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A B S T R A C T   

As an important branch of production scheduling, flexible job-shop scheduling problem (FJSP) is difficult to solve 
and is proven to be NP-hard. Many intelligent algorithms have been proposed to solve FJSP, but their key pa-
rameters cannot be dynamically adjusted effectively during the calculation process, which causes the solution 
efficiency and quality not being able to meet the production requirements. Therefore, a self-learning genetic 
algorithm (SLGA) is proposed in this paper, in which genetic algorithm (GA) is adopted as the basic optimization 
method and its key parameters are intelligently adjusted based on reinforcement learning (RL). Firstly, the self- 
learning model is analyzed and constructed in SLGA, SARSA algorithm and Q-Learning algorithm are applied as 
the learning methods at initial and later stages of optimization, respectively, and the conversion condition is 
designed. Secondly, the state determination method and reward method are designed for RL in GA environment. 
Finally, the learning effect and performance of SLGA in solving FJSP are compared with other algorithms using 
two groups of benchmark data instances with different scales. Experiment results show that the proposed SLGA 
significantly outperforms its competitors in solving FJSP.   

1. Introduction 

Production scheduling plays a crucial role in many manufacturing 
systems, an effective production scheme is a vital factor to enables in-
dustry to improve production efficiency and improve utilization rate of 
resources (Pezzella et al., 2008). There are many kinds of scheduling 
problems and the job-shop scheduling problem (JSP) is one of the most 
difficult problems in practice manufacturing process. It is well known 
that JSP is NP-hard (non-deterministic polynomial time hard) problem 
(Garey, Johnson, & Sethi, 1976) and a combinatorial optimization 
problem that is a representative model of many real life optimization 
tasks (Acan and Ünveren, 2015). 

The classical JSP can be described as a set of jobs to be processed on a 
group of machines, each job consists of a series of operations and has a 
specified processing order, and each operation is processed on a required 
machine. However, the application scenario of JSP could not meet the 
flexible production situation. In reality, a machine may have the capa-
bility to process more than one type of operations, in turn, each type of 
operations could be machined on several different machines, which is 
more flexible than JSP. This problem is generally referred as flexible job- 

shop scheduling problem (FJSP) (Brucker and Schlie, 1990; Brandi-
marte, 1993) and is used to describe the flexible manufacturing 
requirement of modern manufacturing systems. 

FJSP is an extension of the classical JSP in which the constraints on 
machine selection are reduced, each operation of the FJSP is allowed to 
be processed on more than one machine from its alternative machine set. 
FJSP is a more complex combinatorial optimization problem than JSP as 
it introduces a new decision content to the sequencing and it consists of 
more problems, i.e., it is aimed to figure out two subproblems including 
operation sequencing and machine assignment (Garey et al., 1976; Li & 
Gao, 2016). FJSP has been proven to be more complicated and NP-hard 
(Gao, Yang, Zhou, Pan, & Suganthan, 2019; Kacem, Hammadi, Borne, & 
Man, 2002). The objective of FJSP is to obtain an allocation for each 
operation and to define the sequence of operations on each machine to 
minimize maximum processing completion time (makespan) (Nouiri 
et al., 2018). 

Many methods have been applied for FJSP due to its nature of 
computational complexity. Some studies proposed exact methods, 
including mathematical programming and mixed integer goal pro-
gramming (Choi and Choi, 2002). However, the exact method is time- 
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consuming and difficult to achieve global optimum even for a small-size 
instances since the NP-hard characteristic of FJSP. Therefore, many re-
searchers start develop more efficient solution methodologies to obtain 
nearly optimal solutions (Acan and Ünveren, 2015). In this trend, many 
optimization algorithms have been developed to solve combinatorial 
optimization problems, especially for FJSP. Zhang et al. (Zhang et al., 
2009) presented a hybrid algorithm for FJSP, in which particle swarm 
optimization (PSO) algorithm and tabu search (TS) are combined. Nouiri 
et al. (Nouiri et al., 2018; Nouiri et al., 2017) proposed a multi-agent- 
based PSO and a two-stage PSO to solve FJSP. Xing et al. (Xing et al., 
2010) proposed a knowledge-based ant colony optimization (ACO) for 
FJSP, in which knowledge model is used to guide the current heuristic 
searching. Liouane et al. (Liouane et al., 2007) also presented an 
approach based on the combination of ACO and local search (LS) 
methods. Jiang et al. (Jiang and Zhang, 2018) first applied discrete Grey 
Wolf Optimization (GWO) to solve JSP and FJSP where the adaptive 
mutation method is introduced with the objective of minimizing the 
makespan. A hybrid artificial bee colony (ABC) algorithm introducing a 
dynamic scheme to fine-tune the search scope adaptively was proposed 
by Meng (Meng et al., 2018). Li et al. (Li et al., 2017) applied hybrid ABC 
based on TS to solve FJSP with rescheduling strategy for new jobs 
inserted, old jobs cancelled, and machinery breakdowns. 

Genetic algorithm (GA) is the most commonly used algorithm to 
solve FJSP due to its superior performance and strong universality (Shao 
et al., 2018). Kacem et al. (Kacem et al., 2002) proposed an assignment 
model generated by the approach of localization (AL) to control GA for 
total or partial FJSP. Pezzella et al. (Pezzella et al., 2008) presented a 
method to integrate different strategies for generating the initial popu-
lation and selecting the individuals for reproducing new individual, 
which lead to better results. Zhang et al. (Zhang et al., 2010) presented a 
multi-objective GA based on immune and entropy principle for the 
multi-objective FJSP. Zhang et al. (Zhang et al., 2011) and Nasr et al. (Al- 
Hinai, 2011) presented similar improved GA with LS to generate high- 
quality initial population for FJSP. Li et al. (Li and Gao, 2016) pro-
posed a hybrid algorithm, in which GA and TS are used to control global 
and local search, respectively. Zandieh et al. (Zandieh and Karimi, 2010) 
studied adaptive multi-population GA for FJSP, whose objectives are 
minimizing total weighted tardiness and maximum completion time 
simultaneously. Liu et al. (Liu et al., 2014) refined the encoding operator 
of GA that integrates probability concepts into a real-parameter 
encoding method to solve the distributed FJSP. Chang et al. (Chang 
et al., 2015) presented a hybrid taguchi GA to solve FJSP, which involves 
encoding feasible solutions to the initial chromosomes of a GA and 
embedded the Taguchi method behind mating to increase the effec-
tiveness of the GA. 

