
Computers & Industrial Engineering 149 (2020) 106778

Available online 29 August 2020
0360-8352/© 2020 Elsevier Ltd. All rights reserved.

A self-learning genetic algorithm based on reinforcement learning for
flexible job-shop scheduling problem

Ronghua Chen a, Bo Yang a,*, Shi Li b, Shilong Wang a

a State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
b Beijing Aerospace XinFeng Mechanical Equipment Co. Ltd., Beijing 100854, China

A R T I C L E I N F O

Keywords:
Flexible job-shop scheduling problem (FJSP)
Self-learning genetic algorithm (SLGA)
Genetic algorithm (GA)
Reinforcement learning (RL)

A B S T R A C T

As an important branch of production scheduling, flexible job-shop scheduling problem (FJSP) is difficult to solve
and is proven to be NP-hard. Many intelligent algorithms have been proposed to solve FJSP, but their key pa-
rameters cannot be dynamically adjusted effectively during the calculation process, which causes the solution
efficiency and quality not being able to meet the production requirements. Therefore, a self-learning genetic
algorithm (SLGA) is proposed in this paper, in which genetic algorithm (GA) is adopted as the basic optimization
method and its key parameters are intelligently adjusted based on reinforcement learning (RL). Firstly, the self-
learning model is analyzed and constructed in SLGA, SARSA algorithm and Q-Learning algorithm are applied as
the learning methods at initial and later stages of optimization, respectively, and the conversion condition is
designed. Secondly, the state determination method and reward method are designed for RL in GA environment.
Finally, the learning effect and performance of SLGA in solving FJSP are compared with other algorithms using
two groups of benchmark data instances with different scales. Experiment results show that the proposed SLGA
significantly outperforms its competitors in solving FJSP.

1. Introduction

Production scheduling plays a crucial role in many manufacturing
systems, an effective production scheme is a vital factor to enables in-
dustry to improve production efficiency and improve utilization rate of
resources (Pezzella et al., 2008). There are many kinds of scheduling
problems and the job-shop scheduling problem (JSP) is one of the most
difficult problems in practice manufacturing process. It is well known
that JSP is NP-hard (non-deterministic polynomial time hard) problem
(Garey, Johnson, & Sethi, 1976) and a combinatorial optimization
problem that is a representative model of many real life optimization
tasks (Acan and Ünveren, 2015).

The classical JSP can be described as a set of jobs to be processed on a
group of machines, each job consists of a series of operations and has a
specified processing order, and each operation is processed on a required
machine. However, the application scenario of JSP could not meet the
flexible production situation. In reality, a machine may have the capa-
bility to process more than one type of operations, in turn, each type of
operations could be machined on several different machines, which is
more flexible than JSP. This problem is generally referred as flexible job-

shop scheduling problem (FJSP) (Brucker and Schlie, 1990; Brandi-
marte, 1993) and is used to describe the flexible manufacturing
requirement of modern manufacturing systems.

FJSP is an extension of the classical JSP in which the constraints on
machine selection are reduced, each operation of the FJSP is allowed to
be processed on more than one machine from its alternative machine set.
FJSP is a more complex combinatorial optimization problem than JSP as
it introduces a new decision content to the sequencing and it consists of
more problems, i.e., it is aimed to figure out two subproblems including
operation sequencing and machine assignment (Garey et al., 1976; Li &
Gao, 2016). FJSP has been proven to be more complicated and NP-hard
(Gao, Yang, Zhou, Pan, & Suganthan, 2019; Kacem, Hammadi, Borne, &
Man, 2002). The objective of FJSP is to obtain an allocation for each
operation and to define the sequence of operations on each machine to
minimize maximum processing completion time (makespan) (Nouiri
et al., 2018).

Many methods have been applied for FJSP due to its nature of
computational complexity. Some studies proposed exact methods,
including mathematical programming and mixed integer goal pro-
gramming (Choi and Choi, 2002). However, the exact method is time-

* Corresponding author at: State Key Laboratory of Mechanical Transmission, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044,
China.

E-mail addresses: 656764617@qq.com (R. Chen), yangbo61@cqu.edu.cn (B. Yang), 237840084@qq.com (S. Li), slwang@cqu.edu.cn (S. Wang).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2020.106778
Received 10 January 2020; Received in revised form 30 June 2020; Accepted 18 August 2020

mailto:237840084@qq.com
mailto:yangbo61@cqu.edu.cn
mailto:237840084@qq.com
mailto:slwang@cqu.edu.cn
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1016/j.cie.2020.106778
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2020.106778&domain=pdf

Computers & Industrial Engineering 149 (2020) 106778

2

consuming and difficult to achieve global optimum even for a small-size
instances since the NP-hard characteristic of FJSP. Therefore, many re-
searchers start develop more efficient solution methodologies to obtain
nearly optimal solutions (Acan and Ünveren, 2015). In this trend, many
optimization algorithms have been developed to solve combinatorial
optimization problems, especially for FJSP. Zhang et al. (Zhang et al.,
2009) presented a hybrid algorithm for FJSP, in which particle swarm
optimization (PSO) algorithm and tabu search (TS) are combined. Nouiri
et al. (Nouiri et al., 2018; Nouiri et al., 2017) proposed a multi-agent-
based PSO and a two-stage PSO to solve FJSP. Xing et al. (Xing et al.,
2010) proposed a knowledge-based ant colony optimization (ACO) for
FJSP, in which knowledge model is used to guide the current heuristic
searching. Liouane et al. (Liouane et al., 2007) also presented an
approach based on the combination of ACO and local search (LS)
methods. Jiang et al. (Jiang and Zhang, 2018) first applied discrete Grey
Wolf Optimization (GWO) to solve JSP and FJSP where the adaptive
mutation method is introduced with the objective of minimizing the
makespan. A hybrid artificial bee colony (ABC) algorithm introducing a
dynamic scheme to fine-tune the search scope adaptively was proposed
by Meng (Meng et al., 2018). Li et al. (Li et al., 2017) applied hybrid ABC
based on TS to solve FJSP with rescheduling strategy for new jobs
inserted, old jobs cancelled, and machinery breakdowns.

Genetic algorithm (GA) is the most commonly used algorithm to
solve FJSP due to its superior performance and strong universality (Shao
et al., 2018). Kacem et al. (Kacem et al., 2002) proposed an assignment
model generated by the approach of localization (AL) to control GA for
total or partial FJSP. Pezzella et al. (Pezzella et al., 2008) presented a
method to integrate different strategies for generating the initial popu-
lation and selecting the individuals for reproducing new individual,
which lead to better results. Zhang et al. (Zhang et al., 2010) presented a
multi-objective GA based on immune and entropy principle for the
multi-objective FJSP. Zhang et al. (Zhang et al., 2011) and Nasr et al. (Al-
Hinai, 2011) presented similar improved GA with LS to generate high-
quality initial population for FJSP. Li et al. (Li and Gao, 2016) pro-
posed a hybrid algorithm, in which GA and TS are used to control global
and local search, respectively. Zandieh et al. (Zandieh and Karimi, 2010)
studied adaptive multi-population GA for FJSP, whose objectives are
minimizing total weighted tardiness and maximum completion time
simultaneously. Liu et al. (Liu et al., 2014) refined the encoding operator
of GA that integrates probability concepts into a real-parameter
encoding method to solve the distributed FJSP. Chang et al. (Chang
et al., 2015) presented a hybrid taguchi GA to solve FJSP, which involves
encoding feasible solutions to the initial chromosomes of a GA and
embedded the Taguchi method behind mating to increase the effec-
tiveness of the GA.

