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Data-driven reinforcement-learning-based hierarchical energy management 
strategy for fuel cell/battery/ultracapacitor hybrid electric vehicles☆ 
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H I G H L I G H T S  

� Decouple power demand of FCHEV based on fuzzy filter to improve RL algorithm. 
� Propose a novel algorithm to achieve optimal EMS for splitting power of sources. 
� Combine ECMS to refine algorithm to optimize fuel consumption and fuel cell lifespan. 
� Utilize experimental data to confirm effectiveness of the proposed algorithm.  
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A B S T R A C T   

A reinforcement-learning-based energy management strategy is proposed in this paper for managing energy 
system of Fuel Cell Hybrid Electric Vehicles (FCHEV) equipped with three power sources. A hierarchical power 
splitting structure is employed to shrink large state-action space based on an adaptive fuzzy filter. Then, the 
reinforcement-learning-based algorithm using Equivalent Consumption Minimization Strategy (ECMS) is pro
posed for tackling high-dimensional state-action space, and finding a trade-off between global learning and real- 
time implementation. The power splitting policy based on experimental data is obtained by using reinforcement 
learning algorithm, which allows for many different driving cycles and traffic conditions. The proposed energy 
management strategy can achieve low computation cost, optimal fuel cell efficiency and energy consumption 
economy. Simulation results confirm that, compared with existing learning algorithms and optimization 
methods, the proposed reinforcement-learning-based energy management strategy using ECMS can achieve high 
computation efficiency, lower power fluctuation of fuel cell and optimal fuel economy of FCHEV.   

1. Introduction 

Nowadays, environmental pollution, global warming and energy 
concerns urge a replacement for Internal Combustion Engine (ICE) 
based vehicles. As a result, many kinds of new-generation environ
mentally friendly vehicles have been manufactured, among which the 
Hybrid Electric Vehicles (HEV), Fuel Cell Electric Vehicles (FCEV), and 
Battery Electric Vehicles (BEV) are standing in the most attractive 
research area. Apparently, BEV is the most promising substitute for ICE- 

based vehicles, while it is still platonic, on account of the immature 
traction battery technology and insufficient charging infrastructure [1]. 
To address this problem, HEV that uses both engine and motor as the 
hybrid power suppliers has been proposed. However, HEV still relies on 
fossil fuel, which means the Green House Gases (GHG) and environ
mental pollutants will be discharged inherently. Given this, FCEV or 
FCHEV without engine is proposed. Although considering many chal
lenges are still in the air, many major vehicle manufacturers are inter
ested in research and development of FCHEV, especially the energy 
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management problem, which is one of the key considerations among all 
technologies involved in FCHEV, aiming to mitigate the environmental 
degradation, and improve the fuel economy and performance of power 
sources in real-time [2,3]. 

The concept of FCHEV was suggested by McElroy in 1983 [4], while 
the management problem of multiple power sources for FCHEV was just 
researched in the late 1990s, where Ultra-Capacitor (UC) bank as a peak 
power unit provides benefits in the light of vehicle performance, lifespan 
of onboard battery and energy economy [5]. During this period, almost 
all management strategies are rule-based. In recent decade, the devel
opment of researches on energy management strategy draws a relatively 
clear path: from rule-based strategies to optimization-based strategies 
[6]. Rule-based strategies have a relatively small computation load, but 
rely deeply on the experiences from experts and it is difficult to guar
antee the obtainment of global optimal strategies by following the pre
defined rules, which lack of adaptiveness to deal with time-varying 
scenarios [7–9]. To deal with this problem, optimization-based ap
proaches are emerged [10–12], which can be categorized into two 
groups: global optimization methods and local (real-time) optimization 
methods. The former, like Dynamic Programming (DP) [13], and Heu
ristic Dynamic Programming (HDP) [14], can explore the global optimal 
strategy, but require a heavy computation load, while the latter 
methods, like ECMS and Model Predictive Control (MPC) [15,16], need 
less computation load, but just having the ability to find the local 
optimal results. 

