVAC control have attracted much interest in the recent
years. The concept of smart homes where household devices (e.g., ap-
pliances, thermostats, and lights) can operate efficiently in an autono-
mous, coordinated, and adaptive fashion, has been around for a couple
of decades [12]. However, with recent advances in Internet of Things
(IoT) technology (cheap sensors, efficient data storage, etc.) on the one
hand [13], and immense progress in data science and machine learning
tools on the other hand, the idea of smart homes with data-driven
HVAC control systems looks ever more realistic.

Among different data-driven control approaches, reinforcement
learning (RL) has found more attention in the recent years due to recent
algorithmic advances in this field as well as its ability to learn efficient
control policies solely from experiential data via trial and error. This
study focuses on an RL approach and hence, we next discuss some of the
related studies using reinforcement learning for energy-efficient con-
trols in buildings followed by our contribution.

The remaining of this article is organized as follows. Section 2 re-
views the related literature, discusses their limitations, and highlights
our contributions. The micro-climate control problem is stated and
mathematically formulated in Section 3 where the idea of the switching
manifolds is also introduced. Section 4 introduces preliminaries of a
semi-Markov decision process (SMDP), and then, delineates how the
original control problem is formulated in the SMDP framework.
Learning-based control algorithms are presented in Section 5. These
algorithms are implemented via simulation on two different building
models and the results are presented and discussed in Section 6. Finally,
Section 7 concludes the paper with a summary and some open research
problems and future work.

2. Related work and contributions

2.1. Tabular RL

The Neural Network House project [12] is perhaps the first appli-
cation of reinforcement learning in building energy management
system. In this seminal work, the author explains how tabular Q-
learning, one of the early versions of the popular Q-learning approach
in RL, was employed to control lighting in a residential house so as to

minimize energy consumption subject to occupants’ comfort constraint
[14]. Tabular Q-learning was later used in a few other studies for
controlling passive and active thermal storage inventory in commercial
buildings [15,16], heating system[17], air-conditioning and natural
ventilation through windows [18], photovoltaic arrays and geothermal
heat pumps [19], and lighting and blinds [20].

Given fully observable state and infinite exploration, tabular Q-
learning is guaranteed to converge on an optimal policy. However, the
tabular version of Q-learning is limited to systems with discrete states
and actions, and becomes very data-intensive, hence very slow at
learning, when the system has a large number of state-action combi-
nations. For instance, the simulated RL training in [16] for a fairly
simple building required up to 6000 days (roughly 17 years) of data
collection. To remedy some of these issues, other versions of Q-learning
such as Neural Fitted Q-Iteration (NFQ) and deep RL (DRL) were em-
ployed where function approximation techniques are used to learn an
approximate function of the true action-value function, aka the Q-
function.

2.2. RL with action-value function approximation

Dalamagkidis et al. [21] used a linear function approximation
technique to approximate the Q-function in their Q-learning RL to
control a heat pump and an air ventilation subsystem using sensory
data on indoor and outdoor air temperature, relative humidity, and CO2
concentration. Fitted Q-Iteration (FQI) developed by Ernst et al. [22] is
a batch RL method that iteratively estimates the Q-function given a
fixed batch of past interactions. In a series of studies [23–25], Ruelens
et al. studied the application of FQI batch RL to schedule thermo-
statically-controlled HVAC systems, such as heat pumps and electric
water heaters, in different demand-response set-ups. An online version
of FQI that uses a neural network, Neural Fitted Q-Iteration, was pro-
posed by [26]. Marantos et al. [27] applied NFQ batch RL to control the
thermostat set-point of a single-zone building where input state was
four-dimensional (outdoor and indoor temperatures, solar radiance,
and indoor humidity) and action was one-dimensional with three dis-
crete values.

Immense algorithmic and computational advancements in deep
neural networks in the recent years have given rise to the field of deep
reinforcement learning where deep neural networks are employed often
for function approximation. This has resulted in numerous DRL algo-
rithms (DQN, DDQN, RBW, A3C, DDPG, etc.) in the past few years,
some of which have been employed for data-driven micro-climate
control in buildings. Wei et al. [2] claim to be the first to apply DRL to
HVAC control problem. They used Deep Q-Network (DQN) algorithm
[28] to approximate the Q-function with discrete number of actions. To
remedy some of the issues of the DQN algorithm such as overestimation
of action values, improvements to this algorithm have been made, re-
sulting in a bunch of other algorithms, such as Double DQN (DDQN)
[29] and Rainbow (RWB) [30]. Avendano et al. [31] applied DDQN and
RWB algorithms to optimize energy efficiency and comfort in a two-
zone apartment; they considered temperature and CO2 concentration
for comfort and used heating and ventilation costs for energy efficiency.

2.3. RL with policy function approximation

All the above-mentioned RL-based studies rely on learning the op-
timal state-value or action-value functions based on which the optimal
policy is derived. Parallel to the value-based approach, there is a policy-
based approach where the RL agent tries to directly learn the optimal
policy (i.e., the control law). Policy gradient algorithms are perhaps the
most popular class of RL algorithms in this approach. The basic idea
behind these algorithms is to adjust the parameters of the policy in the
direction of a performance gradient [32,33]. A distinctive advantage of
policy gradient algorithms is their ability to handle continuous actions
as well as stochastic policies. Wang et al. [34] employed Monte Carlo
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actor-critic policy gradient RL with long short-term memory (LSTM)
actor and critic networks to control HVAC system of a single-zone of-
fice. Deep Deterministic Policy Gradient (DDPG) algorithm [35] is an-
other powerful algorithm in this class that handles deterministic po-
licies. DDPG was used in [36,37] to control energy consumption in a
single-zone laboratory and two-zone data center buildings, respectively.