It can be observed that GA is very effective and popular in solving
FJSP problems, whose performance is related to many aspects, one of
the most important factors is the selection of key parameters, but there is
little research on how to determine them (Shahrabi et al., 2017). For GA,
crossover probability (Pc) and mutation probability (Pm) can be regar-
ded as two key parameters. If Pc and Pm are too large, some good in-
dividuals could be easily lost; while it is hard to generate new
individuals if Pc and Pm are too small (Bashir and Nadeem, 2017). From
the above studies in the literature, we can find that almost all algorithms
have the disadvantage in parameter setting. Since the key parameters of
algorithms and their adjustment methods are hard to be reasonably
determined, they are usually fixed or updated in some predetermined
manners (Du et al., 2014; Wei et al., 2014), which seriously degrades the
performance of the algorithms. At present, there are few studies on the
intelligent adjustment of key parameters for algorithms, Emary et al.
(Emary et al., 2018) studied the adaptive exploration rate of GWO based
on RL and neural network. Chen et al. (Fei Chen et al., 2005) proposed an
approach to control GA with SARSA(0), in which the parameters are
adjusted by only SARSA, but the effective is very limited with only
SARSA. Moreover, these methods have not been applied in solving
practical engineering problems. Shahrabi et al. (Shahrabi et al., 2017)

proposed a RL approach to parameter estimation of variable neighbor-
hood search (VNS) for solving dynamic job shop scheduling (DJSS)
problem, in which the optimization process of parameters are selected
by continually improving policy and the parameters are adjusted when a
new event generated, but the parameter variations during iteration
process are not taken into account, which is not benefited for the per-
formance of whole algorithm. Furthermore, there is only limited
research on the intelligent adjusting of key parameters for algorithms in
solving FJSP (Amjad et al., 2018).

This paper presents a self-learning GA (SLGA) based on reinforce-
ment learning (RL) to intelligently adjust the key parameters of GA for
FJSP with the objective of minimizing the makespan. RL algorithm, also
known as reward learning, evaluation learning, is a crucial machine
learning algorithm (Sutton and Barto, 1998). RL uses a scalar rein-
forcement signal or a reward to interact with a complex environment
(Wang et al., 2013), and it maps actions to environment for maximizing
a reward by systematic learning, which has been applied to a wide range
of fields. Qin et al. (Qin et al., 2019) investigated an optimal synchro-
nization problem for a group of generic linear systems based on multi-
agent RL system. Li et al. (Li et al., 2011) proposed fuzzy motion con-
trol based on RL for ait synthesis of biped robots. Aissani et al. (Aissani
et al., 2011) studied dynamic scheduling based on reinforcement multi-
agent learning. Zhang et al. (Zhicong Zhang et al., 2012) presented a RL
approach to minimizing mean weighted tardiness in unrelated parallel
machine scheduling. Nowadays, more and more researchers combine RL
with other intelligent algorithms to improve the performance of whole
algorithm. Wang et al. (Wang et al., 2013) proposed a backward Q-
learning which combines Q-learning with SARSA to directly tunes the Q-
values. Gyoung et al. (Gyoung Hwan Kim, 1998) proposed genetic
reinforcement learning (GRL) which regards scheduling problem as a RL
problems to solve it. and the policies of RL are encoded into the chro-
mosomes of GA and a near-optimal policy is searched for by GA. RL and
GA were integrated to make decisions when the robots cooperatively
transport an object to a goal location while avoiding obstacles (Wang
and de Silva, 2008). Hsieh et al. (Hsieh and Su, 2015) presented an
improved PSO based on Q-learning for economic dispatch problem,
which treat optimization problems as a kind of RL problems regarding
an optimization procedure for searching an optimal solution as a RL
procedure for finding the best policy. Alipour et al. (Alipour et al., 2017)
used a hybrid GA with multi-agent RL heuristic to solve the traveling
salesman problem (TSP) and got good results. None of these methods
involve parameter tuning, therefore, this paper tries to use RL to update
Pc and Pm of GA intelligently for solving FJSP which combines both
SARSA and Q-learning with GA, so as to improve the efficiency and
accuracy of solutions.

The remainder of this paper is organized as follows. Problem model
and objective function are presented in Section 2, while the basic and
general features of GA and RL algorithms are described in Section 3. The
proposed SLGA is described completely and more details about SLGA are
displayed in Section 4. Experimental verification is carried out in Section
5. Finally, conclusion and outlines future research are given in Section 6.

2. Problem formulation

2.1. Problem model

FJSP is an extension of the classical JSP and is strongly NP-hard due
to: (1) sequence decisions of operations to a subset of machines and (2)
assignment decisions of operations on each machine (Wang et al., 2013).
A n × m FJSP can be formulated as there are n independent jobs J = {J1;
J2, J3, …, Jn} and m independent processable machines M = {M1, M2,
M3, …, Mm}. Each job Ji contains a number of operations Oi, j. Oi, j is the j-
th operation of the i-th job (j = 1, 2, 3, …, h), ti, j, k is the processing time
of Oi, j on machine Mk (k = 1, 2, 3, …, m), which is fixed and known in
advance. There are two types of FJSP, including Partial FJSP and Total
FJSP. As for Partial FJSP, each operation Oi, j can be processed on one or

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

3

more machines. As for Total FJSP, each operation Oi, j could be pro-
cessed on every machine of the set of all machines. Table 1 is an example
of 4 × 3 Partial FJSP, where the numbers represent processing times ti, j, k
and the symbol ’-’ indicates that operation cannot be processed on the
corresponding machine. To complete a job Ji (i = 1, 2, 3, …, n), all op-
erations Oi, j must be completed on a set of machines with machining
capability. There are some limitations for the assignments of the oper-
ations. In this paper, the constraints are considered as follows:

(1) Each job Ji is independent and has a fixed processing time ti, j, k.
(2) The order of precedence between operations must be performed,

e.g., Oi2 must be processed after Oi1 is finished.
(3) All jobs Ji and machines Mk are available at time zero.
(4) Each operation Oi, j has at least one machinable machine.
(5) Each machine can process only one operation at any time.
(6) The operations being processed cannot be interrupted until the

machining is finished.
(7) The installation time of the machine and the transportation time

between operations are negligible.
(8) Machine disruptions are ignored.

2.2. Objective

For FJSP, each job is composed of a sequence of precedence con-
strained operations, whose processing times are different between
different assigned machines. The objective is to obtain a schedule that
has the lowest makespan. The objective function can be represented by
Eq. (1), and some limitations are given.

Objective:

Min.Cmax = Min

{

Max.
∑n

i=1

∑h

j=1
(si,j,k + ti,j,k)

}

(1)

Subject to:

ti,j,k > 0, i = 1, 2, …, n; j = 1, 2, …, h; k = 1, 2, …, m. (a)

si,j,k + ti,j,k⩽si,j+1,k, i = 1, 2, …, n; j = 1, 2, …, h; k = 1, 2, …, m. (b)

∑m

k=1
Xi,j,k⩾1, i = 1, 2, …, n; j = 1, 2, …, h. (c)

∑n

i=1

∑h

j=1
Xi,j,k = 1, k = 1, 2, …, m. (d)

Xi,j,k =

{
1, if operation Oi,j is assigned to machine k
0, otherwise (e)

where Cmax is the maximum completion time of all job Ji, si, j, k represents
the start time of operation Oi, j in machine Mk. Constraint (a) represents
the processing time of all operations are greater than 0. Constraint (b)
indicates the order of precedence between operations must be per-
formed. Constraint (c) shows that each operation Oi, j has at least one
machinable machine. Constraint (d) ensures each machine can process

only one operation at any time.

3. Basic algorithms

3.1. Genetic algorithm

Genetic algorithm (GA) can be regarded as the most typical
population-based optimization algorithm to solve practical combinato-
rial optimization problems due to its superior performance and strong
universality. It starts with a predefined size of population solutions that
is composed of a certain number of individuals. Every individual solu-
tion has a chromosome representation that represents a solution to the
optimization problem. GA finds the different solutions through cross-
over and mutation operations, and reserves the excellent individuals
through selection operation (Zhang et al., 2011).