It can be observed that GA is very effective and popular in solving 
FJSP problems, whose performance is related to many aspects, one of 
the most important factors is the selection of key parameters, but there is 
little research on how to determine them (Shahrabi et al., 2017). For GA, 
crossover probability (Pc) and mutation probability (Pm) can be regar-
ded as two key parameters. If Pc and Pm are too large, some good in-
dividuals could be easily lost; while it is hard to generate new 
individuals if Pc and Pm are too small (Bashir and Nadeem, 2017). From 
the above studies in the literature, we can find that almost all algorithms 
have the disadvantage in parameter setting. Since the key parameters of 
algorithms and their adjustment methods are hard to be reasonably 
determined, they are usually fixed or updated in some predetermined 
manners (Du et al., 2014; Wei et al., 2014), which seriously degrades the 
performance of the algorithms. At present, there are few studies on the 
intelligent adjustment of key parameters for algorithms, Emary et al. 
(Emary et al., 2018) studied the adaptive exploration rate of GWO based 
on RL and neural network. Chen et al. (Fei Chen et al., 2005) proposed an 
approach to control GA with SARSA(0), in which the parameters are 
adjusted by only SARSA, but the effective is very limited with only 
SARSA. Moreover, these methods have not been applied in solving 
practical engineering problems. Shahrabi et al. (Shahrabi et al., 2017) 

proposed a RL approach to parameter estimation of variable neighbor-
hood search (VNS) for solving dynamic job shop scheduling (DJSS) 
problem, in which the optimization process of parameters are selected 
by continually improving policy and the parameters are adjusted when a 
new event generated, but the parameter variations during iteration 
process are not taken into account, which is not benefited for the per-
formance of whole algorithm. Furthermore, there is only limited 
research on the intelligent adjusting of key parameters for algorithms in 
solving FJSP (Amjad et al., 2018). 

This paper presents a self-learning GA (SLGA) based on reinforce-
ment learning (RL) to intelligently adjust the key parameters of GA for 
FJSP with the objective of minimizing the makespan. RL algorithm, also 
known as reward learning, evaluation learning, is a crucial machine 
learning algorithm (Sutton and Barto, 1998). RL uses a scalar rein-
forcement signal or a reward to interact with a complex environment 
(Wang et al., 2013), and it maps actions to environment for maximizing 
a reward by systematic learning, which has been applied to a wide range 
of fields. Qin et al. (Qin et al., 2019) investigated an optimal synchro-
nization problem for a group of generic linear systems based on multi- 
agent RL system. Li et al. (Li et al., 2011) proposed fuzzy motion con-
trol based on RL for ait synthesis of biped robots. Aissani et al. (Aissani 
et al., 2011) studied dynamic scheduling based on reinforcement multi- 
agent learning. Zhang et al. (Zhicong Zhang et al., 2012) presented a RL 
approach to minimizing mean weighted tardiness in unrelated parallel 
machine scheduling. Nowadays, more and more researchers combine RL 
with other intelligent algorithms to improve the performance of whole 
algorithm. Wang et al. (Wang et al., 2013) proposed a backward Q- 
learning which combines Q-learning with SARSA to directly tunes the Q- 
values. Gyoung et al. (Gyoung Hwan Kim, 1998) proposed genetic 
reinforcement learning (GRL) which regards scheduling problem as a RL 
problems to solve it. and the policies of RL are encoded into the chro-
mosomes of GA and a near-optimal policy is searched for by GA. RL and 
GA were integrated to make decisions when the robots cooperatively 
transport an object to a goal location while avoiding obstacles (Wang 
and de Silva, 2008). Hsieh et al. (Hsieh and Su, 2015) presented an 
improved PSO based on Q-learning for economic dispatch problem, 
which treat optimization problems as a kind of RL problems regarding 
an optimization procedure for searching an optimal solution as a RL 
procedure for finding the best policy. Alipour et al. (Alipour et al., 2017) 
used a hybrid GA with multi-agent RL heuristic to solve the traveling 
salesman problem (TSP) and got good results. None of these methods 
involve parameter tuning, therefore, this paper tries to use RL to update 
Pc and Pm of GA intelligently for solving FJSP which combines both 
SARSA and Q-learning with GA, so as to improve the efficiency and 
accuracy of solutions. 

The remainder of this paper is organized as follows. Problem model 
and objective function are presented in Section 2, while the basic and 
general features of GA and RL algorithms are described in Section 3. The 
proposed SLGA is described completely and more details about SLGA are 
displayed in Section 4. Experimental verification is carried out in Section 
5. Finally, conclusion and outlines future research are given in Section 6. 

2. Problem formulation 

2.1. Problem model 

FJSP is an extension of the classical JSP and is strongly NP-hard due 
to: (1) sequence decisions of operations to a subset of machines and (2) 
assignment decisions of operations on each machine (Wang et al., 2013). 
A n × m FJSP can be formulated as there are n independent jobs J = {J1; 
J2, J3, …, Jn} and m independent processable machines M = {M1, M2, 
M3, …, Mm}. Each job Ji contains a number of operations Oi, j. Oi, j is the j- 
th operation of the i-th job (j = 1, 2, 3, …, h), ti, j, k is the processing time 
of Oi, j on machine Mk (k = 1, 2, 3, …, m), which is fixed and known in 
advance. There are two types of FJSP, including Partial FJSP and Total 
FJSP. As for Partial FJSP, each operation Oi, j can be processed on one or 
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more machines. As for Total FJSP, each operation Oi, j could be pro-
cessed on every machine of the set of all machines. Table 1 is an example 
of 4 × 3 Partial FJSP, where the numbers represent processing times ti, j, k 
and the symbol ’-’ indicates that operation cannot be processed on the 
corresponding machine. To complete a job Ji (i = 1, 2, 3, …, n), all op-
erations Oi, j must be completed on a set of machines with machining 
capability. There are some limitations for the assignments of the oper-
ations. In this paper, the constraints are considered as follows:  

(1) Each job Ji is independent and has a fixed processing time ti, j, k.  
(2) The order of precedence between operations must be performed, 

e.g., Oi2 must be processed after Oi1 is finished.  
(3) All jobs Ji and machines Mk are available at time zero.  
(4) Each operation Oi, j has at least one machinable machine.  
(5) Each machine can process only one operation at any time.  
(6) The operations being processed cannot be interrupted until the 

machining is finished.  
(7) The installation time of the machine and the transportation time 

between operations are negligible.  
(8) Machine disruptions are ignored. 