2.4. Limitations of RL and its application to micro-climate control

Despite the recent advances in RL, sample efficiency is still the
bottleneck for many real-world applications with slow dynamics.
Building micro-climate control is one such application since thermo-
dynamics in buildings (e.g., change in building’s temperature or hu-
midity) is a relatively slow process. The time-intensive process of data
collection makes the online training of the RL algorithms so long that it
practically becomes impossible to have a plug & play RL-based con-
troller for HVAC systems. For instance, training the DQN RL algorithm
in [2] for a single-zone building required about 100 months of sensory
data. The required data collection time for training the DDQN and RWB
algorithms in [31] was reported as 120 and 90 months, respectively. A
few different techniques have been proposed to alleviate the sample
complexity of the RL approach when it comes to real-world applica-
tions, in particular buildings, that are discussed next.

Multiple time scales in some real-world applications is one reason
for the sample inefficiency of many RL algorithms. For instance, for
precise control of a set-point temperature it is more efficient to design a
controller that works on a coarse time scale in the beginning when the
temperature is far from the set-point temperature, and on a finer time
scale otherwise. To address this issue, double and multiple scales re-
inforcement learning are proposed in [38,39]. Reducing the system’s
dimension, if possible, is another way to shorten the online training
period. Different dimensionality reduction techniques such as auto-
encoder [23] and Convolutional Neural Networks (CNN) [40] were
used in RL-based building energy management control where the
system states were high dimensional.

Another approach to reduce the training period is based on devel-
oping a data-driven model first, and then use it for offline RL training or
direct planning. This approach is similar to the Dyna architecture
[41,42] and is often referred to as model-based RL [43]. Costanzo et al.
[44] used neural networks to learn temperature dynamics of a build-
ing’s heating system to feed training of their FQI RL algorithm while
Nuag et al. [45] used support vector regression to develop consumption
energy model of a commercial building for training of their DDPG al-
gorithm. In [46,47] data-driven models of thermal systems are devel-
oped in the form of neural networks and transition matrix1 of partially
observable Markov decision processes (POMDPs), respectively, which
are then used for finite horizon planning. As another example, Kazmi
et al. [48] used muti-agent RL to learn a probabilistic model of identical
thermostatically-controlled loads, which was then used for deriving the
optimal policy by Monte Carlo techniques.

In addition to the issue of large sample complexity that is inherent
to most RL algorithms, there are issues on how the RL techniques are
employed for the micro-climate control problem. Similar to many other
studies about RL applications to physical sciences, there are two main
issues with the above-reviewed studies; first, they model and solve the
micro-climate control problem as an episodic-task problem with dis-
counted reward while it should be modeled as a continuing-task problem
with average reward. Average reward is really what matters in con-
tinuing-task problems and greedily maximizing discounted future va-
lues does not necessarily maximize the average reward [49]. In parti-
cular, solutions that fundamentally rely on episodes are likely to fare
worse than those that fully embrace the continuing task setting.

Second, in all these studies, the control problem is modeled based
on Markov decision processes (MDPs) where learning and decision-
making occur at fixed sampling rate. The fixed time intervals between
decisions (control actions) is restrictive in continuous-time problems; a
large interval (low sampling rate) deteriorates the control accuracy
while a small interval (high sampling rate) could drastically affect the
learning quality. For instance, as reported in [50] among others, policy
gradient estimate is subject to variance explosion when the discretiza-
tion time-step tends to zero. The intuitive reason for that problem lies in
the fact that the number of decisions before getting a meaningful re-
ward grows to infinity. Furthermore, the classic time-triggered learning
and control (i.e., learning and control at fixed time intervals) may not
be desired in large-scale resource-constrained wireless embedded con-
trol systems [51].

2.5. Contributions

Towards designing plug & play learning-based controllers for smart
buildings, we eliminate the major drawbacks of the RL-based con-
trollers discussed above by proposing an event-triggered learning-based
controller. Unlike the conventional periodic paradigm in RL and con-
trols where learning and control take place at periodic times, our pro-
posed controller learns and takes actions aperiodically and when
needed. In a nutshell, the major contributions of this paper are as fol-
lows:

• We formulate the micro-climate control problem as a continuing-
task problem with infinite-horizon (undiscounted) average-reward
objective;

• We introduce the idea of event-triggered paradigm along with the
notion of switching manifolds for data-efficient learning and control
with application to HVAC systems;

• We formulate the event-triggered control problem in SMDP frame-
work with variable transition times;

• We present two event-triggered learning algorithms with applica-
tion to online micro-climate control in buildings;

• We demonstrate the effectiveness of our proposed approach on a
small-scale building via simulation in EnergyPlus software.