3.1.1. Chromosome representation
The chromosome of FJSP is divided into operation sequence part and

machine assignment part (Karimi et al., 2012), which makes encoding
become easy and reduces the cost of decoding. Fig. 1 is an encoding for
the instance of FJSP shown in Table 1, which expresses a solution
scheme of optimization problem, and the machine assignment of oper-
ation is highlighted by using bold text. The number of operations is 8,
while the length of chromosome is 16, so the length of chromosome is
twice as long as the operations. By scanning the operation sequence from
left to right, the first ‘1′ represents the first operation of Job J1 that will
be processed on machine M3 corresponds to the ‘3′ in the machine
assignment part; the second ‘1′ represents the second operation of Job J1
that will be processed on machine M2 corresponds to the ‘2′ in the ma-
chine assignment part. According to the above explanation, the opera-
tion sequences on machine M1 is O41 → O21 → O32, machine M2 is O31 →
O42 → O12, machine M3 is O11 → O22. Moreover, operation sequence and
machine assignment of solution can be interpreted as: {(O11, M3), (O41,
M1), (O31, M2), (O21, M1), (O42, M2), (O32, M1), (O12, M2), (O22, M3)}.

3.1.2. Population initialization
The initial population is important for GA which directly influences

the convergence rate of fitness values and the quality of solutions (Chang
et al., 2015). In this paper, every individual of initial population is
randomly generated, in which two priority rules are employed, which
are described as follows (Jiang and Zhang, 2018).

(1) CMO: Choose the job that has the greatest number of operations
remaining

(2) HCMS: High probability to choose the machine with the shortest
processing time for the corresponding operations.

CMO is applied to generate appropriate operation sequence, while
HCMS is used for getting machine assignment with shorter time.
Combining priority rules CMO and HCMS can generate initial pop-
ulations with better quality.

3.1.3. Genetic operation
Crossover operation is the most significant step and is the backbone

of GA, in which the two gene substrings of parents’ chromosome will be
crossed under the same probability Pc. During the last decades, several
types of crossover operation have been applied to permutation

Table 1
An instance of 4 × 3 Partial FJSP.

Jobs Operation M1 M2 M3

J1 O11 2 – 5
O12 – 1 4

J2 O21 2 3 –
O22 4 2 1

J3 O31 2 3 –
O32 2 – 5

J4 O41 4 – 2
O42 – 3 5 Fig. 1. A chromosome representation of Table 1.

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

4

representation. In this study, a precedence preserving order-based
crossover (POX) is applied for operation sequence since its wonderful
effect for crossover operation according to references (Jiang and Zhang,
2018; Zhang et al., 2011; Liu et al., 2014).

Mutation operation is also an important part of GA, which can
enhance the diversity of the population to avoid the local optimum
phenomena by introducing some additional variability into the popu-
lation. As a result, the local search performance of the algorithm can be
improved by mutation operation. Usually, mutation is applied with
small probability since large probability may destroy the good chro-
mosomes. In this paper, swap mutation is applied (Lei, 2012).

3.1.4. Selection operation
The selection operation is to generate a new population with higher

fitness values from the current population. The common selection stra-
tegies such as the roulette wheel, which is a fitness-based approach,
whose chromosome of optimal individuals could be destroyed after
genetic operations. Therefore, the chromosome must be repaired, which
could influence the optimal individuals (Zhang et al., 2011). While the
elite retention strategy a procedure to preserve the optimal individuals
during each iteration and leave bad individuals out of the population,
which will impair the premature phenomena and accelerate the
convergence speed (Wang et al., 2017). In this paper, elite retention
strategy is adopted, which could enable individuals to naturally evolve
in almost all generations and improve the quality of the entire popula-
tion continuously.

3.2. Reinforcement learning

In recent years, researching on RL has received more and more
attention. By mapping actions to environmental states that aims to
achieve the most cumulative reward value of actions from the envi-
ronment, RL evaluates actions according to environment signals instead
of through test cases to train an agent to take the correct action (Wang
et al., 2019). In RL, the agent continuously interacts with a complex
environment to optimize action selection according to the feedback of
the environment, finally achieves the best decision (Sutton and Barto,
1998). The model framework of RL is shown in Fig. 2, at time step t, the
agent acquires current environment state st and takes action at. Then, at
time step t + 1, the environment transits to the state st+1 after executing
of action at, and the agent gets reward rt from environment, which will
make the agent update the action selection and take a suitable action
at+1. The more suitable actions will make the agent finds an optimal
strategy πt to achieve maximum long-term rewards (Qin et al., 2019).
The strategy formula can be expressed as Eq. (2).

π* = argmax
π

Eπ

{
∑∞

k=0
γkrt+k |st

}

∀st ∈ S, ∀t⩾0 (2)

where γ∈ (Pezzella et al., 2008) represents the discount rate, which
specifies the future return value in the current state, t is current time
step, k is the future time step, and st is the state of time step t, S is the
state set which contains all states.

SARSA algorithm and Q-learning algorithm are two typical value-

based RL algorithms, whose objective is to estimate the Q value of an
optimal strategy (Hsieh and Su, 2015). Q value; which is used to char-
acterize the rationality of action selection, is updated according to the
feedback from environment and state-action. Q value is saved in the Q
value table that used to record the learning experience of the agent. The
initial Q value table is a zero-value matrix generated by the algorithm,
whose number of rows is equal to the quantity of states and number of
columns is equal to the quantity of actions. As shown in Table 2, the Q
value table assumes that there are n states in the state set and m actions
in the action set.

The calculation of the Q value is a comprehensive consideration of
the experienced state, the selected action and the obtained reward by the
agent, the Q value update function of one-step SARSA algorithm and
one-step Q-learning algorithm are expressed as Eq. (3) and Eq. (4)
(Wang et al., 2013), respectively.

Q(st, at)← (1 − α)Q(st, at) + α(rt+1 + γQ(st+1, at+1)) (3)

Q(st, at)←(1 − α)Q(st, at)+α(rt+1 + γmax
a

Q(st+1, at+1)) (4)

where Q(st,at) is the Q value of taking action at in current state st; α∈
(Pezzella et al., 2008) represents the learning rate; rt+1 is the reward
value after the execution of action at at state st; γ is the discount rate.
maxaQ(st+1, at+1) represents the highest expected Q value in Q value
table at state st+1 when an action at+1 is executed, while Q(st+1,at+1)
represents the expected Q value at state st+1 when the action at+1 which
is chosen by a strategy (e.g. ε-greedy strategy) is executed.

The action of Q-learning with the highest expected Q value is
selected in each state to update Q value, in which more accumulated
knowledge is utilized, so the stronger final performance of Q-learning
can be obtained. But it has lower learning effect and worse quality at the
early stage. While SARSA has a higher learning effect and convergence,
but it easily falls into local optimum and hard to obtain the optimal
strategy.

4. Proposed SLGA

The crossover and mutation operations play important roles for the
performance of GA, and the most significant parameters of crossover and
mutation operations are Pc and Pm. The fitter individuals are easily
destroyed in the population if Pc and especially Pm are too large, which
is not conducive to the convergence of the solution and the generation of
the optimal solution; while new individuals are hard generated if Pc and
Pm are too small (Bashir and Nadeem, 2017).

In conventional GA, Pc and Pm are always determined by a large
number of experiments or experience, which is burdensome and parsi-
monious. Some adaptive GAs appeared in literatures can solve this
problem to a certain extent, but all of them formulate the values of Pc
and Pm according to the current population fitness value in some pre-
determined manner (Du et al., 2014; Wei et al., 2014). The influence of
previous generations or possible future populations is ignored, so their
applicability and reliability cannot be guaranteed. In this section, a self-
learning genetic algorithm (SLGA) is designed to intelligently adjust key
parameters for GA based on RL, where the Pc and Pm can be chosen
intelligently according to not only the current population state but also

Fig. 2. The model framework of RL.

Table 2
Initial Q value table.

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

5

the past state and the appropriate prediction of the future state.

4.1. Combined model

The basic components of RL are strategy, reward, value function and
environment, which must be fully considered when GA and RL are
combined. Therefore, the following scheme is designed under the above
premise. As is shown in Fig. 3, the combined model of GA and RL is
divided into environment, learning module and reinforcement process.
GA is regarded as environment, and each iteration will change its state
from st to st+1. Learning module is composed of the RL agent and Q value
table, in here, the agent is a virtual object of RL algorithms.