In order to find a better trade-off technique to compromise precision 
and computation load, many new kinds of methodologies are presented, 
such as game theory [17], and Artificial Intelligence (AI) algorithms [18, 
19]. Inspired by improvement of Machine Learning (ML), Reinforcement 
Learning (RL) has been attracting attention of researchers and engineers, 
which has both advantages of global optimization and local optimiza
tion by learning globally and applying locally. Many results on energy 
management for vehicles equipped with multiple power sources 
[20–28] are obtained using RL algorithms. Xiong et al. proposed a 
Kullback-Leibler (KL) divergence based RL algorithm for plug-in HEV to 
renew the Transition Probability Matrix (TPM) and optimal control 
strategy in real time, and the simulation results indicated the proposed 
RL-based energy management strategy can significantly reduce the fuel 
consumption and can be applied in real time [26]. To upgrade the ob
tained optimal policy, Yuan et al. introduced a hierarchical energy 
management strategy for FCHEV to realize real-time application and 
global optimization, and proposed a new prediction model using 
K-Nearest Neighbor (KNN) technique to forecast the short- and 
long-term velocities [27]. In Ref. [28], a deep deterministic policy gra
dients based RL approach was applied to solve the management problem 
of series-parallel plug-in hybrid electric bus under a fixed driving con
dition, the simulation results shown that the proposed method has a 
great performance close to DP. Considering high-dimensional state-
action spaces of Energy Management Systems (EMS), some new methods 
combined with RL, such as deep convolutional neural network, have 
been introduced [29–31]. From the aforementioned results [26–28], 
considering the large state-action space of EMS, most of them focus on 
hybrid vehicles equipped with two power sources, which is proved to be 
one effective method for dealing with relative simple configuration of 
EMS of vehicles. To our best knowledge, a few literature applies the RL 
technique to address the energy management problem for FCHEV 
equipped with Fuel Cell (FC), Battery (BAT) and UC, on account of the 
complex and flexible structure of EMS. Meantime, the proposed algo
rithms in Ref. [29,30] highly depend on computing capacity to tackle 
large-scale data ascribed to complexity of EMS, which may result into a 
huge computation load in real application. 

Therefore, in this paper, an RL-based energy management strategy 
for FCHEV is proposed combining ECMS technique to achieve low 
computation cost, optimal FC efficiency and energy consumption 
economy. Considering the large state-action space of EMS, hierarchical 
structure is employed to cut the space to reduce computation load by 

using an adaptive fuzzy filter to separate power demand to two parts for 
UC and BAT/FC, respectively [38]. To improve lifespan and fuel effi
ciency of FC, multi-objective optimization based ECMS is suggested. 
Aiming to realize fast training for large-scale data and obtaining the 
optimal splitting strategy, a speedy learning based RL algorithm is 
proposed, through which the optimal splitting strategy for BAT and FC 
can be obtained via experimental data applying data driven technique in 
a relatively short period of time. To verify the validity and superiority of 
the proposed RL-based optimal policy, DP and an existing RL-based 
methods are involved in terms of computation efficiency, and finally 
an ECMS-based strategy is selected as a competitor considering the 
optimization capability with many different typical driving cycles. 

The remaining part of this paper is organized as follows. The power 
train of FCHEV and three power sources are modeled and built in detail 
in Section 2. In Section 3, the hierarchical structure of RL-based energy 
management system with ECMS is established. In Section 4, an ECMS 
based Q-learning algorithm are studied and proposed, then according to 
historical data, the optimal policy is generated. Comparative study and 
analysis are carried on and discussed meticulously in Section 5. And 
Section 6 presents the conclusions. 

2. Background and problem statement 

In this section, the considered vehicle model is constructed firstly 
based on the platform as shown in Fig. 1. Then, the detailed mathe
matical models of three power sources are introduced. 

2.1. System configuration and structure of FCHEV 

With the rapid development of the technology on vehicular power 
system, many kinds of propulsion systems with different topological 
structures have been designed aiming to certain purposes [32]. Here, 
according to the test bed, detailed configurations of power train and 
EMS of the investigated FCHEV are clearly shown in Fig. 2. 

In this configuration, the directly controlled objects comprise DC/DC 
converters, and DC/AC inverters. By manipulating these objects, the 
output power of hydrogen FC, li-ion BAT, and UC can be regulated to 
match up the power demand. Furthermore, the vehicle has a three-phase 
traction motor, and a DC bus for power sharing. The specific parameters 
of involved FCHEV are listed in Table 1. 

The primary power source for FCHEV is FC. Unidirectional DC/DC 
converter serves as an intermediate layer for linking FC to DC bus, and as 
a regulator for maintaining the State of Charge (SoC) of BAT pack at a 
proper level, on the premise that FC is working in high-efficiency field. 
By applying the bi-directional DC/DC converter, UC tunes the DC bus 
power, and can produce or retrieve peak power, as the vehicle’s 
instantaneously strong acceleration/deceleration, and BAT pack has 
ability to provide or absorb the rest power through DC bus. Additionally, 
DC/AC inverter generates any desired power for traction motor to drive 
the vehicle for meeting the driver’s demand. 