3. Problem statement

3.1. System dynamics and optimization objective

The aim of this study is to provide a plug & play control algorithm
that can efficiently learn to optimize HVAC energy consumption and
occupants’ comfort in buildings, with no knowledge of the building’s
model. With no loss of generality, we consider a single-zone building
with ON/OFF heating system; indeed the methods and concepts that we
present in this paper are applicable to more general settings. The
building dynamics evolve as:

=dT
dt

f T T u, , ,o
(1)

where, T t( ) represents the building temperature, T t( )o is the
outdoor temperature (exogenous state), and u t( ) {0, 1} denotes the
control signal determining the heater’s ON/OFF status; =u t( ) 1
switches the heater ON and =u t( ) 0 switches it OFF. The thermal dy-
namics of the system are characterized by the function f (.) which is an
unknown nonlinear function. Via the control action u t( ) we would like
to maximize the performance measure J, defined as:

= + +J
T

r u t r T T r t t dtlim 1 ( ) ( ) ,
T

T
e c d sw sw0

2

(2)

where, tsw is the time when the controller switches from 0 to 1 (the
heater switches from OFF to ON) or vice versa, and (.) is the Dirac delta

1 A transition matrix describes a probabilistic model of a dynamic system with
probabilities of system transitions from one state to another.
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function. The first term of the integrand penalizes the energy con-
sumption while the second and the third terms correspond to occupants’
comfort. Specifically, the second term penalizes temperature deviations
from a desired set-point temperature (Td) while the third term prevents
frequent ON/OFF switching that can consequently reduce the switching
noise as well as wear and tear of the heater. The relative effects of these
terms are balanced by their corresponding weights, i.e., r r,e c, and rsw.

3.2. Switching manifolds and event-triggered control

To reduce the space of possible control policies, we constrain the
optimization to a class of parameterized control policies, specifically to
threshold policies. This strategy is particularly beneficial in the RL
framework since it can potentially reduce learning sample complexity.
We characterize the threshold policies by their characteristic switching
manifolds that are defined in the state space of the system and de-
termine when the control action switches (e.g., ON OFF in this study).
The control action switches only when the system’s state trajectory hits
these manifolds which we refer to as events. Projecting these manifolds
onto the system’s indoor temperature results in temperature threshold
policies. Fig. 1 (a) illustrates schematically a temperature threshold
policy with switch-ON and switch-OFF thresholds for the single-zone
building example while Fig. 1(b) depicts the evolution of the building
temperature under such controller. We can mathematically formulate
the control action as:

=u t
T t T T T
T t T T T

u t
( )

0, if ( ) ( , ; )
1, if ( ) ( , ; )

( ), otherwise
,

o

o

OFF
th

ON
th

(3)

where, T (.; )OFF
th and T (.; )ON

th are temperature thresholds corresponding
to the OFF and ON switching manifolds, respectively that are para-
meterized in the span of the states by parameter vector . The goal is to
find the optimal control policy u t( ) which is parameterized by the
optimal parameter vector , that maximizes the long-run average re-
ward2 J defined by Eq. (2). To find the optimal manifolds, or equiva-
lently the optimal thresholds, we need to calculate J ( ) or its ascent
direction. This is not an easy task with no prior knowledge of the system
dynamics. To do this, we resort to learning-based control techniques.

Let us add the heater status, h {0, 1}s to the state vector. Dynamics
of hs is straightforward; =h 0s when the heater is off and =h 1s
otherwise. Also, it changes value only when the system state trajectory
hits a switching manifold. By introducing this new state variable we
make the controller u t( ) memory-less, simply by replacing the third line
of Eq. (3) by h t( )s . In this memory-less controller the temperature

thresholds TOFF
th and TON

th can be thought of as higher-level control ac-
tions. Executing and updating the parameters of the temperature
threshold actions could both take place at fixed time steps; however, we
avoid it for the reasons explained in Section 2.4. Instead, we restrict the
control execution and its parameter update to times when the events
occur – hence the name event-triggered control. In other words, the
shape of the switching manifolds are controlled and changed only when
the system’s state trajectory hits them.

Fig. 2 illustrates time history schematic of building’s temperature
controlled by an event-triggered threshold policy. Given that the con-
trol executions and updates occur only at the events, evolution of the
system dynamics between the events do not matter so long we can
measure the accumulated performance (reward) during this period. As
shown in Fig. 2, the state vector, s, includes the indoor and outdoor
temperatures, T T, o, as well as the heater status, hs. At a given event
with corresponding state sk and time k the controller takes a tem-
perature threshold action, ak, and as a result the system evolves until
the next event occurs with a corresponding state +sk 1 and time of event

+k 1. We refer to the event timestamps, k ’s, as epochs. The contribution
of this transition to the controller’s performance measure can be cal-
culated by Eq. (2) with the lower and upper bounds of the integral set to

k and +k 1, respectively.
In order to calculate the long-run average reward in this sequential

decision-making process, we need transitions’ accumulated reward as
well as their duration ( +k k1 ). However, the transition period be-
tween two consecutive events is not fixed; in fact, it is, in general, a
random variable. This is the main reason why the event-triggered
control paradigm cannot be formulated based on MDPs. Allowing the
state transitions to occur in continuous irregular times makes SMDP
framework a better candidate for the event-triggered control problem
formulation.

4. SMDP framework

In this section we first discuss preliminaries of SMDPs, and then,
describe how the SMDP formulation maps to the original micro-climate
control problem.

4.1. Preliminaries

We model the control problem as an SMDP. The main difference
between SMDP and MDP is that in SMDP the intervals between deci-
sions are usually random. Put differently, actions can take variable
amounts of time to complete. Thus, an SMDP model includes an addi-
tional parameter, compared to an MDP model, that defines the duration
of an action or the interval between actions.

An SMDP can be represented by the five-tuple ( , , , , ),
where is the state space, is the action space from which the

Fig. 1. (a) Schematic temperature threshold policy for the one-zone building example where temperature thresholds are parameterized functions of outdoor tem-
perature (b) schematic evolution of building temperature under the threshold control policy.