The execution of the composition is divided into four phases (Wang
et al., 2013). Firstly, the state st(GA) at time step t of GA iterative process
is acquired by the agent (the state set is shown in part 4.3.1). Secondly,
the corresponding action at(GA) is executed according to the determined
action selection strategy (the action set is shown in part 4.3.2). In SLGA,
adjusting and updating of Pc and Pm are actions that taken by the agent,
and GA will use the updated new Pc and Pm. Thirdly, the genetic
operation is performed again, the state of GA is translated into st+1(GA)
and the feedback is returned to the agent. Finally, the agent will take
action at+1 for GA and the learning process is recorded by the agent
according to the experienced state-action and the received feedback.
Meanwhile, valuation calculation is performed with value function, and
the Q value is updated under the corresponding state-action in the Q
value table.

After k more iterations, the state of GA st+k(GA) = st(GA) at a later
iterative time step t + k, the reinforcement process is activated, and the
selection of actions for Pc and Pm will be optimized based on the existing
state of the past learning experience. The selection of action at(GA) will
be strengthened if the obtained reward is positive; the selection for the
at(GA) will be weakened accordingly if the obtained reward is negative
(Emary et al., 2018). This process of continuously state acquired, actions
performed, feedback obtained, and strategies adjusted is the reinforce-
ment process, it can be well adapted to the dynamic of the GA’s iterative
process.

4.2. Construction of the learning module

SARSA algorithm and Q-learning algorithm are combined as main
part of Learning Module, which merges the advantages of the two

algorithms. Wang et. al (Wang et al., 2013) propose a Backward Q-
learning which combines SARSA with Q-learning to enhance learning
speed and improve final performance. In this paper, a different way to
combine two RL algorithms is proposed to enhance the performance of
GA, which applies SARSA and Q-learning in the different stages. In the
initial stage of SLGA, SARSA algorithm is combined with GA to form
SLGA. The Q value is updated by Eq. (3) and recorded in Q value table,
whose Q-values will be used as the pretrain process of Q-learning
algorithm.

SARSA algorithm will be converted to the Q-learning algorithm if the
conversion condition is met. The conversion condition guarantees Q-
learning algorithm have adequate learning materials or learning expe-
riences, which is determined by the quantity of Non-zero Q value, and
the quantity of Q value is relevant to the number of states and the
number of actions. So, in SLGA, the conversion condition is considered
as Eq. (5),

RL =

⎧
⎪⎪⎨

⎪⎪⎩

Sarsa Nti <
Nts × Nta

2

Q-learning Nti⩾
Nts × Nta

2

(5)

where Nti represents the number of current iterations. Nts represents the
total number of states. Nta represents the total number of actions.

After initial stage, Q-learning algorithm replaces SARSA algorithm to
combine with GA and the Q value is updated by Eq. (4). The execution
steps of the Learning Module are illustrated as follows (Shahrabi et al.,
2017; Hsieh and Su, 2015), and the schematic is shown in Fig. 4.

Step1: Initialize Q value table for each state-action pair.
Step2: Obtain the current state st, s ← st.
Step3: Select action a from action set in state s using the strategy
derived from SARSA or Q-learning according to Eq. (5).
Step4: Execute action a.
Step5: Obtain the reinforcement reward r, and get the new state st+1.
Step6: Terminate the process if the terminal state of GA is reached,
otherwise, go to Step7.
Step7: Update the Q value according to Eq. (3) or Eq. (4).
Step8: Update the state: s ← st+1.
Step9: Determine whether the conversion condition is met. If so,
transform SARSA to Q-learning and go to step2. If not, go directly to
step2.

Fig. 3. The combined model of GA and RL.

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

6

4.3. State set

The objective for FJSP is to find a schedule that has the lowest
makespan, which is regarded as the fitness of GA. In SLGA, the envi-
ronment state should be constructed based on the population fitness, the
following aspects are considered.

(1) : average fitness of the population;
(2) : population diversity;
(3) : the fitness of the best individual.

Eq. (6) gives the average fitness of the population that has been
normalized by the average fitness of the first-generation population. Eq.
(7) gives the population diversity that has been normalized by the first-
generation population diversity. Eq. (8) gives the best fitness of the
population after normalization by the best fitness of first generation. Eq.
(9) is the population state value, which is obtained by weighting Eq. (6),
Eq. (7) and Eq. (8).

f * =

∑N

i=1
f (xt

i)

∑N

i=1
f (x1

i)

(6)

d* =

∑N

i=1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

f (xt
i) −

∑N

i=1
f (xt

i)

N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑N

j=1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

f (x1
j) −

∑N

j=1
f (x1

j)

N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(7)

m∗ =
maxf (xt

i)

maxf (x1
i)

(8)

S* = w1f * +w2d* +w3m* (9)

where f(xt
i) represents the fitness of the i-th individual in the t-th gen-

eration, f(x1
i) represents the fitness of the i-th individual in the first

generation, f(x1
j) represents the fitness of the j-th individual in the first

generation, max f(xt
i) means the fitness value of best individual in the t-

th generation. w1, w2, w3 are the weight values and w1 + w2 + w3 = 1,
which represent the relative importance of three factors. In this paper,
the population average fitness and the population diversity reflect the
whole population state, which is good for improving quality of whole
population and it could be easier obtain an excellent individual. But only
an outstanding individual could be relatively different to get a better

individual by cross operation with other poor individuals of population.
So, the value of w1 and w2 are relatively larger than w3. In SLGA, w1, w2,
and w3 are set as 0.35, 0.35 and 0.3, respectively.

The number of states is momentous, too many states could be more
precisely for self-learning, but it needs more exploration, which will
affect the convergence of GA, while too few states could lead poor re-
sults. According to the fitness of GA for solving FJSP and the value of S*,
the state set is divided into 20 states for S = [s(1), s(2), … , s(19), s(20)]
(Shahrabi et al., 2017), where the interval value of S* is set as 0.05, e.g.,
when S*∈[0, 0.05), s = s(1); S*∈[0.05, 0.10], s = s(2) and so on.

4.4. Action set

For each generation, the agent will adopt different action to get
appropriate Pc and Pm, 10 actions are included in the action set
(Shahrabi et al., 2017). As for Pc, whose range of commonly used values
is from 0.4 to 0.9, and the interval value between each action is 0.05, e.
g., when the action is set to a1, Pc ∈ [0.4, 0.45) and a random value
within this range will be selected; when the action is set to a2, Pc ∈ [0.45,
0. 5). The same method is suited for Pm, whose range of values is from
0.01 to 0.21, and the interval value is 0.02, e.g., when the action is set to
a1, Pm ∈ [0.01, 0.03) and a random value within this range will be
chosen.

4.5. Reward method

In SLGA, the reward is designed through the best individual fitness
and the average fitness of population. Eq. (10) gives the reward of the
adjusted Pc, and Eq. (11) is used for the reward of the adjusted Pm (Fei
Chen et al., 2005). The agent is not told which actions to take but instead
discovers which actions yield to higher reward by trying them, obvi-
ously, this form of reward could yield a positive reward. If the best in-
dividual of t-th generation is better than (t-1)-th generation, the agent is
rewarded that current Pc is efficient. If the average fitness of t-th gen-
eration is better than (t-1)-th generation, the agent is rewarded that
current Pm is effective.

rc =
maxf (xt

i) − maxf (xt− 1
i)

maxf (xt− 1
i)

(10)

rm =

∑N

i=1
f (xt

i) −
∑N

i=1
f (xt− 1

i)

∑N

i=1
f (xt− 1

i)

(11)

where f(xt
i) is the fitness of the i-th individual in the t-th generation.

Fig. 4. The schematic of learning module.

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

7

4.6. Action selection strategy

The action selection strategy of RL is also called the search strategy,
which offers a trade-off between exploration and exploitation. The un-
known environment is explored and the acquired knowledge is utilized
to guide the choice of action by the agent. At the beginning, all Q values
are zero, which means that the agent does not have any learning expe-
rience to use, only the exploration can be performed and learned.