2.2. Objective 

For FJSP, each job is composed of a sequence of precedence con-
strained operations, whose processing times are different between 
different assigned machines. The objective is to obtain a schedule that 
has the lowest makespan. The objective function can be represented by 
Eq. (1), and some limitations are given. 

Objective: 

Min.Cmax = Min

{

Max.
∑n

i=1

∑h

j=1
(si,j,k + ti,j,k)

}

(1) 

Subject to: 

ti,j,k > 0, i = 1, 2, …, n; j = 1, 2, …, h; k = 1, 2, …, m. (a)  

si,j,k + ti,j,k⩽si,j+1,k, i = 1, 2, …, n; j = 1, 2, …, h; k = 1, 2, …, m. (b)  

∑m

k=1
Xi,j,k⩾1, i = 1, 2, …, n; j = 1, 2, …, h. (c)  

∑n

i=1

∑h

j=1
Xi,j,k = 1, k = 1, 2, …, m. (d)  

Xi,j,k =

{
1, if operation Oi,j is assigned to machine k
0, otherwise (e)  

where Cmax is the maximum completion time of all job Ji, si, j, k represents 
the start time of operation Oi, j in machine Mk. Constraint (a) represents 
the processing time of all operations are greater than 0. Constraint (b) 
indicates the order of precedence between operations must be per-
formed. Constraint (c) shows that each operation Oi, j has at least one 
machinable machine. Constraint (d) ensures each machine can process 

only one operation at any time. 

3. Basic algorithms 

3.1. Genetic algorithm 

Genetic algorithm (GA) can be regarded as the most typical 
population-based optimization algorithm to solve practical combinato-
rial optimization problems due to its superior performance and strong 
universality. It starts with a predefined size of population solutions that 
is composed of a certain number of individuals. Every individual solu-
tion has a chromosome representation that represents a solution to the 
optimization problem. GA finds the different solutions through cross-
over and mutation operations, and reserves the excellent individuals 
through selection operation (Zhang et al., 2011). 

3.1.1. Chromosome representation 
The chromosome of FJSP is divided into operation sequence part and 

machine assignment part (Karimi et al., 2012), which makes encoding 
become easy and reduces the cost of decoding. Fig. 1 is an encoding for 
the instance of FJSP shown in Table 1, which expresses a solution 
scheme of optimization problem, and the machine assignment of oper-
ation is highlighted by using bold text. The number of operations is 8, 
while the length of chromosome is 16, so the length of chromosome is 
twice as long as the operations. By scanning the operation sequence from 
left to right, the first ‘1′ represents the first operation of Job J1 that will 
be processed on machine M3 corresponds to the ‘3′ in the machine 
assignment part; the second ‘1′ represents the second operation of Job J1 
that will be processed on machine M2 corresponds to the ‘2′ in the ma-
chine assignment part. According to the above explanation, the opera-
tion sequences on machine M1 is O41 → O21 → O32, machine M2 is O31 → 
O42 → O12, machine M3 is O11 → O22. Moreover, operation sequence and 
machine assignment of solution can be interpreted as: {(O11, M3), (O41, 
M1), (O31, M2), (O21, M1), (O42, M2), (O32, M1), (O12, M2), (O22, M3)}. 

3.1.2. Population initialization 
The initial population is important for GA which directly influences 

the convergence rate of fitness values and the quality of solutions (Chang 
et al., 2015). In this paper, every individual of initial population is 
randomly generated, in which two priority rules are employed, which 
are described as follows (Jiang and Zhang, 2018).  

(1) CMO: Choose the job that has the greatest number of operations 
remaining  

(2) HCMS: High probability to choose the machine with the shortest 
processing time for the corresponding operations. 

CMO is applied to generate appropriate operation sequence, while 
HCMS is used for getting machine assignment with shorter time. 
Combining priority rules CMO and HCMS can generate initial pop-
ulations with better quality. 

3.1.3. Genetic operation 
Crossover operation is the most significant step and is the backbone 

of GA, in which the two gene substrings of parents’ chromosome will be 
crossed under the same probability Pc. During the last decades, several 
types of crossover operation have been applied to permutation 

Table 1 
An instance of 4 × 3 Partial FJSP.  

Jobs Operation M1 M2 M3 

J1 O11 2 – 5 
O12 – 1 4 

J2 O21 2 3 – 
O22 4 2 1 

J3 O31 2 3 – 
O32 2 – 5 

J4 O41 4 – 2 
O42 – 3 5  Fig. 1. A chromosome representation of Table 1.  
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representation. In this study, a precedence preserving order-based 
crossover (POX) is applied for operation sequence since its wonderful 
effect for crossover operation according to references (Jiang and Zhang, 
2018; Zhang et al., 2011; Liu et al., 2014). 

Mutation operation is also an important part of GA, which can 
enhance the diversity of the population to avoid the local optimum 
phenomena by introducing some additional variability into the popu-
lation. As a result, the local search performance of the algorithm can be 
improved by mutation operation. Usually, mutation is applied with 
small probability since large probability may destroy the good chro-
mosomes. In this paper, swap mutation is applied (Lei, 2012). 

3.1.4. Selection operation 
The selection operation is to generate a new population with higher 

fitness values from the current population. The common selection stra-
tegies such as the roulette wheel, which is a fitness-based approach, 
whose chromosome of optimal individuals could be destroyed after 
genetic operations. Therefore, the chromosome must be repaired, which 
could influence the optimal individuals (Zhang et al., 2011). While the 
elite retention strategy a procedure to preserve the optimal individuals 
during each iteration and leave bad individuals out of the population, 
which will impair the premature phenomena and accelerate the 
convergence speed (Wang et al., 2017). In this paper, elite retention 
strategy is adopted, which could enable individuals to naturally evolve 
in almost all generations and improve the quality of the entire popula-
tion continuously. 