2.2. Modeling of power sources 

The major aim of this research is to find a new approach to reduce the 
computation load to realize global optimization and real-time learning 
for multi-source FCHEV with complex structure of energy system and 
large-scale experimental data. Due to the energy management of FCHEV 
is a typical multi-objective optimization problem, ECMS is considered to 
realize real-time learning process, and achieve the highest FC opera
tional efficiency as well as the longest lifespan of UC and BAT. In ECMS, 
optimization objectives are fuel consumption and lifespan of power 
sources, involving FC, BAT and UC, which can be modeled as follows:  

(1) Fuel cell model 

The Proton-Exchange-Membrane Fuel-Cell (PEMFC) as the major 
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Fig. 1. Structural configuration model of vehicle test bench.  

Fig. 2. Block diagram of energy management system in multi-source FCHEV.  
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power source for FCHEV converts the chemical energy into electric en
ergy through the reaction between hydrogen and oxygen. The output 
voltage of FC is expressed as [33]: 

VFC ¼ ncell � ðEcell � Vact:loss � Vohm:lossÞ (1)  

where ncell means the number of cells on the stack, Ecell is the electro
motive potential in volts, Vact:loss is the losses due to the cell activation in 
volts, and Vohm:loss is the losses due to the cell internal resistance in volts. 

The electromotive potential Ecell can be calculated by 

Ecell ¼ 1:229 � 0:85e� 3ðT � TcÞ þ
RT
2F

ln
� ffiffiffiffiffiffiffiffi

PO2

p
PH2

�
(2)  

where T is the temperature of the catalyst layer in degree kelvin, Tc ¼

298:15K is the temperature offset in degree of kelvin, R ¼ 8:314J⋅ 
ðmol⋅KÞ� 1 is the gas constant in joules per mole degree kelvin, F ¼
96485C⋅mol� 1 is the Faraday constant in coulombs per mole, PO2 and PH2 

are the pressures at the interface of cathode and anode catalyst layer in 
pascals, respectively. 

The activation losses Vact:loss can be expressed as 

Vact:loss¼
RT
2αF

ln
IFC

I0Scata
(3)  

where α is charge transfer coefficient, IFC is FC current in amperes, Scata is 
the catalyst layer section area in square centimeters, and I0 is the ex
change current density in amperes per square centimeter. 

The ohmic losses Vohm:loss can be described as 

Vohm:loss ¼
IFC
R l

0 ΓðTmem; λðzÞÞdz
Smem

(4)  

where l is thickness of the membrane in centimeters, Smem is the mem
brane surface area in square centimeters, and ΓðTmem; λðzÞÞ is the local 
resistivity of the membrane in ohms centimeter, which can be obtained 
by 

ΓðTmem; λðzÞÞ¼

8
>>>>><

>>>>>:

103

1:933
e

�

1268⋅

�

1
Tmem �

1
303

��

; 0 < λ � 1

103

5:193λ � 3:26
e

�

1268⋅

�

1
Tmem �

1
303

��

; λ > 1

(5)  

where Tmem is the temperature of the membrane in degree kelvin, and 
λðzÞ, z 2 ½0; l�, is the water content of the membrane.  

(2) Battery model 

The most classical method to estimate SoC of BAT is current inte

gration [34], which can be expressed as 

SoCBAT ¼ SoCBAT:ini þ
β
R

iBAT dt
Cnom

(6)  

where SoCini is the initial BAT SoC, iBAT is the BAT current in amperes, 
β ¼ �1 is a charge-discharge switch (positive to the charge and negative 
during discharge) and Cnom is the nominal BAT capacity in ampere hour. 

The output voltage VBAT is attained by 
8
><

>:

VBAT ¼ VðSoCBATÞBAT:oc þ βiBAT rðSoCBATÞ

iBAT ¼
VðSoCBATÞBAT:oc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2ðSoCBATÞBAT :oc � 4rðSoCBAT ÞPBAT

q

2rðSoCBAT Þ

(7)  

where VðSoCBATÞBAT:oc means the open circuit voltage at the state of 
charge SoCBAT of BAT in volts, rðSoCBATÞ is the internal resistance at the 
state of charge SoCBAT in ohms, and PBAT means the electric power of 
BAT in watts.  

(3) Ultracapacitor model 

The open circuit voltage of UC VUC:oc , the SoC of UC SoCUC and the 
UC current IUC can be formulated as [35]. 

VUC:oc¼ SoCUC ⋅ ðVUC:max � VUC:minÞ þ VUC:min (8)  

IUC ¼
VUC:oc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
UC:oc � 4RUCPUC

q

2RUC
(9)  

where VUC:max and VUC:min are the maximum and minimum voltage of UC 
in volts, respectively, RUC is equivalent internal resistance in ohms, and 
PUC is electric power of UC in watts. 