Ɛ-greedy is an action selection strategy that considers both explora-
tion and exploitation, which is expressed by Eq. (12) (Shahrabi et al.,
2017; Hsieh and Su, 2015; Wang et al., 2019); where ε is called the
greedy rate or the exploitation rate and r0-1 is a random value from 0 to 1.
Whenε⩾r0− 1, the action a which maximizes the expected Q value is
selected, which is also called greedy strategy. Whileε < r0− 1, the explo-
ration will be performed and a random action a is chosen.

π(st, at) =

{
maxaQ(st, a) ε⩾r0− 1
a(Randomly) ε < r0− 1

(12)

4.7. Procedure of the SLGA

Based on above work, the execution flow of the entire SLGA is shown
in Fig. 5 and described in Algorithm 1.

5. Experiment results and discussion

In this section, a series of experiments are carried out to test the
effectiveness and performance of SLGA for solving FJSP. Two different
groups of benchmark data instances are used for experiments, including
three small-scale Kacem’s (Kacem et al., 2002) total flexible FJSP

Fig. 5. Flow chart of SLGA algorithm.

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

8

instances and ten large-scale Brandimarte’s (Brandimarte, 1993) partial
flexible FJSP instances, respectively. Moreover, their lower bounds will
be used as a benchmark for comparison and computational analysis.
These experiments are implemented in Matlab 2018a with Matlab lan-
guage. The computer configuration is Intel®Core™i5-4590 with 8 GB
main memory under Win10.

5.1. Experimental comparison for hybrid learning strategy

In this part, to verify the efficiency of the hybrid learning strategy of
SLGA, GA-SARSA (only SARSA is combined with GA), GA-Q (only Q-
learning is combined with GA) and conventional GA (no RL algorithm is
applied) are implemented and compared with SLGA. Ten Brandimarte’s
data instances are chosen for the experiment whose lower bounds will be
used for comparison. In these instances, the number of jobs ranges from
10 to 20, the number of machines varies from 6 to 15, and the number of
operations ranges from 58 to 232, each instance is run for 20 times. The
parameters for four algorithms are defined as follows: the initial popu-
lation size is 5 × m × n, the number of iterations is 10 × m × n, and the
initial Pc and Pm are discretionarily selected in the given action set. The
learning parameters tested by Alipour et al. (Alipour et al., 2017) are
applied for GA-SARSA, GA-Q and SLGA, including learning rate α =
0.75, discount rate γ = 0.2, initial reward r = 1, and greedy rate ε=0.85.

The dispersion degree of the solutions and the time consumptions of
the four algorithms are compared, respectively. The dispersion degree is
represented by relative percentage deviation (RPD) (Ziaee, 2014; Yuan
et al., 2013). All experimental results are shown in Table 3 and Table 4,
the first column of Table 4 is 10 instances of different scale, columns 2 to
5 are the best RPD values of each instance that solved by the four al-
gorithms, which is calculated by Eq. (13). Columns 6 to 9 are the average
RPD values of each instance that calculated by Eq. (14). Columns 10 to
13 are the mean time Consumption of four algorithms for every instance.
Furthermore, the boldface indicates the best results for each instance.

RPDBest =
BSL − BKS

BKS
× 100 (13)

RPDAvg =
ASL − BKS

BKS
× 100 (14)

where BSL and ASL represents the best value and the average value
obtained by compared algorithms, respectively, and BKS represents the
lower bounds of Brandimarte’s instances that known in the current lit-
eratures (Jiang and Zhang, 2018).

As can be seen from Table 4 that the results of SLGA are better than
the results of GA-SARSA, GA-Q and conventional GA. For RPDBest and
RPDAvg, SLGA has the smallest values for all instances from MK01 to
MK10 and is overwhelming for its competitors, which indicates the so-
lutions obtained by SLGA consistently exhibit superior solution quality.

Concerning the time consumption, SLGA has the fastest computation
speed among the four algorithms since it performs better on 8 out of 10
test instances, which is due to the more appropriate parameters during

solving process can be gained in SLGA, so more redundant crossover and
mutation operations can be effectively reduced, meanwhile the quality
of the solution can be guaranteed, which can be verified by statistical
experiment.

Table 5 gives the average quantity of crossover and mutation oper-
ations of four algorithms for instance MK03, where row 2 and row 3 give
the quantity of crossover and mutation operations, row 4 and row 5 give
percent reduction in SLGA relative to competitors, each algorithm is run
for 20 times. From Table 5 we can observe the quantity of crossover and
mutation operations in SLGA is the lowest. Therefore, SLGA is regarded
as the fastest algorithm and has the lowest time consumption in all four
algorithms.

As is shown in Fig. 6, the boxplot of RPD for four algorithms in
Table 4 is given, which could further validate numerical analysis. It can
be observed that the RPD values obtained by SLGA have smaller median
and range. Table 6 reports the descriptive statistical test of the results in
Table 4, where Min represents minimum values and Max is maximum
values. It can be obviously observed from the results of statistical test
that SLGA have better central tendency than other three algorithms,
which denotes SLGA is statistically better than other three algorithms in
solving FJSP.

Fig. 7 gives the rate of convergence of MK08 towards the optimal
solution that solved by four algorithms. From the figure we can see that
SLGA has the fastest rate of convergence, followed by GA-SARSA. GA-Q
and conventional GA have relatively poor convergence rates. Mean-
while, it can be observed that the solutions obtained by SLGA is more
excellent.

Both GA-SARSA and GA-Q have the self-learning ability, but their
performance and time consumption are worse than SLGA due to their
respective shortcomings. The solution accuracy of SARSA is poorer,
while the learn effect and convergence rate of Q-learning are insuffi-
cient. According to Table 3 and Table 4, the quality of the most solutions
of GA-SARSA are better than the solutions of GA-Q, which is due to the
learning features of SARSA being more suitable for the dynamic char-
acteristic of GA, while Q-learning without pretrain process is unstable
and worse solutions would be produced. SLGA combines the advantages
of SARSA and Q-learning. At the inital stage of the algorithm, better
learning effect and convergence rate of SARSA are inherited by SLGA; at
the later stage, better optimization ability is achieved by Q-learning,
which make SLGA significantly outperforms GA-SARSA and Q-learning
and the significant learning effect of hybrid learning strategy has been
verified.

5.2. Experimental comparison with other algorithms

In this part, the computational experiments are given in order to test
the performance of SLGA for solving FJSP, whose best results are
compared with other algorithms used in the existing literature,
including EDPSO (Nouiri et al., 2018), GWO (Jiang and Zhang, 2018);
Kacem’s GA (Kacem et al., 2002), HA (Sutton and Barto, 1998), KBACO
(Xing et al., 2010), GENACE (Ho et al., 2007); PSO + SA (Xing et al.,

Table 3
Comparison to lower bounds of makespan.

Dataset
Instance

BKS BSL ASL

GA-SARSA GA-Q GA SLGA GA-SARSA GA-Q GA SLGA

MK01 36 41 42 44 40 43.2 44.1 46.5 42
MK02 24 30 31 36 27 31.8 32.3 37.1 29.7
MK03 204 205 211 222 204 211.7 214.9 228.9 210.2
MK04 48 67 75 83 60 73.1 78.05 85.4 66.7
MK05 168 176 177 191 172 185.8 187.4 193.1 183.5
MK06 33 72 73 81 69 80.3 82.3 84.7 76.9
MK07 133 151 155 178 144 156.7 159.9 181.6 151.3
MK08 523 533 526 542 523 539.4 529.6 551.2 526.6
MK09 299 338 342 348 320 354.6 359.5 359.3 340.4
MK10 165 278 281 310 254 281.2 287.2 323.5 269.9

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

9

2009), TS (Brandimarte, 1993), MATSPSO (Henchiri and Ennigrou,
2013), MACROG (Marzouki et al., 2017). The summary of computa-
tional results for the makespan is given in Tables 7 and 8, where the
symbol ‘-’ indicates that the solution is not available in the literature, the
BKS represents the best solutions in the current literatures and the
boldface denotes the best results for each instance.