3.2. Reinforcement learning 

In recent years, researching on RL has received more and more 
attention. By mapping actions to environmental states that aims to 
achieve the most cumulative reward value of actions from the envi-
ronment, RL evaluates actions according to environment signals instead 
of through test cases to train an agent to take the correct action (Wang 
et al., 2019). In RL, the agent continuously interacts with a complex 
environment to optimize action selection according to the feedback of 
the environment, finally achieves the best decision (Sutton and Barto, 
1998). The model framework of RL is shown in Fig. 2, at time step t, the 
agent acquires current environment state st and takes action at. Then, at 
time step t + 1, the environment transits to the state st+1 after executing 
of action at, and the agent gets reward rt from environment, which will 
make the agent update the action selection and take a suitable action 
at+1. The more suitable actions will make the agent finds an optimal 
strategy πt to achieve maximum long-term rewards (Qin et al., 2019). 
The strategy formula can be expressed as Eq. (2). 

π* = argmax
π

Eπ

{
∑∞

k=0
γkrt+k |st

}

∀st ∈ S, ∀t⩾0 (2)  

where γ∈ (Pezzella et al., 2008) represents the discount rate, which 
specifies the future return value in the current state, t is current time 
step, k is the future time step, and st is the state of time step t, S is the 
state set which contains all states. 

SARSA algorithm and Q-learning algorithm are two typical value- 

based RL algorithms, whose objective is to estimate the Q value of an 
optimal strategy (Hsieh and Su, 2015). Q value; which is used to char-
acterize the rationality of action selection, is updated according to the 
feedback from environment and state-action. Q value is saved in the Q 
value table that used to record the learning experience of the agent. The 
initial Q value table is a zero-value matrix generated by the algorithm, 
whose number of rows is equal to the quantity of states and number of 
columns is equal to the quantity of actions. As shown in Table 2, the Q 
value table assumes that there are n states in the state set and m actions 
in the action set. 

The calculation of the Q value is a comprehensive consideration of 
the experienced state, the selected action and the obtained reward by the 
agent, the Q value update function of one-step SARSA algorithm and 
one-step Q-learning algorithm are expressed as Eq. (3) and Eq. (4) 
(Wang et al., 2013), respectively. 

Q(st, at)← (1 − α)Q(st, at) + α(rt+1 + γQ(st+1, at+1)) (3)  

Q(st, at)←(1 − α)Q(st, at)+α(rt+1 + γmax
a

Q(st+1, at+1)) (4)  

where Q(st,at) is the Q value of taking action at in current state st; α∈
(Pezzella et al., 2008) represents the learning rate; rt+1 is the reward 
value after the execution of action at at state st; γ is the discount rate. 
maxaQ(st+1, at+1) represents the highest expected Q value in Q value 
table at state st+1 when an action at+1 is executed, while Q(st+1,at+1) 
represents the expected Q value at state st+1 when the action at+1 which 
is chosen by a strategy (e.g. ε-greedy strategy) is executed. 

The action of Q-learning with the highest expected Q value is 
selected in each state to update Q value, in which more accumulated 
knowledge is utilized, so the stronger final performance of Q-learning 
can be obtained. But it has lower learning effect and worse quality at the 
early stage. While SARSA has a higher learning effect and convergence, 
but it easily falls into local optimum and hard to obtain the optimal 
strategy. 

4. Proposed SLGA 

The crossover and mutation operations play important roles for the 
performance of GA, and the most significant parameters of crossover and 
mutation operations are Pc and Pm. The fitter individuals are easily 
destroyed in the population if Pc and especially Pm are too large, which 
is not conducive to the convergence of the solution and the generation of 
the optimal solution; while new individuals are hard generated if Pc and 
Pm are too small (Bashir and Nadeem, 2017). 

In conventional GA, Pc and Pm are always determined by a large 
number of experiments or experience, which is burdensome and parsi-
monious. Some adaptive GAs appeared in literatures can solve this 
problem to a certain extent, but all of them formulate the values of Pc 
and Pm according to the current population fitness value in some pre-
determined manner (Du et al., 2014; Wei et al., 2014). The influence of 
previous generations or possible future populations is ignored, so their 
applicability and reliability cannot be guaranteed. In this section, a self- 
learning genetic algorithm (SLGA) is designed to intelligently adjust key 
parameters for GA based on RL, where the Pc and Pm can be chosen 
intelligently according to not only the current population state but also 

Fig. 2. The model framework of RL.  

Table 2 
Initial Q value table.  
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the past state and the appropriate prediction of the future state. 

4.1. Combined model 

The basic components of RL are strategy, reward, value function and 
environment, which must be fully considered when GA and RL are 
combined. Therefore, the following scheme is designed under the above 
premise. As is shown in Fig. 3, the combined model of GA and RL is 
divided into environment, learning module and reinforcement process. 
GA is regarded as environment, and each iteration will change its state 
from st to st+1. Learning module is composed of the RL agent and Q value 
table, in here, the agent is a virtual object of RL algorithms. 

The execution of the composition is divided into four phases (Wang 
et al., 2013). Firstly, the state st(GA) at time step t of GA iterative process 
is acquired by the agent (the state set is shown in part 4.3.1). Secondly, 
the corresponding action at(GA) is executed according to the determined 
action selection strategy (the action set is shown in part 4.3.2). In SLGA, 
adjusting and updating of Pc and Pm are actions that taken by the agent, 
and GA will use the updated new Pc and Pm. Thirdly, the genetic 
operation is performed again, the state of GA is translated into st+1(GA) 
and the feedback is returned to the agent. Finally, the agent will take 
action at+1 for GA and the learning process is recorded by the agent 
according to the experienced state-action and the received feedback. 
Meanwhile, valuation calculation is performed with value function, and 
the Q value is updated under the corresponding state-action in the Q 
value table. 

After k more iterations, the state of GA st+k(GA) = st(GA) at a later 
iterative time step t + k, the reinforcement process is activated, and the 
selection of actions for Pc and Pm will be optimized based on the existing 
state of the past learning experience. The selection of action at(GA) will 
be strengthened if the obtained reward is positive; the selection for the 
at(GA) will be weakened accordingly if the obtained reward is negative 
(Emary et al., 2018). This process of continuously state acquired, actions 
performed, feedback obtained, and strategies adjusted is the reinforce-
ment process, it can be well adapted to the dynamic of the GA’s iterative 
process. 