2 Average reward and performance measure are used interchangeably in this
paper.
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controller (agent) may choose at each decision epoch, and : [0, 1]
is the initial state distribution. Different from an MDP model, the
transition probability function × + × ×: [0, ) [0, 1] now
takes the duration of the actions into account. Let k ’s denote the de-
cision epochs with = 00 , and Sk represent the state variable at
decision epoch k. Then the function

= = = =+ + + +p s t s a S s t S s A a( , , ) ( , , )k k k k k k k k k k k1 1 1 1 denotes
the probability that action ak at epoch k will cause the system to
transition from state sk to state +sk 1 within t time units.3 The prob-
abilities +p s t s a( , , )k k k1 are called semi-Markov kernel. If we let

+t , the semi-Markov kernel ++p s s a( , , )k k k1 will represent the
conventional transition probability function of the embedded MDP
which we denote it by +p s s a( , )k k k1 . Also, let F t s a( , )k k denote the
probability that the next decision epoch occurs within t time units after
the current decision epoch k, given that action ak is chosen at the
current state sk.

The reward function of an SMDP, ×: , is in general more
complex than that of an MDP. Between epochs ( +tk k 1) the
system evolves based on the so-called natural processWt . Let us suppose
the reward between two decision epochs consists of two parts; a dis-
crete state-action dependent reward of g s a( , )k k and a time-continuous
reward accumulated in the transition time at a rate of c W S A( , , )t k k . We
can then write the expected total reward r s a( , )k k between the two
epochs of k and +k 1 as:

= + = =+r s a g s a c W S A dt S s A a, , , , , .k k k k t k k k k k k
k

k 1

(4)

Let us also define the expected transition time s a( , )k k , aka dwell or
sojourn time, starting at state sk and under action ak as:

= = = =+s a S s A a tF dt s a, [ , ] , .k k k k k k k k k k1 0 (5)

A policy is used to select actions in the SMDP. This policy could be
deterministic or stochastic. In a deterministic policy, state space is de-
terministically mapped into the action space; =a µ s( )k k . However, in a
stochastic policy the action ak is randomly chosen at sk with the con-
ditional probability density a s( )k k associated with the policy. We
consider parameterized policies where d is the parameter vector
of dimension d . The expected total reward and the expected transition
time, defined by Eqs. (4) and (5), can then be written as functions of

at each state as:

=r s

r s µ s

a s r s a
,

( , ( )), deterministic policy

, , stochastic policy
,k

k k

a
k k k k

k (6)

and

=s

s µ s

a s s a
,

( , ( )), deterministic policy

, , stochastic policy
.k

k k

a
k k k k

k (7)

Let us denote the corresponding column vectors of r s( , )k and s( , )k
by r ( ) and ( ), respectively. Assuming ergodicity of the embedded
MDP for any , let ( ) designate the row vector steady-state prob-
ability distribution of the embedded Markov chain. The infinite-horizon
average reward for every initial state s0 of the SMDP is defined as:

= + =
=

J s
T

c W S A dt g S A S s, lim 1 , , , ,
T

T
t Nt Nt

k

Nt
k k0 0

0

1

0 0
(8)

where, Nt denotes the number of decision epochs up to time t . It could
be shown that the above average reward is independent of the initial
condition under the ergodicity assumption and can be written as [52]:

=J r( ) ( ) ( )
( ) ( )

.
(9)

Gradient of the average reward with respect to the policy parameters,
i.e., J plays a key role for improving the policy. It has been shown
[53] that this gradient for stochastic policies takes the form:

=J A S Q S A( ) 1
( ) ( ) ~ ~ [ log ( ) ( , )],S A k k k k( ),k k (10)

where, we refer to Q s a( , )k k as differential action-value function and is
defined as:

= + + +
+

Q s a r s a J s a p s s a V s, , ( ) , , ( ).k k k k k k
s S

k k k k1 1
k 1

(11)

The policy-dependent function +V s( )k 1 in Eq. (11) is referred to as
differential state-value function and is defined as:

Fig. 2. Schematics of building’s temperature evolution controlled by threshold policy: temperature thresholds are the control actions resulting in a sequential
decision-making process with variable time intervals between decisions. T k(.)

th denotes the temperature threshold action calculated at epoch k .

3 To simplify notation, we frequently drop the capital-letter random variables
in the conditional probabilities.
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= + + +
+

V s r s J s p s s a V s( ) , ( ) , , ( ).k k k
s S a A

k k k k1 1
k k1

(12)

Intuitively, the differential state-value function V s( )k , aka potential
function, measures the potential contribution of state sk to the long-run
average reward J, for a given policy. Unlike the case of the stochastic
policies, the average-reward gradient for deterministic policies has not
been studied in the SMDP setup. However, it could be shown4 that the
gradient for deterministic policies can be written as:

= =J µ S Q S A( ) 1
( ) ( ) ~ [ ( ) ( , )| ].S k A k k A µ S( ) ( )k k k k (13)

As discussed earlier, the main differences between the average reward
setup of SMDP and cumulative discounted reward of MDP are: average
versus cumulative performance measure and variable versus fixed tran-
sition times. Despite these fundamental differences, the average-reward
gradients in the SMDP framework provided by Eqs. (10) and (13) look
very similar to the gradient of cumulative discounted reward in MDP
framework provided by the stochastic and deterministic policy gradient
theorems [32,33]; in fact, all the differences are captured by the notion
of differential value functions.

We can now employ the above gradient formulas to develop sample-
based RL algorithms that can improve the policy via, e.g., stochastic
gradient ascent optimization. But before delving into the RL algorithms,
we further explain how the original control problem in Section 3 maps
to the SMDP framework presented in this section.