From Table 7 we can see that the best solutions for all the three in-
stances can be obtained by SLGA, GWO and KBACO, only the best

solution of instance 4 × 5 can be found by EDPSO, HA, GENACE, and
PSO + SA, while Kacem’ GA and GA cannot get any optimal solutions.
The comparison results prove that SLGA has a good performance in
small scale problems, and has better performance than conventional GA.

To further verified the performance of SLGA on medium and large
scale FJSP problems, Brandimarte’s ten instances from MK01 to MK10
(Brandimarte, 1993) are used for comparison with published algo-
rithms, and the calculation results of the makespan are shown in Table 8.
It can be observed that SLGA can get 8 best results out of ten results.
MATSPSO, HA and GWO can find 3 optimal results, respectively. TS and
MACROG can obtain only one best value. While GA cannot offer any.

Table 9 gives the RPD values of all makespan in Table 8, it can be
observed that SLGA can find the best solutions for MK02, MK03, MK04,
MK05, MK06, MK07, MK08 and MK09, and the solutions closed to the
optimal results can be produced by SLGA for the other three instances.
Moreover, the mean RPD value is 22.9%, which is the lowest value in all
7 algorithms, which denotes the better performance of SLGA for medium
and large scale FJSP problems. Fig. 8 depicts the over distribution of all
results for RPD values, it can be seen from figure that the RPD values of
SLGA is lower and more concentrated, which also indicates SLGA

Table 4
Comparison between GA-SARSA, GA-Q, GA and SLGA.

Dataset Instance RPDBest RPDAvg Time Consumption (second)

GA-SARSA GA-Q GA SLGA GA-SARSA GA-Q GA SLGA GA-SARSA GA-Q GA SLGA

MK01 13.89 16.67 22.2 11.11 20 22.5 29 16.7 31.42 32.44 32.86 27.63
MK02 25 29.17 50 12.5 32.5 34.6 54.6 23.9 31.5 35.36 36.36 29.11
MK03 0.49 3.43 8.8 0 3.8 5.3 12.2 3.1 118.2 119.11 122.7 112.6
MK04 39.58 56.25 72.9 25 52.2 62.6 77.9 39 72.8 73.85 76.5 63.21
MK05 4.76 5.35 13.7 2.38 10.6 11.5 14.9 9.22 59.44 61.55 63.92 60.35
MK06 118.18 121.2 145 109.09 143 149 156.8 133 84.81 85.53 89.52 72.80
MK07 13.53 16.54 33.8 8.27 17.8 20.2 36.5 13.7 56.31 58.96 62.22 57.77
MK08 1.9 0.57 3.6 0 3.1 1.3 5.4 0.69 551.4 561.2 578 521.69
MK09 13.04 14.4 16.4 7.02 18.6 20.2 20.2 13.8 582.3 596.73 610.1 552.5
MK10 68.48 70.3 87.9 53.9 70.4 74 96 63.6 1411 1432 1446 1335.18

Table 5
Average quantity of crossover and mutation operations.

Operation GA-
SARSA

GA-Q GA SLGA

Crossover Operation 173,404 174,934 177,158 169,330
Mutation Operation 85,592 87,683 91,789 83,644

Decrease for Cross Operation (%) 2.41 3.31 4.62
Decrease for Mutation Operation

(%)
1.15 2.39 4.81

Total 3.56 5.70 9.43

Fig. 6. Boxplot of RPD for four algorithms in Table 4.

Table 6
The results of descriptive statistical test.

Algorithms RPDBest RPDAvg

Min Max Median Mean Standard deviation Min Max Median Mean Standard deviation

GA-SARSA 0.49 118.18 13.71 29.89 37.25 3.1 143 19.3 37.2 42.88
GA-Q 0.57 121.2 16.61 33.39 38.44 1.3 149 21.35 40.12 44.95
GA 3.6 145 28 45.43 44.86 5.4 156.8 32.75 50.35 47.7

SLGA 0 109.09 9.69 22.93 34.28 0.69 133 15.25 31.67 40.2

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

10

outperforms other algorithms in addressing FJSP.
In order to get a statistically significant comparison and find signif-

icant differences among the results obtained by proposed SLGA and
other 6 algorithms, the RPD values of all algorithms are carried out with
the significance test. The Friedman test (Cheraghalipour et al., 2018) is
performed in this experiment, which is a non-parametric tests that used
when the results present either non-normal distribution or non-
homogeneity of variance. Before it, the test of normality with Shapiro-
Wilk and homogeneity of variance with one way ANOVE is performed
and the results are presented in Table 10. The results show that the RPD
values are not normal distribution except GA, and they are homogeneity
of variance.

The Friedman tested results are offered in Table 11, it can be
observed that proposed SLGA has the best mean rank and highest pri-
ority over other 6 algorithms for RPD values. Moreover, the p-value is
0.000025 and closes to zero, which significantly less than the level of
significant α = 0.05. The p-value proves that there are significant dif-
ferences in the optimization performance of the 7 algorithms on each
instance. Fig. 9 gives the results of Mean Difference with Least Signifi-
cance Difference (LSD), where the RPD values of SLGA are compared
with other algorithms in pairs, it can be observed that the mean of SLGA
is lower than the others. The Friedman test and LSD test agreement with
the results of Table 9 and further verifies the outstanding performance of

SLGA versus its competitors in solving FJSP.

6. Conclusion

There are many algorithms for addressing FJSP but the limitation of
parameter adjustment has not been solved effectively, the goal of this
paper is to establish a method of parameter intelligent adjustment for GA
in solving FJSP. Therefore, a self-learning genetic algorithm (SLGA) to

Fig. 7. The rate of convergence for MK08.

Table 7
The makespan for three instances of Kacem.

Dataset Instance BKS EDPSO GWO Kacem’s GA HA KBACO GENACE PSO + SA GA SLGA

4 × 5 11 11 11 16 11 11 11 11 16 11
8 × 8 14 17 14 – 15 14 – 15 16 14
10 × 7 11 – 11 15 13 11 12 – 15 11

Table 8
The makespan for ten instances of Bandimarte.

Instance BKS TS MATSPSO HA GWO MACROG GA SLGA

Mk01 36 42 39 42 40 40 44 40
Mk02 24 32 27 28 29 32 36 27
Mk03 204 211 207 204 204 204 222 204
Mk04 48 81 65 75 64 64 83 60
Mk05 168 186 174 179 175 179 191 172
Mk06 33 86 72 69 69 85 81 69
Mk07 133 157 154 149 147 172 178 144
Mk08 523 523 523 555 523 552 542 523
Mk09 299 369 340 342 322 421 348 320
Mk10 165 296 299 242 249 358 310 254

Table 9
The RPD values (%) for the experiment results of Table 8.

Instance TS MATSPSO HA GWO MACROG GA SLGA

Mk01 16.7 8.3 16.7 11.1 11.1 22.2 11.1
Mk02 33.3 12.5 16.7 20.8 33.3 50 12.5
Mk03 3.4 1.5 0 0 0 8.8 0
Mk04 69 35.4 56.3 33.3 33.3 72.9 25
Mk05 10.7 3.6 6.6 4.2 6.5 13.7 2.4
Mk06 161 118 109 109 157 145.5 109
Mk07 18.1 15.8 12 10.5 29.3 33.8 8.3
Mk08 0 0 6.1 0 5.5 3.6 0
Mk09 23.4 13.7 14.4 7.7 40.8 16.4 7
Mk10 79.4 81.2 46.7 50.9 117 87.9 53.9
Mean 41.4 29 28.4 24.8 43.5 45.5 22.9

Fig. 8. Boxplot of RPD for seven algorithms in Table 8.

R. Chen et al.

Computers & Industrial Engineering 149 (2020) 106778

11

solve FJSP problem is presented in this paper. In SLGA, Reinforcement
Learning (RL) is adopted to precisely adjust Pc and Pm of GA, which
significantly improves the efficiency for solving FJSP. In learning
module of SLGA, SARSA algorithm and Q-learning algorithm are applied
in different execution phases to merge their own advantages, so both
faster learning speed and higher solution precision can be achieved. RL
environment is subtly designed for SLGA, including the state set of GA,
the action set and the reward method.