3. Hierarchical structure of RL-based EMS 

In this section, in view of the large learning space, a hierarchical 
structure for power split in EMS is presented to shrink the state-action 
space to short computation time of learning historical data. First, 
detailed configuration of the hierarchical EMS is pictured in Fig. 3. Then, 
additionally, the adaptive fuzzy filter and ECMS embedded in EMS are 
discussed and modeled in detail. 

3.1. Fuzzy based adaptive low-pass filter 

The purpose of applying low-pass filter is to protect FC and BAT from 
power fluctuations that UC provides/absorbs the peak power to upgrade 
the power performance of vehicles. The low-pass filter can be formu
lated as 

GðsÞ¼
1

1
fs

sþ 1
(10)  

where fs is the regulating frequency, tuned by a Fuzzy Inference System 
(FIS) according to Pdemand, SoCUC, and SoCBAT. 

Here a compound parameter SoCESS ¼ αUCSoCUCþ αBATSoCBAT, 
where αUC and αBAT are adjustment coefficients, is presented to describe 
a comprehensive SoC of ESS to guarantee SoCUC and SoCBAT vary in a 
given range, and to alleviate FC’s working load. SoCESS and Pdemand are 
selected as the input variables of FIS, and output is served by fs. Through 
trial and error, a proper fuzzy rule base is built on experiences shown in 
Table 2. 

3.2. ECMS based on multi-objective optimization theory 

In FCHEVs, ECMS can be applied to manage power flow and upgrade 

Table 1 
Main parameters of the considered hydrogen FCHEV.  

Device Item Parameter 

Electric motor Power rating 45 kW  
Rated speed 1500 rpm 

Fuel cell Power rating 10 kW  
Output voltage 40–100V 

Ultracapacitor Rated voltage 288V  
Capacitance 27.5F  
Energy 320 Wh 

Battery Type Li-ion  
Energy 25.6 kWh  
Rated voltage 320V  
Maximum charge rate 2C  
Maximum discharge rate 4C  
Nominal charge/discharge rate 0.5C 

DC bus Rated voltage AC380V  
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fuel economy locally, when extra energy storage sources like BAT and 
UC are introduced to offer some supportive helps to FC for meeting the 
driver’s power demand [3]. According to the detailed expressions of 
each power source, in terms of the total hydrogen fuel consumption and 
the SoC deviation of BAT, the ECMS can be expressed as 

minCtotalðtÞ ¼ kFCCFCðtÞ þ kBAT CBATðtÞ þ kUCCUCðtÞ

minΔSoCBAT ¼

�
SoCðtÞ � SoCref ; SoCðtÞ < SoCref

0 ; SoCðtÞ � SoCref

(11)  

8
>>>>>><

>>>>>>:

s:t:

0:4 � SoCBATðtÞ � 0:8
0:4 � SoCUCðtÞ � 1

_SoCBAT;ch � 2C
_SoCBAT;disch � 4C

PFCðtÞmin � PFCðtÞ � PFCðtÞmax
� Pdemand � PBAT ðtÞ � Pdemand

(12)  

where CtotalðtÞ is total volume of hydrogen consumption in grams at time 
t, CFCðtÞ is FC hydrogen consumption in grams at time t, CBATðtÞ and 
CUCðtÞ are BAT and UC equivalent hydrogen consumption in grams at 
time t, respectively. kFC means the FC efficiency penalty coefficient that 

Fig. 3. Optimized power splitting structure based on reinforcement learning.  
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allows FC operating at high efficiency level, kBAT and kUC are penalty 
coefficient in terms of the SoC value of BAT and UC, respectively. 
ΔSoCBATðtÞ is deviation of the current SoC of BAT from the reference 
value at t. According to the physical properties of each power source on 
the platform, some boundaries of parameters are given in equation (12), 
where PFCðtÞmin and PFCðtÞmax are the minimum and maximum output 
power, respectively, as the FC works in the high-efficiency field. All the 
boundary values of constraints are determined by the real vehicle test 
bench. 

The FC hydrogen consumption can be obtained by 

CFCðtÞ ¼
Z t

0

�
1:2MH2 Ncell

2F
IFCðtÞ

�

dt (13)  

where MH2 ¼ 2g⋅mol� 1 represents the hydrogen molar mass, Ncell means 
the number of cells, F ¼ 96487C⋅mol� 1 is the Faraday constant, and 
IFCðtÞ is the fuel cell current in amperes. 