4.2. SMDP formulation of the micro-climate control problem

The micro-climate control problem with threshold policies, as posed
in Section 3, is a sequential decision-making problem in which, at a
given system state, a temperature threshold for the next ON/OFF switch
of the heater is decided. Then, based on this threshold decision and the
underlying governing equations, the system dynamics evolve until the
indoor temperature reaches the threshold. At this point, a new
threshold is chosen for the next switching and this sequence goes on
and on as depicted schematically in Fig. 2. The control problem is to
find the optimal sequence of thresholds that maximizes the average
rewards accumulated in a long run, for a given reward (cost) function.

We cast the control problem as the five-tuple SMDP. The system
state vector, s, is defined as T T h[ , , ]o s . Temperature thresholds, T th,
define the SMDP actions. The thresholds could be switch-ON (TON

th ) or
switch-OFF (TOFF

th ) thresholds. The decision epochs ’s are the timestamps
when the state trajectory hits the switching manifolds or, in other
words, when the indoor temperature reaches the temperature
threshold. The transition probabilities and, in general, the semi-Markov
kernel +p s t s a( , , )k k k1 depend on thermodynamics of the building (e.g.,
Eq. (1)) and exogenous dynamics of the outdoor temperature. We as-
sume the building’s model is unknown; therefore, the semi-Markov
kernel is not accessible to the controller.

Similar to the SMDP formulation, the threshold control policies, and
hence, the actions (T th) could be either stochastic or deterministic. The
policies and the actions are determined by the switching manifolds.
That means a stochastic (or deterministic) policy is originated from a
stochastic (or deterministic) switching manifold. Similarly, a para-
meterized switching manifold results in a parameterized policy. For
stochastic threshold policies, we constrain the policy to Gaussian dis-
tributions of the form:

=T s
s

T m s
s

1
( ) 2

exp ( ( ))
2 ( )

,k
k

k

k

th
th 2

2

m

(14)

where, m s( )km , and s( )k are mean and standard deviation of the
threshold temperatureT th, that are parameterized by parameter vectors

m and , respectively ( = [ , ]m ). For deterministic policies the
threshold temperatures are simply chosen as =T µ s( )k

th .
It is worth noting that determining the optimal level of para-

meterization complexity, i.e., the number or the general shape of the
switching manifolds, is not an easy task. With that said, the domain
expertise could help with the choice of number and/or shape of the
switching manifolds. In fact, one of the main reasons to use policy-
gradient methods in this paper is that it enables incorporating the do-
main knowledge via choosing an appropriate class of policies. Choosing
manifolds with fewer parameters expedites the learning process; how-
ever, it can compromise the control performance if the optimal control
does not belong to the family of chosen manifolds.

The reward at a given state-action pair constitutes a discrete
switching penalty and a continuous part penalizing energy consump-
tion as well as temperature deviation from a desired temperature Td:

= + + = =+r s a r r h t r T T dt S s A a, ( ) ( ) , ,k k sw e s c d k k k k
2

k

k 1

(15)

where, r r,sw e, and rc were defined earlier in Section 3.1. Defining the
transition rewards as such allows us to map the performance measure of
the original control problem (Eq. (2)))) to the infinite-horizon average
reward of the SMDP formulation (Eq. (8)) with one-to-one correspon-
dence of = +c W S A r h t r T T( , , ) ( ) ( )t N N e s c d

2
t t and =g S A r( , )k k sw.

Having formulated the micro-climate control problem in the SMDP
framework, we next develop RL algorithms that can autonomously
learn the optimal control policy with no knowledge of the system dy-
namics.

5. Reinforcement learning algorithm and implementation

We can iteratively improve the control policy using the policy
gradient formulas, i.e., Eqs. (10) and (13), if the performance measure
and the differential value functions can be calculated at each iteration.
However, accurate calculation of these functions requires access to the
underlying semi-Markov kernel or, equivalently, the system dynamics
which are assumed unknown to the controller. Therefore, we resort to
reinforcement learning techniques where sampled data are used to
approximate the said functions.

We develop actor-critic RL algorithms in which the actor employs
the average-reward gradient formulas to update and improve the policy
parameters while the critic estimates the differential functions as well
as the performance measure. For the critic estimation we use para-
meterized differential action-value Q s a( , )w and state-value V s( )v

functions with parameter vectors w and v, respectively. We employ
temporal difference (TD) learning for the critic estimation of the dif-
ferential value functions. We also use an estimation of the true average
reward, denoted by J ( ), that is learned via the same temporal differ-
ence error. We use the following TD errors ( k) for the critic estimation
of V s( )v and Q s a( , )w , respectively:

= + +r J V s V s( ) ( )k k k k
v

k
v

k1k k (16)

= + + +r J Q s a Q s a( , ) ( , ),k k k k
w

k k
w

k k1 1k k (17)

where, J v,k k, and wk are the average reward and parameter vectors at
epoch k. rk is the sample reward and = +k k k1 is the sample
transition time at epoch k. The average reward estimate is updated
using the TD error as follows:

= ++J J ,k k J
k

k
1 (18)

where, J is the learning rate for the average reward update.
In view of the actor and critic updates, we now present pseudocodes

for event-triggered control problem in continuing tasks with both
4 The formal proof of Eq. (13) is beyond the scope of this paper and it will be

published soon by the authors in a separate article.
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stochastic and deterministic policies. Algorithm 1 shows the pseudo-
code for stochastic policies with eligibility traces while Algorithm 2
shows its deterministic counterpart. Algorithm 2 is an event-triggered
compatible off-policy deterministic actor-critic algorithm with a simple
Q-learning critic (ET-COPDAC-Q). For this algorithm we use a compa-
tible function approximator for the Q s a( , )w

k k in the form of
+a µ s µ s w V s( ( )) ( ) ( )k k k

v
k . Here V s( )v

k is any differentiable
baseline function independent of ak, such as state-value function. We
parameterize the baseline function linearly in its feature vector as

=V s v s( ) ( )v
k v k , where, s( )v k is a feature vector. To simplify the no-

tation in Algorithms 1 and 2 we drop the subscript (.)k and replace the
subscript +(.)k 1 by a prime superscript (.) ; for instance, sk and +sk 1 are
replaced by s and s . In the next section, we implement these algorithms
on two different building models and assess their efficacy.