4.2. Construction of the learning module 

SARSA algorithm and Q-learning algorithm are combined as main 
part of Learning Module, which merges the advantages of the two 

algorithms. Wang et. al (Wang et al., 2013) propose a Backward Q- 
learning which combines SARSA with Q-learning to enhance learning 
speed and improve final performance. In this paper, a different way to 
combine two RL algorithms is proposed to enhance the performance of 
GA, which applies SARSA and Q-learning in the different stages. In the 
initial stage of SLGA, SARSA algorithm is combined with GA to form 
SLGA. The Q value is updated by Eq. (3) and recorded in Q value table, 
whose Q-values will be used as the pretrain process of Q-learning 
algorithm. 

SARSA algorithm will be converted to the Q-learning algorithm if the 
conversion condition is met. The conversion condition guarantees Q- 
learning algorithm have adequate learning materials or learning expe-
riences, which is determined by the quantity of Non-zero Q value, and 
the quantity of Q value is relevant to the number of states and the 
number of actions. So, in SLGA, the conversion condition is considered 
as Eq. (5), 

RL =

⎧
⎪⎪⎨

⎪⎪⎩

Sarsa Nti <
Nts × Nta

2

Q-learning Nti⩾
Nts × Nta

2

(5)  

where Nti represents the number of current iterations. Nts represents the 
total number of states. Nta represents the total number of actions. 

After initial stage, Q-learning algorithm replaces SARSA algorithm to 
combine with GA and the Q value is updated by Eq. (4). The execution 
steps of the Learning Module are illustrated as follows (Shahrabi et al., 
2017; Hsieh and Su, 2015), and the schematic is shown in Fig. 4. 

Step1: Initialize Q value table for each state-action pair. 
Step2: Obtain the current state st, s ← st. 
Step3: Select action a from action set in state s using the strategy 
derived from SARSA or Q-learning according to Eq. (5). 
Step4: Execute action a. 
Step5: Obtain the reinforcement reward r, and get the new state st+1. 
Step6: Terminate the process if the terminal state of GA is reached, 
otherwise, go to Step7. 
Step7: Update the Q value according to Eq. (3) or Eq. (4). 
Step8: Update the state: s ← st+1. 
Step9: Determine whether the conversion condition is met. If so, 
transform SARSA to Q-learning and go to step2. If not, go directly to 
step2. 

Fig. 3. The combined model of GA and RL.  
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4.3. State set 

The objective for FJSP is to find a schedule that has the lowest 
makespan, which is regarded as the fitness of GA. In SLGA, the envi-
ronment state should be constructed based on the population fitness, the 
following aspects are considered.  

(1) : average fitness of the population;  
(2) : population diversity;  
(3) : the fitness of the best individual. 

Eq. (6) gives the average fitness of the population that has been 
normalized by the average fitness of the first-generation population. Eq. 
(7) gives the population diversity that has been normalized by the first- 
generation population diversity. Eq. (8) gives the best fitness of the 
population after normalization by the best fitness of first generation. Eq. 
(9) is the population state value, which is obtained by weighting Eq. (6), 
Eq. (7) and Eq. (8). 

f * =

∑N

i=1
f (xt

i)

∑N

i=1
f (x1

i )

(6)  

d* =

∑N

i=1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

f (xt
i) −

∑N

i=1
f (xt

i)

N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑N

j=1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

f (x1
j ) −

∑N

j=1
f (x1

j )

N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(7)  

m∗ =
maxf (xt

i)

maxf (x1
i )

(8)  

S* = w1f * +w2d* +w3m* (9)  

where f(xt
i) represents the fitness of the i-th individual in the t-th gen-

eration, f(x1
i ) represents the fitness of the i-th individual in the first 

generation, f(x1
j ) represents the fitness of the j-th individual in the first 

generation, max f(xt
i) means the fitness value of best individual in the t- 

th generation. w1, w2, w3 are the weight values and w1 + w2 + w3 = 1, 
which represent the relative importance of three factors. In this paper, 
the population average fitness and the population diversity reflect the 
whole population state, which is good for improving quality of whole 
population and it could be easier obtain an excellent individual. But only 
an outstanding individual could be relatively different to get a better 

individual by cross operation with other poor individuals of population. 
So, the value of w1 and w2 are relatively larger than w3. In SLGA, w1, w2, 
and w3 are set as 0.35, 0.35 and 0.3, respectively. 

The number of states is momentous, too many states could be more 
precisely for self-learning, but it needs more exploration, which will 
affect the convergence of GA, while too few states could lead poor re-
sults. According to the fitness of GA for solving FJSP and the value of S*, 
the state set is divided into 20 states for S = [s(1), s(2), … , s(19), s(20)] 
(Shahrabi et al., 2017), where the interval value of S* is set as 0.05, e.g., 
when S*∈[0, 0.05), s = s(1); S*∈[0.05, 0.10], s = s(2) and so on. 

4.4. Action set 

For each generation, the agent will adopt different action to get 
appropriate Pc and Pm, 10 actions are included in the action set 
(Shahrabi et al., 2017). As for Pc, whose range of commonly used values 
is from 0.4 to 0.9, and the interval value between each action is 0.05, e. 
g., when the action is set to a1, Pc ∈ [0.4, 0.45) and a random value 
within this range will be selected; when the action is set to a2, Pc ∈ [0.45, 
0. 5). The same method is suited for Pm, whose range of values is from 
0.01 to 0.21, and the interval value is 0.02, e.g., when the action is set to 
a1, Pm ∈ [0.01, 0.03) and a random value within this range will be 
chosen. 