In order to verify the learning effect of the proposed SLGA, a large
number of comparative experiments are conducted between GA-SARSA,
GA-Q, conventional GA and SLGA by using Brandimarte’s data in-
stances. Meanwhile, SLGA is statistically compared with other state-of-
the-art algorithms that existing in literatures. According to the com-
parison results, SLGA is capable of obtaining better solutions for most
instances, the learning effect and the excellent performance of SLGA are
confirmed.

Although the proposed SLGA shows an outstanding performance in
solving FJSP, there is still unknown for solving different scheduling
problems. Moreover, some priori parameters usage is not considered
deeply. In our future work, we will continue to deeply research the
promotion of RL and other algorithms for other different combinatorial

optimization problems and the use of priori parameters.

CRediT authorship contribution statement

Ronghua Chen: Writing - original draft, Writing - review & editing,
Formal analysis, Software. Bo Yang: Conceptualization, Methodology,
Writing - review & editing, Funding acquisition. Shi Li: Validation,
Investigation, Funding acquisition. Shilong Wang: Resources, Super-
vision, Funding acquisition.

Acknowledgments

The presented work was supported by the Key Technologies
Research and Development Program (no. 2018AAA0101804), the Na-
tional Defense Basic Scientific Research Program of China (no.
JCKY2016204A502) and the Key Project of Technological Innovation
and Application Development Plan of Chongqing (no. cstc2019jscx-
mbdxX0056).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.cie.2020.106778.

References

Acan, A., & Ünveren, A. (2015). A great deluge and tabu search hybrid with two-stage
memory support for quadratic assignment problem. Applied Soft Computing, 36,
185–203.

Aissani, N., Bekrar, A., Trentesaux, D., & Beldjilali, B. (2011). Dynamic scheduling for
multi-site companies: A decisional approach based on reinforcement multi-agent
learning. Journal of Intelligent Manufacturing, 23, 2513–2529.

Al-Hinai, N. (2011). An efficient hybridized genetic algorithm architecture for the
flexible job shop scheduling problem. Flexible Services and Manufacturing Journal, 23,
64–85.

Alipour, M. M., Razavi, S. N., Feizi Derakhshi, M. R., & Balafar, M. A. (2017). A hybrid
algorithm using a genetic algorithm and multiagent reinforcement learning heuristic
to solve the traveling salesman problem. Neural Computing and Applications, 30,
2935–2951.

Amjad, M. K., Butt, S. I., Kousar, R., Ahmad, R., Agha, M. H., Faping, Z., … Asgher, U.
(2018). Recent research trends in genetic algorithm based flexible job shop
scheduling problems. Mathematical Problems in Engineering, 2018, 1–32.

Bashir, M. B., & Nadeem, A. (2017). Improved genetic algorithm to reduce mutation
testing cost. IEEE Access, 5, 3657–3674.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations Research, 41(1993), 1157–1183.

Brucker, P., & Schlie, R. J. C. (1990). Job-shop scheduling with multi-purpose machines.
Computing, 45, 369–375.

Chang, H. C., Chen, Y. P., Liu, T. K., & Chou, J. H. (2015). Solving the flexible job shop
scheduling problem with makespan optimization by using a hybrid Taguchi-genetic
algorithm. IEEE Access, 3, 1740–1754.

Cheraghalipour, A., Hajiaghaei-Keshteli, M., & Paydar, M. M. (2018). Tree Growth
Algorithm (TGA): A novel approach for solving optimization problems. Engineering
Applications of Artificial Intelligence, 72, 393–414.

Choi, I. C., & Choi, D. S. (2002). A local search algorithm for jobshop scheduling
problems with alternative operations and sequence-dependent setups. Computers &
Industrial Engineering, 42, 43–58.

Du, Y., Fang, J., & Miao, C. (2014). Frequency-domain system identification of an
unmanned helicopter based on an adaptive genetic algorithm. IEEE T Ind Electron,
61, 870–881.

Emary, E., Zawbaa, H. M., & Grosan, C. (2018). Experienced gray wolf optimization
through reinforcement learning and neural networks. IEEE Trans Neural Netw Learn
Syst, 29, 681–694.

Y.G. Fei Chen, Zhao-qian Chen, and Shi-fu Chen, SCGA: Controlling Genetic Algorithms
with Sarsa(0), Proceedings of the 2005 International Conference on Computational
Intelligence for Modelling, Control and Automation, and International Conference

Table 10
The test of normality and homogeneity of variance (the level of significant α = 0.05).

TS MATSPSO HA GWO MACROG GA SLGA

Normality Statistic 0.7 0.737 0.77 0.745 0.767 0.854 0.699
df 10 10 10 10 10 10 10

Significant 0.001 0.002 0.006 0.003 0.006 0.065 0.001
Homogeneity of variance Statistic df1 df2 Significant

0.445 6 63 0.846

Table 11
The results of Friedman tests for RPD values (the level of significant α = 0.05).

Algorithm Value of the mean rank Final priority

TS 4.85 5
MATSPSO 3.30 3

HA 3.90 4
GWO 2.65 2

MACROG 5.05 6
GA 6.30 7

SLGA 1.95 1
Test statistics Friedman

N 10
Chi-Square 31.00

df 6
p-value 0.000025

Fig. 9. The Mean Difference with LSD that comparing SLGA with
other algorithms.

R. Chen et al.

https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1016/j.cie.2020.106778
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0005
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0005
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0005
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0010
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0010
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0010
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0015
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0015
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0015
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0020
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0020
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0020
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0020
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0025
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0025
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0025
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0030
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0030
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0035
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0035
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0040
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0040
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0045
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0045
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0045
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0050
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0050
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0050
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0055
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0055
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0055
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0060
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0060
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0060
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0065
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0065
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0065

Computers & Industrial Engineering 149 (2020) 106778

12

on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-
IAWTIC’05), (2005).

Gao, K., Yang, F., Zhou, M., Pan, Q., & Suganthan, P. N. (2019). Flexible job-shop
rescheduling for new job insertion by using discrete jaya algorithm. IEEE
Transactions on Cybernetics, 49, 1944–1955.

M. Gyoung Hwan Kim, Genetic Reinforcement Learning Approach to the Heterogeneous
Machine Scheduling Problem, IEEE Transactions On Robotics and Automation, 14
(1998) 879-893.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The Complexity of Flowshop and
Jobshop Scheduling. Mathematics of Operations Research, 1, 117–129.

Henchiri, A., & Ennigrou, M. (2013). Particle swarm optimization combined with Tabu
search in a multi-agent model for flexible job shop problem. Proc. ICS I, 385–394,
2013.

Ho, N. B., Tay, J. C., & Lai, E. M. K. (2007). An effective architecture for learning and
evolving flexible job-shop schedules. European Journal of Operational Research, 179,
316–333.

Hsieh, Y.-Z., & Su, M.-C. (2015). A Q-learning-based swarm optimization algorithm for
economic dispatch problem. Neural Computing and Applications, 27, 2333–2350.

Jiang, T. H., & Zhang, C. (2018). Application of grey wolf optimization for solving
combinatorial problems: Job shop and flexible job shop scheduling cases. IEEE
Access, 6, 26231–26240.

Kacem, I., Hammadi, S., Borne, P., & Man, P. C. (2002). Cybernetics, Approach by
localization and multiobjective evolutionary optimization for flexible job-shop
scheduling problems. IEEE Transactions on Systems, Man, 32, 1–13.

Karimi, H., Rahmati, S. H. A., & Zandieh, M. (2012). An efficient knowledge-based
algorithm for the flexible job shop scheduling problem. Knowledge-Based Systems, 36,
236–244.

Lei, D. M. (2012). Co-evolutionary genetic algorithm for fuzzy flexible job shop
scheduling. Applied Soft Computing, 12, 2237–2245.

Li, X. Y., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for
flexible job shop scheduling problem. International Journal of Production Economics,
174, 93–110.

Li, X. X., Peng, Z., Du, B. G., Guo, J., Xu, W. X., & Zhuang, K. J. (2017). Hybrid artificial
bee colony algorithm with a rescheduling strategy for solving flexible job shop
scheduling problems. Computers & Industrial Engineering, 113, 10–26.