Algorithm 1.

Event-triggered actor-critic stochastic policy gradient for continuing tasks with
variable-time intervals (with eligibility traces)
Input: a differentiable stochastic policy parameterization a s( )
Input: a differentiable state-value function parameterization V s( )v

Parameters: > > >[0, 1], [0, 1], 0, 0, 0v v J
Initialize J (e.g., to 0)
Initialize state-value and policy parameters v dv and d (e.g., to 0)
Initialize the state vector s
z 0v (dv -component eligibility trace vector)
z 0 (d -component eligibility trace vector)
repeat forever when an event occurs

a s~ (. )
Execute action a and wait till next event; then observe s r, ,

+r J V s V s( ) ( )v v

+J J J

+z z V s( )v v v v v

+z z a slog ( )
+v v zv v
+ z

s s
Algorithm 2.

Event-triggered COPDAC-Q for continuing tasks with variable-time intervals
Input: a differentiable deterministic policy parameterization µ s( )
Input: a differentiable state-value function parameterization V s( )v

Input: a differentiable action-value function parameterization Q a s( , )w

Parameters: > > > >0, 0, 0, 0v w J
Initialize J (e.g., to 0)
Initialize state-value, action-value, and policy parameters v w,dv dw and

d (e.g., to 0)
Initialize the state vector s
Initialize a random process { } for action exploration
repeat forever when an event occurs

= +a µ s( )
Execute action a and wait till next event; then observe s r, ,

+r J Q s µ s Q s a( , ( )) ( , )w w

+J J J

+ = +v v V s v s( ) ( )v v v v v

+ = +w w Q s a w a µ s µ s( , ) ( ( )) ( )w w w w

+ = +=µ s Q s a µ s µ s w( ) ( , ) ( )( ( ) )a w a µ s( )

s s

6. Simulations and results

In this section we implement our proposed algorithms to control the
heating system of a one-zone building in order to minimize energy
consumption without jeopardizing the occupants’ comfort. To this end,
we first describe the building models that we use for simulations, fol-
lowed up by designing the rewards to use for our learning-based control
algorithms. Then, we explain the policy parameterization used in the

simulations before we present the simulation results.

6.1. Building models

We use two one-zone building models: a simplified linear model
characterized by a first-order ordinary differential equation, and a more
realistic building modeled in EnergyPlus software. The linear model for
the one-zone building with the heating system is as follows:

+ =C dT
dt

K T T u t Q( ) ,o h
(19)

where, =C 2000kJ K 1 is the building’s heat capacity, =K 325 WK 1 is
the building’s thermal conductance, and =Q 13 kWh is the heater’s
power. As defined earlier, u t( ) {0, 1} is the control action defining the
heater status, and = °T 10 Co is the outdoor temperature.

In addition to the simplified linear model, a more realistic building,
modeled in EnergyPlus, is also used for implementing our proposed
learning control algorithms. The building modeled in EnergyPlus is a
single-floor rectangular building with dimensions of

× ×15.240 15.240 4.572 m3 ( × ×50 50 15 ft3). The walls and the roof are
modeled massless with thermal resistance of 1.291 m K/W2 and
2.456m K/W2 , respectively. All the walls as well as the roof are exposed
to the sun and wind, and have thermal and solar absorptance of 0.90
and 0.75, respectively. The floor is made up of a 4-inch h.w. concrete
block with conductivity of 1.730 W/m K, density of 2242.585 kg/m3, spe-
cific heat capacity of 836.800 J/kg K, and thermal and solar absorptance
of 0.90 and 0.65, respectively. The building is oriented 30 degrees east
of north. EnergyPlus Chicago Weather data (Chicago-OHare Intl AP
725300) is used for the simulation. An electric heater with nominal
heating rate of 10 kW is used for space heating.

6.2. Rewards

Comfort and energy consumption are controlled by the rewards.
Rewards in RL play the role of cost function in controls theory, and
therefore, proper design of the rewards is of paramount importance in
the problem formulation. The three-component reward design detailed
in Sections 3.1 and 4.1 is adopted here with reward coefficients of

= =r unit r unit0.8 , 1.2/3600 ssw e
1, and =r unit1.2/3600 K sc

2 1.
Here, unit is an arbitrary scale for quantifying the different reward
components.

6.3. stochastic and deterministic policy parameterization

We use Gaussian distributions for stochastic policies as described by
Eq. (14). For simplicity, we consider the case where the switch-ON (TON

th )
and switch-OFF (TOFF

th ) thresholds are not functions of the states. Hence,
either of these thresholds has a mean and a standard deviation para-
meter, constant in the state space. We can thus parameterize the mean
and standard deviation vectors as:

=
=

m s s
s s

( ) ( )
( ) exp( ( )),

k m k

k k

m

(20)

where, = [ , ]m m m
ON OFF and = [ , ]ON OFF . We further assume

= =ON OFF . =s h h( ) [1 , ]k s s is the state feature vector. We also
approximate the state-value function as =V s v v s( ) [ , ] ( )v k k1 2 .