4.5. Reward method 

In SLGA, the reward is designed through the best individual fitness 
and the average fitness of population. Eq. (10) gives the reward of the 
adjusted Pc, and Eq. (11) is used for the reward of the adjusted Pm (Fei 
Chen et al., 2005). The agent is not told which actions to take but instead 
discovers which actions yield to higher reward by trying them, obvi-
ously, this form of reward could yield a positive reward. If the best in-
dividual of t-th generation is better than (t-1)-th generation, the agent is 
rewarded that current Pc is efficient. If the average fitness of t-th gen-
eration is better than (t-1)-th generation, the agent is rewarded that 
current Pm is effective. 

rc =
maxf (xt

i) − maxf (xt− 1
i )

maxf (xt− 1
i )

(10)  

rm =

∑N

i=1
f (xt

i) −
∑N

i=1
f (xt− 1

i )

∑N

i=1
f (xt− 1

i )

(11)  

where f(xt
i) is the fitness of the i-th individual in the t-th generation. 

Fig. 4. The schematic of learning module.  
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4.6. Action selection strategy 

The action selection strategy of RL is also called the search strategy, 
which offers a trade-off between exploration and exploitation. The un-
known environment is explored and the acquired knowledge is utilized 
to guide the choice of action by the agent. At the beginning, all Q values 
are zero, which means that the agent does not have any learning expe-
rience to use, only the exploration can be performed and learned. 

Ɛ-greedy is an action selection strategy that considers both explora-
tion and exploitation, which is expressed by Eq. (12) (Shahrabi et al., 
2017; Hsieh and Su, 2015; Wang et al., 2019); where ε is called the 
greedy rate or the exploitation rate and r0-1 is a random value from 0 to 1. 
Whenε⩾r0− 1, the action a which maximizes the expected Q value is 
selected, which is also called greedy strategy. Whileε < r0− 1, the explo-
ration will be performed and a random action a is chosen. 

π(st, at) =

{
maxaQ(st, a) ε⩾r0− 1
a(Randomly) ε < r0− 1

(12)  

4.7. Procedure of the SLGA 

Based on above work, the execution flow of the entire SLGA is shown 
in Fig. 5 and described in Algorithm 1.

5. Experiment results and discussion 

In this section, a series of experiments are carried out to test the 
effectiveness and performance of SLGA for solving FJSP. Two different 
groups of benchmark data instances are used for experiments, including 
three small-scale Kacem’s (Kacem et al., 2002) total flexible FJSP 

Fig. 5. Flow chart of SLGA algorithm.  

R. Chen et al.                                                                                                                                                                                                                                    



Computers & Industrial Engineering 149 (2020) 106778

8

instances and ten large-scale Brandimarte’s (Brandimarte, 1993) partial 
flexible FJSP instances, respectively. Moreover, their lower bounds will 
be used as a benchmark for comparison and computational analysis. 
These experiments are implemented in Matlab 2018a with Matlab lan-
guage. The computer configuration is Intel®Core™i5-4590 with 8 GB 
main memory under Win10. 

5.1. Experimental comparison for hybrid learning strategy 

In this part, to verify the efficiency of the hybrid learning strategy of 
SLGA, GA-SARSA (only SARSA is combined with GA), GA-Q (only Q- 
learning is combined with GA) and conventional GA (no RL algorithm is 
applied) are implemented and compared with SLGA. Ten Brandimarte’s 
data instances are chosen for the experiment whose lower bounds will be 
used for comparison. In these instances, the number of jobs ranges from 
10 to 20, the number of machines varies from 6 to 15, and the number of 
operations ranges from 58 to 232, each instance is run for 20 times. The 
parameters for four algorithms are defined as follows: the initial popu-
lation size is 5 × m × n, the number of iterations is 10 × m × n, and the 
initial Pc and Pm are discretionarily selected in the given action set. The 
learning parameters tested by Alipour et al. (Alipour et al., 2017) are 
applied for GA-SARSA, GA-Q and SLGA, including learning rate α =
0.75, discount rate γ = 0.2, initial reward r = 1, and greedy rate ε=0.85. 

The dispersion degree of the solutions and the time consumptions of 
the four algorithms are compared, respectively. The dispersion degree is 
represented by relative percentage deviation (RPD) (Ziaee, 2014; Yuan 
et al., 2013). All experimental results are shown in Table 3 and Table 4, 
the first column of Table 4 is 10 instances of different scale, columns 2 to 
5 are the best RPD values of each instance that solved by the four al-
gorithms, which is calculated by Eq. (13). Columns 6 to 9 are the average 
RPD values of each instance that calculated by Eq. (14). Columns 10 to 
13 are the mean time Consumption of four algorithms for every instance. 
Furthermore, the boldface indicates the best results for each instance. 

RPDBest =
BSL − BKS

BKS
× 100 (13)  

RPDAvg =
ASL − BKS

BKS
× 100 (14)  

where BSL and ASL represents the best value and the average value 
obtained by compared algorithms, respectively, and BKS represents the 
lower bounds of Brandimarte’s instances that known in the current lit-
eratures (Jiang and Zhang, 2018). 

As can be seen from Table 4 that the results of SLGA are better than 
the results of GA-SARSA, GA-Q and conventional GA. For RPDBest and 
RPDAvg, SLGA has the smallest values for all instances from MK01 to 
MK10 and is overwhelming for its competitors, which indicates the so-
lutions obtained by SLGA consistently exhibit superior solution quality. 

Concerning the time consumption, SLGA has the fastest computation 
speed among the four algorithms since it performs better on 8 out of 10 
test instances, which is due to the more appropriate parameters during 

solving process can be gained in SLGA, so more redundant crossover and 
mutation operations can be effectively reduced, meanwhile the quality 
of the solution can be guaranteed, which can be verified by statistical 
experiment. 

Table 5 gives the average quantity of crossover and mutation oper-
ations of four algorithms for instance MK03, where row 2 and row 3 give 
the quantity of crossover and mutation operations, row 4 and row 5 give 
percent reduction in SLGA relative to competitors, each algorithm is run 
for 20 times. From Table 5 we can observe the quantity of crossover and 
mutation operations in SLGA is the lowest. Therefore, SLGA is regarded 
as the fastest algorithm and has the lowest time consumption in all four 
algorithms. 

As is shown in Fig. 6, the boxplot of RPD for four algorithms in 
Table 4 is given, which could further validate numerical analysis. It can 
be observed that the RPD values obtained by SLGA have smaller median 
and range. Table 6 reports the descriptive statistical test of the results in 
Table 4, where Min represents minimum values and Max is maximum 
values. It can be obviously observed from the results of statistical test 
that SLGA have better central tendency than other three algorithms, 
which denotes SLGA is statistically better than other three algorithms in 
solving FJSP. 