Li, T. H., Su, Y. T., Lai, S. W., & Hu, J. J. (2011). Walking motion generation, synthesis,
and control for biped robot by using PGRL LPI, and fuzzy logic. IEEE Transactions on
Systems, Man, and Cybernetics. Part B, Cybernetics, 41, 736–748.

Liouane, N., Saad, I., Hammadi, S., & Borne, P. (2007). Ant systems & local search
optimization for flexible job shop scheduling production. International Journal of
Computers, Communications & Control, II, I, 174–184.

Liu, T. K., Chen, Y. P., & Chou, J. H. (2014). Solving distributed and flexible job-shop
scheduling problems for a real-world fastener manufacturer. IEEE Access, 2,
1598–1606.

B. Marzouki, O.B. Driss, K. Gh́edira, Multi Agent model based on Chemical Reaction
Optimization with Greedy algorithm for Flexible Job shop Scheduling Problem, 21th
International Conference on Knowledge Based and Intelligent Information and
Engineering Systems, KES2017, 6-8 September 2017, Marseille, France, (2017) 81-
90.

Meng, T., Pan, Q. K., & Sang, H. Y. (2018). A hybrid artificial bee colony algorithm for a
flexible job shop scheduling problem with overlapping in operations. International
Journal of Production Research, 56, 5278–5292.

Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and
distributed particle swarm optimization algorithm for flexible job-shop scheduling
problem. Journal of Intelligent Manufacturing, 29, 603–615.

Nouiri, M., Bekrar, A., Jemai, A., Trentesaux, D., Ammari, A. C., & Niar, S. (2017). Two
stage particle swarm optimization to solve the flexible job shop predictive

scheduling problem considering possible machine breakdowns. Computers &
Industrial Engineering, 112, 595–606.

Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible
job-shop scheduling problem. Computers & Operations Research, 35, 3202–3212.

Qin, J., Li, M., Shi, Y., Ma, Q., & Zheng, W. X. (2019). Optimal synchronization control of
multiagent systems with input saturation via off-policy reinforcement learning. IEEE
Transactions on Neural Networks and Learning Systems, 30, 85–96.

Shahrabi, J., Adibi, M. A., & Mahootchi, M. (2017). A reinforcement learning approach to
parameter estimation in dynamic job shop scheduling. Computers & Industrial
Engineering, 110, 75–82.

Shao, G. F., Shangguan, Y. L., Tao, J. P., Zheng, J. W., Liu, T. D., & Wen, Y. H. (2018). An
improved genetic algorithm for structural optimization of Au-Ag bimetallic
nanoparticles. Applied Soft Computing, 73, 39–49.

Sutton, Richard S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press.

Wang, Y., & de Silva, C. W. (2008). A machine-learning approach to multi-robot
coordination. Engineering Applications of Artificial Intelligence, 21, 470–484.

Wang, H., Gu, M., Yu, Q., Tao, Y., Li, J., Fei, H., … Hong, T. (2019). Adaptive and large-
scale service composition based on deep reinforcement learning. Knowledge-Based
Systems, 180, 75–90.

Wang, Y.-H., Li, T.-H. S., & Lin, C.-J. (2013). Backward Q-learning: The combination of
Sarsa algorithm and Q-learning. Engineering Applications of Artificial Intelligence, 26,
2184–2193.

Wang, Y. M., Yin, H. L., & Qin, K. D. (2013). A novel genetic algorithm for flexible job
shop scheduling problems with machine disruptions. The International Journal of
Advanced Manufacturing Technology, 68, 1317–1326.

Wang, F., Zhou, L., Ren, H., & Liu, X. (2017). Search improvement process-chaotic
optimization-particle swarm optimization-elite retention strategy and improved
combined cooling-heating-power strategy based two-time scale multi-objective
optimization model for stand-alone microgrid operation. Energies, 10.

Wei, X.-K., Zhang, C., Wang, B.-Z., Li, J.-L., & Shao, W. (2014). Improved self-adaptive
genetic algorithm with quantum scheme for electromagnetic optimisation. IET
Microwaves, Antennas & Propagation, 8, 965–972.

Xing, L. N., Chen, Y. W., Wang, P., Zhao, Q. S., & Xiong, J. (2010). Knowledge-based ant
colony optimization for flexible job shop scheduling problems. Applied Soft
Computing, 10, 888–896.

Xing, L. N., Chen, Y. W., & Yang, K. W. (2009). An effective hybrid optimization
approach for multi-objective flexible job-shop scheduling problems. Computers &
Industrial Engineering, 56, 1735–1736.

Yuan, Y., Xu, H., & Yang, J. D. (2013). A hybrid harmony search algorithm for the
flexible job shop scheduling problem. Applied Soft Computing, 13, 3259–3272.

Zandieh, M., & Karimi, N. (2010). An adaptive multi-population genetic algorithm to
solve the multi-objective group scheduling problem in hybrid flexible flowshop with
sequence-dependent setup times. Journal of Intelligent Manufacturing, 22, 979–989.

Zhang, G. H., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-
shop scheduling problem. Expert Systems with Applications, 38, 3563–3573.

Zhang, G. H., Shao, X. Y., Li, P. G., & Gao, L. (2009). An effective hybrid particle swarm
optimization algorithm for multi-objective flexible job-shop scheduling problem.
Computers & Industrial Engineering, 56, 1309–1318.

Zhang, C. Y., Wang, X. J., & Gao, L. (2010). An Improved Genetic Algorithm for Multi-
objective Flexible Job-shop Scheduling Problem. Manufacturing Science and
Engineering, 97–101, 2449–2454.

Zhicong Zhang, L. Z., Li, Na., & Wang, Weiping (2012). Shouyan Zhong, Kaishun Hu,
Minimizing mean weighted tardiness in unrelated parallel machine scheduling with
reinforcement learning. Computers & Operations Research, 39, 1315–1324.

Ziaee, M. (2014). A heuristic algorithm for solving flexible job shop scheduling problem.
The International Journal of Advanced Manufacturing Technology, 71, 519–528.

R. Chen et al.

http://refhub.elsevier.com/S0360-8352(20)30488-5/h0075
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0075
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0075
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0080
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0080
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0090
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0090
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0090
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0095
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0095
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0095
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0100
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0100
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0105
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0105
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0105
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0110
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0110
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0110
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0115
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0115
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0115
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0120
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0120
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0125
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0125
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0125
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0130
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0130
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0130
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0135
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0135
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0135
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0140
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0140
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0140
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0145
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0145
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0145
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0155
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0155
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0155
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0160
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0160
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0160
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0165
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0165
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0165
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0165
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0170
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0170
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0175
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0175
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0175
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0180
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0180
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0180
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0185
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0185
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0185
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0190
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0190
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0195
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0195
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0200
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0200
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0200
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0205
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0205
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0205
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0210
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0210
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0210
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0215
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0215
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0215
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0215
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0220
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0220
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0220
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0225
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0225
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0225
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0230
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0230
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0230
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0235
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0235
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0240
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0240
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0240
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0245
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0245
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0250
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0250
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0250
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0255
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0255
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0255
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0260
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0260
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0260
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0265
http://refhub.elsevier.com/S0360-8352(20)30488-5/h0265

	A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
	1 Introduction
	2 Problem formulation
	2.1 Problem model
	2.2 Objective

	3 Basic algorithms
	3.1 Genetic algorithm
	3.1.1 Chromosome representation
	3.1.2 Population initialization
	3.1.3 Genetic operation
	3.1.4 Selection operation

	3.2 Reinforcement learning

	4 Proposed SLGA
	4.1 Combined model
	4.2 Construction of the learning module
	4.3 State set
	4.4 Action set
	4.5 Reward method
	4.6 Action selection strategy
	4.7 Procedure of the SLGA

	5 Experiment results and discussion
	5.1 Experimental comparison for hybrid learning strategy
	5.2 Experimental comparison with other algorithms

	6 Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Supplementary material
	References