In a similar fashion and assuming that switch-ON and -OFF thresh-
olds are constant in the state space, we parameterize the deterministic
policy in the form of:

= =T µ s s( ) ( ),k k
th (21)

where, = [ , ]ON OFF is the policy parameter vector. We approximate
the action-value function by a compatible function approximator as

= +Q s a a µ s µ s w V s( , ) ( ( )) ( ) ( )w
k k k k k

v
k with =w w w[ , ]1 2 . The

state feature vector s( )k and the state-value functionV s( )v
k are defined
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the same as in the stochastic policy.

6.4. Results

Having set-up the simulation environment and parameterized the
control policies and the related function approximators, we can now
implement the learning Algorithms 1 and 2. In order to asses the effi-
cacy of our learning-based control methods, we would better have the
ground truth optimal switching thresholds to which the results of our
learning algorithms should converge.

It is worth noting that, even with a simple and known model of the
building, the posed micro-climate control problem does not fall into any
of the classic optimal control categories, such as LQG or LQR. This is
mainly because of the complex form of the performance metric J. With
that said, we can still find the optimal controller by brute-force simu-
lation. Within the class of threshold policies, for fixed outdoor tem-
perature and no stochasticity in the system dynamics, the optimal
control will constitute constant switch-ON and -OFF thresholds.5 This
simple form of the optimal control policy makes the brute-force simu-
lation computationally reasonable, and it also justifies our constant-
threshold assumption in parameterizing the policies in the previous
section.

To this end, we run numerous simulations where the system dy-
namics are described by either Eq. (19) or the EnergyPlus model, and
the control policy is characterized by Eq. (21) with constant parameter
vector . For each such simulation, the simulation is run for a long time
with a fixed pair of switching temperature thresholds. At the end of
each simulation, the average reward is calculated by taking the ratio of
the total accumulated reward to the total time. For the case where the
system dynamics are described by Eq. (19), results are illustrated in
Fig. 3 based on which the optimal average reward is =J unit3.70 h 1

corresponding to optimal thresholds of = °T 12.5 CON
th and = °T 17.5 COFF

th .
Knowing the ground truth optimal policy for the simplified linear
model of the building, we next implement our proposed stochastic and
deterministic learning algorithms on this building model.

Fig. 4 depicts on-policy learning of the stochastic policy parameters
during a training period of 10 days. Initial values of the mean of the
threshold temperatures [ , ]m m

ON OFF are set to °[11.0, 19.0] C and the in-
itial standard deviation of these threshold temperatures are set to °1.0 C.
Fig. 5 illustrates probability distributions of the stochastic policies for
switching temperature thresholds before and after the 10-day training
by Algorithm 1. As seen in these two figures, the mean temperature
thresholds have reached °12.3 C and °17.5 C, very close to the true op-
timal values. The standard deviation has decreased to °0.17 C by the end
of the training. According to Fig. 6 the learned average reward con-
verges to a value of unit3.73 h 1. This learned policy is then im-
plemented from the beginning in a separate 10-day simulation and the
average reward is calculated as unit3.74 h 1. Both of these values are
very close to the optimal value of unit3.70 h 1, confirming the efficacy
of the proposed event-triggered stochastic learning algorithm.

Next, we implement our deterministic event-triggered learning al-
gorithm (Algorithm 2) on the same building model. The learned ON/
OFF switching temperature thresholds at the end of a 10-day training
are found to be °12.4 C and °17.3 C, again very close to the true optimal
values. The implemented ET-COPDAC-Q is an off-policy algorithm;
hence, to assess its efficacy we need to calculate the on-policy average
reward of the learned policy. To this end, we implement the learned
policy in a new simulation from the beginning and calculate the
average reward at the end of the simulation. The on-policy average
reward corresponding to the learned thresholds is then calculated to be

unit3.73 h 1 that is very close to the optimal value of unit3.70 h 1.

In Section 2.4 we explained in detail that the traditional learning
and control with fixed time intervals can deteriorate the learning
quality or the control accuracy. We also claimed that our event-trig-
gered learning control alleviate these drawbacks by exploiting the
variable-interval mechanism for learning and control. To back this up
via simulation, we run two 10-day simulations on the linear building
model; one with our proposed variable-interval learning and control
(Algorithm 2) and the other with fixed intervals of 5-min duration. The
latter employs the same pseudocode as Algorithm 2 but applies learning
updates and/or control executions at fixed time intervals. Our proposed

Fig. 3. Average reward J as a function of constant switch-ON (TON
th ) and switch-

OFF (TOFF
th ) thresholds.

Fig. 4. Time history of stochastic policy parameters, i.e., the means and stan-
dard deviation of the switching temperature thresholds, during a 10-day
training by Algorithm 1.

Fig. 5. Initial and learned stochastic policies for switching temperature
thresholds in a 10-day training by Algorithm 1.

5 In the case of the EnergyPlus model, the outdoor temperature is not con-
stant, and hence, the constant-threshold policy will not be the optimal policy
but it is very close to the optimal policy.
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approach learns the exact optimal thresholds, i.e., °12.5 C and °17.5 C
corresponding to an average reward of unit3.70 h 1, whereas its fixed-
interval counterpart learns the thresholds to be °11.2 C and °19.3 C.