Fig. 7 gives the rate of convergence of MK08 towards the optimal 
solution that solved by four algorithms. From the figure we can see that 
SLGA has the fastest rate of convergence, followed by GA-SARSA. GA-Q 
and conventional GA have relatively poor convergence rates. Mean-
while, it can be observed that the solutions obtained by SLGA is more 
excellent. 

Both GA-SARSA and GA-Q have the self-learning ability, but their 
performance and time consumption are worse than SLGA due to their 
respective shortcomings. The solution accuracy of SARSA is poorer, 
while the learn effect and convergence rate of Q-learning are insuffi-
cient. According to Table 3 and Table 4, the quality of the most solutions 
of GA-SARSA are better than the solutions of GA-Q, which is due to the 
learning features of SARSA being more suitable for the dynamic char-
acteristic of GA, while Q-learning without pretrain process is unstable 
and worse solutions would be produced. SLGA combines the advantages 
of SARSA and Q-learning. At the inital stage of the algorithm, better 
learning effect and convergence rate of SARSA are inherited by SLGA; at 
the later stage, better optimization ability is achieved by Q-learning, 
which make SLGA significantly outperforms GA-SARSA and Q-learning 
and the significant learning effect of hybrid learning strategy has been 
verified. 

5.2. Experimental comparison with other algorithms 

In this part, the computational experiments are given in order to test 
the performance of SLGA for solving FJSP, whose best results are 
compared with other algorithms used in the existing literature, 
including EDPSO (Nouiri et al., 2018), GWO (Jiang and Zhang, 2018); 
Kacem’s GA (Kacem et al., 2002), HA (Sutton and Barto, 1998), KBACO 
(Xing et al., 2010), GENACE (Ho et al., 2007); PSO + SA (Xing et al., 

Table 3 
Comparison to lower bounds of makespan.  

Dataset 
Instance 

BKS BSL ASL 

GA-SARSA GA-Q GA SLGA GA-SARSA GA-Q GA SLGA 

MK01 36 41 42 44 40 43.2 44.1 46.5 42 
MK02 24 30 31 36 27 31.8 32.3 37.1 29.7 
MK03 204 205 211 222 204 211.7 214.9 228.9 210.2 
MK04 48 67 75 83 60 73.1 78.05 85.4 66.7 
MK05 168 176 177 191 172 185.8 187.4 193.1 183.5 
MK06 33 72 73 81 69 80.3 82.3 84.7 76.9 
MK07 133 151 155 178 144 156.7 159.9 181.6 151.3 
MK08 523 533 526 542 523 539.4 529.6 551.2 526.6 
MK09 299 338 342 348 320 354.6 359.5 359.3 340.4 
MK10 165 278 281 310 254 281.2 287.2 323.5 269.9  
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2009), TS (Brandimarte, 1993), MATSPSO (Henchiri and Ennigrou, 
2013), MACROG (Marzouki et al., 2017). The summary of computa-
tional results for the makespan is given in Tables 7 and 8, where the 
symbol ‘-’ indicates that the solution is not available in the literature, the 
BKS represents the best solutions in the current literatures and the 
boldface denotes the best results for each instance. 

From Table 7 we can see that the best solutions for all the three in-
stances can be obtained by SLGA, GWO and KBACO, only the best 

solution of instance 4 × 5 can be found by EDPSO, HA, GENACE, and 
PSO + SA, while Kacem’ GA and GA cannot get any optimal solutions. 
The comparison results prove that SLGA has a good performance in 
small scale problems, and has better performance than conventional GA. 

To further verified the performance of SLGA on medium and large 
scale FJSP problems, Brandimarte’s ten instances from MK01 to MK10 
(Brandimarte, 1993) are used for comparison with published algo-
rithms, and the calculation results of the makespan are shown in Table 8. 
It can be observed that SLGA can get 8 best results out of ten results. 
MATSPSO, HA and GWO can find 3 optimal results, respectively. TS and 
MACROG can obtain only one best value. While GA cannot offer any. 

Table 9 gives the RPD values of all makespan in Table 8, it can be 
observed that SLGA can find the best solutions for MK02, MK03, MK04, 
MK05, MK06, MK07, MK08 and MK09, and the solutions closed to the 
optimal results can be produced by SLGA for the other three instances. 
Moreover, the mean RPD value is 22.9%, which is the lowest value in all 
7 algorithms, which denotes the better performance of SLGA for medium 
and large scale FJSP problems. Fig. 8 depicts the over distribution of all 
results for RPD values, it can be seen from figure that the RPD values of 
SLGA is lower and more concentrated, which also indicates SLGA 

Table 4 
Comparison between GA-SARSA, GA-Q, GA and SLGA.  

Dataset Instance RPDBest RPDAvg Time Consumption (second) 

GA-SARSA GA-Q GA SLGA GA-SARSA GA-Q GA SLGA GA-SARSA GA-Q GA SLGA 

MK01 13.89 16.67 22.2 11.11 20 22.5 29 16.7 31.42 32.44 32.86 27.63 
MK02 25 29.17 50 12.5 32.5 34.6 54.6 23.9 31.5 35.36 36.36 29.11 
MK03 0.49 3.43 8.8 0 3.8 5.3 12.2 3.1 118.2 119.11 122.7 112.6 
MK04 39.58 56.25 72.9 25 52.2 62.6 77.9 39 72.8 73.85 76.5 63.21 
MK05 4.76 5.35 13.7 2.38 10.6 11.5 14.9 9.22 59.44 61.55 63.92 60.35 
MK06 118.18 121.2 145 109.09 143 149 156.8 133 84.81 85.53 89.52 72.80 
MK07 13.53 16.54 33.8 8.27 17.8 20.2 36.5 13.7 56.31 58.96 62.22 57.77 
MK08 1.9 0.57 3.6 0 3.1 1.3 5.4 0.69 551.4 561.2 578 521.69 
MK09 13.04 14.4 16.4 7.02 18.6 20.2 20.2 13.8 582.3 596.73 610.1 552.5 
MK10 68.48 70.3 87.9 53.9 70.4 74 96 63.6 1411 1432 1446 1335.18  

Table 5 
Average quantity of crossover and mutation operations.  

Operation GA- 
SARSA 

GA-Q GA SLGA 

Crossover Operation 173,404 174,934 177,158 169,330 
Mutation Operation 85,592 87,683 91,789 83,644 

Decrease for Cross Operation (%) 2.41 3.31 4.62  
Decrease for Mutation Operation 

(%) 
1.15 2.39 4.81  

Total 3.56 5.70 9.43   

Fig. 6. Boxplot of RPD for four algorithms in Table 4.  

Table 6 
The results of descriptive statistical test.  

Algorithms RPDBest RPDAvg 

Min Max Median Mean Standard deviation Min Max Median Mean Standard deviation 

GA-SARSA 0.49 118.18 13.71 29.89 37.25 3.1 143 19.3 37.2 42.88 
GA-Q 0.57 121.2 16.61 33.39 38.44 1.3 149 21.35 40.12 44.95 
GA 3.6 145 28 45.43 44.86 5.4 156.8 32.75 50.35 47.7 

SLGA 0 109.09 9.69 22.93 34.28 0.69 133 15.25 31.67 40.2  
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outperforms other algorithms in addressing FJSP. 
In order to get a statistically significant comparison and find signif-

icant differences among the results obtained by proposed SLGA and 
other 6 algorithms, the RPD values of all algorithms are carried out with 
the significance test. The Friedman test (Cheraghalipour et al., 2018) is 
performed in this experiment, which is a non-parametric tests that used 
when the results present either non-normal distribution or non- 
homogeneity of variance. Before it, the test of normality with Shapiro- 
Wilk and homogeneity of variance with one way ANOVE is performed 
and the results are presented in Table 10. The results show that the RPD 
values are not normal distribution except GA, and they are homogeneity 
of variance. 

The Friedman tested results are offered in Table 11, it can be 
observed that proposed SLGA has the best mean rank and highest pri-
ority over other 6 algorithms for RPD values. Moreover, the p-value is 
0.000025 and closes to zero, which significantly less than the level of 
significant α = 0.05. The p-value proves that there are significant dif-
ferences in the optimization performance of the 7 algorithms on each 
instance. Fig. 9 gives the results of Mean Difference with Least Signifi-
cance Difference (LSD), where the RPD values of SLGA are compared 
with other algorithms in pairs, it can be observed that the mean of SLGA 
is lower than the others. The Friedman test and LSD test agreement with 
the results of Table 9 and further verifies the outstanding performance of 

SLGA versus its competitors in solving FJSP. 

6. Conclusion 

There are many algorithms for addressing FJSP but the limitation of 
parameter adjustment has not been solved effectively, the goal of this 
paper is to establish a method of parameter intelligent adjustment for GA 
in solving FJSP. Therefore, a self-learning genetic algorithm (SLGA) to 

Fig. 7. The rate of convergence for MK08.  

Table 7 
The makespan for three instances of Kacem.  

Dataset Instance BKS EDPSO GWO Kacem’s GA HA KBACO GENACE PSO + SA GA SLGA 

4 × 5 11 11 11 16 11 11 11 11 16 11 
8 × 8 14 17 14 – 15 14 – 15 16 14 
10 × 7 11 – 11 15 13 11 12 – 15 11  

Table 8 
The makespan for ten instances of Bandimarte.  

Instance BKS TS MATSPSO HA GWO MACROG GA SLGA 

Mk01 36 42 39 42 40 40 44 40 
Mk02 24 32 27 28 29 32 36 27 
Mk03 204 211 207 204 204 204 222 204 
Mk04 48 81 65 75 64 64 83 60 
Mk05 168 186 174 179 175 179 191 172 
Mk06 33 86 72 69 69 85 81 69 
Mk07 133 157 154 149 147 172 178 144 
Mk08 523 523 523 555 523 552 542 523 
Mk09 299 369 340 342 322 421 348 320 
Mk10 165 296 299 242 249 358 310 254  

Table 9 
The RPD values (%) for the experiment results of Table 8.  

Instance TS MATSPSO HA GWO MACROG GA SLGA 

Mk01 16.7 8.3 16.7 11.1 11.1 22.2 11.1 
Mk02 33.3 12.5 16.7 20.8 33.3 50 12.5 
Mk03 3.4 1.5 0 0 0 8.8 0 
Mk04 69 35.4 56.3 33.3 33.3 72.9 25 
Mk05 10.7 3.6 6.6 4.2 6.5 13.7 2.4 
Mk06 161 118 109 109 157 145.5 109 
Mk07 18.1 15.8 12 10.5 29.3 33.8 8.3 
Mk08 0 0 6.1 0 5.5 3.6 0 
Mk09 23.4 13.7 14.4 7.7 40.8 16.4 7 
Mk10 79.4 81.2 46.7 50.9 117 87.9 53.9 
Mean 41.4 29 28.4 24.8 43.5 45.5 22.9  

Fig. 8. Boxplot of RPD for seven algorithms in Table 8.  
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solve FJSP problem is presented in this paper. In SLGA, Reinforcement 
Learning (RL) is adopted to precisely adjust Pc and Pm of GA, which 
significantly improves the efficiency for solving FJSP. In learning 
module of SLGA, SARSA algorithm and Q-learning algorithm are applied 
in different execution phases to merge their own advantages, so both 
faster learning speed and higher solution precision can be achieved. RL 
environment is subtly designed for SLGA, including the state set of GA, 
the action set and the reward method. 

In order to verify the learning effect of the proposed SLGA, a large 
number of comparative experiments are conducted between GA-SARSA, 
GA-Q, conventional GA and SLGA by using Brandimarte’s data in-
stances. Meanwhile, SLGA is statistically compared with other state-of- 
the-art algorithms that existing in literatures. According to the com-
parison results, SLGA is capable of obtaining better solutions for most 
instances, the learning effect and the excellent performance of SLGA are 
confirmed. 

Although the proposed SLGA shows an outstanding performance in 
solving FJSP, there is still unknown for solving different scheduling 
problems. Moreover, some priori parameters usage is not considered 
deeply. In our future work, we will continue to deeply research the 
promotion of RL and other algorithms for other different combinatorial 

optimization problems and the use of priori parameters. 
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