If we now stop the training process (no learning updates), take the
thresholds learned via the fixed-time interval approach, and implement
them with control actions applied at fixed time intervals (i.e., both
learning and control taking place with fixed time intervals), the average
reward will be unit6.19 h 1; however, this value improves to an
average reward of unit5.22 h 1, if the learned policy is implemented
via event-triggered control (i.e., fixed time interval for learning but
variable time interval for control). This corroborates the advantage of
event-triggered learning and control over the classic time-triggered
learning and control with fixed time intervals. To highlight this further,
Fig. 7 shows the learned average reward during a 10-day training by
Algorithm 2 with both variable and fixed time intervals. It is clear that
learning with fixed time intervals results in a considerably larger var-
iance.

Last but not least, we implement our learning algorithms on the
more realistic building, modeled in EnergyPlus software as detailed in
Section 6.1. Here the outdoor temperature is no longer kept constant
and varies as shown in Fig. 8. Although the optimal thresholds should,
in general, be functions of outdoor temperature, here we constrain the
learning problem to the family of threshold policies that are not func-
tions of the outdoor temperature. This is because (i) finding the ground
truth optimal policy via brute-force simulations within this constrained
family of policies is much easier than the unconstrained family of
threshold policies, and (ii) based on our simulation results, the optimal
policy has a weak dependence on the outdoor temperature in this setup.

Similar to the case of the simplified building model, we first find the
optimal threshold policy and the corresponding optimal average reward
by brute-force simulations. The optimal thresholds are found to be

= °T 12.5 CON
th and = °T 17.5 COFF

th resulting in an optimal average reward
of =J unit3.31 h 1. Here we employ our deterministic event-triggered
COPDAC-Q algorithm to learn the optimal threshold policy. Starting
from initial thresholds of °11.0 C and °19.0 C, the algorithm learns the
threshold temperatures to be °12.9 C and °17.5 C at the end of 10 days of
training. This learned policy results in an average reward of
- unit3.37 h 1. Time history of the building’s indoor temperature con-
trolled via an exploratory deterministic behaviour policy during the 10-
day training period is illustrated in Fig. 8. Time history of the de-
terministic policy parameters, i.e., the switching temperature thresh-
olds, during the 10-day training is shown in Fig. 9.

7. Conclusion

This study focuses on event-triggered learning-based control in the
context of cyber-physical systems with an application to buildings’
micro-climate control. Often learning and control systems are designed
based on sampling with fixed time intervals. A shorter time interval
usually leads to a more-precise controller but often degrades the
learning performance by increasing the learning variance. To remedy
these issues we proposed an event-triggered paradigm for learning and
control with variable time intervals and showed its efficacy in designing
a smart learning thermostat for autonomous micro-climate control in
buildings.

We formulated the buildings’ climate control problem based on a
continuing-task SMDP with average reward setup. To reduce sample
complexity of the learning-based control, we constrained the problem
to the class of threshold control policies. The threshold policies are
defined by their characteristic switching manifolds in the state space.
Control action switches only when the state trajectory hits one of these

Fig. 6. Time history of on-policy average reward in a 10-day training by
Algorithm 1.

Fig. 7. Time history of average reward in a 10-day training by Algorithm 2 with
variable and fixed time intervals.

Fig. 8. Time history of indoor and outdoor temperatures of the EnergyPlus
building model during a 10-day training by Algorithm 2.

0.0 50.0 100.0 150.0 200.0
time (hour)

12.0

14.0

16.0

18.0

Le
ar

nt
th

re
sh

ol
d

te
m

pe
ra

tu
re

s

switch-on threshold (T th
ON)

switch-off threshold (T th
OFF)

Fig. 9. Time history of deterministic policy parameters, i.e., the switching
temperature thresholds, during a 10-day training of the EnergyPlus building
model by Algorithm 2.
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manifolds. Hitting the manifolds is referred to as events – hence the
name event-triggered control. The events trigger both learning and
control processes.

We employ policy gradient and temporal difference methods to
learn the optimal switching manifolds that define the optimal control
policy. Two event-triggered learning algorithms are proposed for sto-
chastic and deterministic control policies. These algorithms are im-
plemented on a single-zone building to concurrently decrease buildings’
energy consumption and increase occupants’ comfort. Two different
building models are used: (i) a simplified model where the building’s
thermodynamics are characterized by a linear first-order ordinary dif-
ferential equation, and (ii) a more realistic building, modeled in the
EnergyPlus software. Simulation results show that the proposed algo-
rithms learn the optimal policy in a reasonable one-week time. The
results also confirm that, in terms of control performance and learning
variance, our proposed event-triggered algorithms outperform their
classic time-triggered reinforcement learning counterparts where both
learning and control take place at fixed time intervals. The proposed
algorithms improve the controller’s performance measure by 70%.

The variable-time flexibility of our proposed approach can benefit a
wide range of control problems, such as coordination control in multi-
agent systems. In many applications, proper coordination between
different control agents is of paramount importance for achieving the
global objective. For instance, coordination between different HVAC
devices (e.g., heaters and ventilators) significantly affects the building’s
total energy consumption. Coordinated control of electric vehicles or
thermostatically-controlled loads in a demand-response setup are two
other coordination control problems that can benefit from our variable-
time control framework. In addition, because of the SMDP formulation,
our event-triggered control paradigm can be viewed as a hierarchical
reinforcement learning, and hence, can potentially benefit from the
recent advances in this field. Last but not least, it is worth noting that
despite all the advantages, the performance of the proposed learning-
based controller is limited by the quality of the initially-chosen family
of parameterized policies. Choosing a good policy class requires domain
knowledge, and can become particularly hard with increased dimension
of the states and actions.
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