The BAT equivalent hydrogen consumption can be expressed as 

CBATðtÞ¼

8
>>><

>>>:

PBAT ⋅CFC;ave

ηdisch⋅ηch;ave⋅PFC;ave
;PBAT � 0

PBAT ⋅ηdisch;ave⋅ηch⋅CFC;ave

PFC;ave
;PBAT < 0

(14)  

where PBATðtÞ is the BAT power at time t in watts, CFC;ave is the average 
hydrogen consumption of FC, PFC;ave represents the mean power of FC, 
ηdisch and ηch means the discharging and charging efficiency, ηdisch;ave and 
ηch;ave means the average discharging and charging efficiency. PBATðtÞ �
0 means the BAT is discharging, and PBATðtÞ < 0 means charging. 

The equivalent hydrogen consumption of UC can be calculated same 
to BAT, where kFC , kBAT and kUC are chosen followed by Ref. [3]. 

4. Learning for Markov Chain models and Q-learning algorithm 

In this section, the power demand varying with vehicle velocity is 
regarded as a finite-state Markov Chain (MC) problem, and Q-learning is 
used to solve the Markov Decision Process (MDP). 

4.1. Q-learning for MDP 

MDP framework is considered with using Q-learning technique, 
whose aim is to gain an optimal policy π� that maximizes the expected 
discounted long-term reward 

V�ðsÞ¼max
π

E

"
X∞

t¼0
γtRðst; πðstÞÞ

�
�
�
�
�
π; s0¼ s

#

for each state s, where γ2 ½0;1Þ is the discount factor. Q-functions 
represent the expected future discounted reward for a state s when an 
action A is performed. The optimal Q-function Q� satisfies the Bellman 
equation: 

Q�ðs;AÞ¼Rðs;AÞ þ γ
X

s’
½pðs’js;AÞmax

A’
Q�ðs’;A’Þ� (15) 

Here, it assumes the environment is stationary. Hence, the super
script t is ignored, and consequently, s is used to represent the current 
state st , and s’ is used to substitute the next state stþ1 . 

Considering the computation load, to determine a proper state- 
action space, UC is only involved to provide or absorb sudden power 
demand and negative power, and then FC and BAT work together for the 
rest. Therefore, in this paper, MDP consists of a set of actions A ¼ fPFC;

PBATg , a set of state variables S ¼ fSoCBATðtÞ; SoCUCðtÞ; PdemandðtÞ;
VcurrentðtÞg , and a reward function R ¼ Ctotalðs;AÞ þ βðΔSoCBATðtÞÞ2 , 
when β is a positive penalty coefficient, and ΔSoCBATðtÞ is the same term 
as presented in equation (11). 

To calculate equation (15) and get the optimal policy, it is critical to 
properly estimate Q�ðs;AÞ . Q-learning is a widely used model-free off- 
policy learning approach and starts with an initial Qðs;AÞ for each state- 
action pair [36]. At each time step, all agents perform a joint action 
based on a commonly used exploration method ε-greedy strategy that 
selects the greedy action argmax

A
Qðs;AÞ with high probability, and 

betweenwhiles, selects an action uniformly at random with a small 
probability ε. Each time a joint action A is taken in state s, then the 
reward Rðs;AÞ is fed back from environment and the next state s’ is 
observed, thus the Q-value is updated with a combination of its current 
value and the Temporal-Difference Error (TDE), expressed as 

Qðs;AÞ← ð1 � αÞQðs;AÞ þ α½Rðs;AÞþ γmax
A’

Qðs’;A’Þ� (16)  

which can be rewritten as 

Qðs;AÞ← Qðs;AÞ þ α½Rðs;AÞþ γmax
A’

Qðs’;A’Þ � Qðs;AÞ� (17)  

where α 2 ð0; 1Þ means the learning rate which reflects the influence of 
the new experience on current estimation Qðs;AÞ . 

4.2. Improved learning algorithm based on Q-learning 

The configuration of FCHEV equipped with UC, BAT, and FC is 
complex due to the coupled output power and flexible topology of power 
system, which is different from the other types of vehicles, like the ICE 
vehicles. To achieve a lower hydrogen consumption and a better power 
performance, it is necessary to describe vehicles more comprehensively, 
resulting in a larger state space, but a higher computation load. Con
ventional Q-learning based technique can successfully manage the 
power split under the less-state less-action conditions. Nevertheless, 
confronted with high-dimensional state-action space, or even contin
uous state-action variables, it is difficult to be solved efficiently by 
existing RL algorithms, as a result of the “Curse of Dimensionality”, 
although some more powerful algorithms are presented, like deep 
learning [37], which inevitably requires a powerful computing perfor
mance. Hence a fast learning algorithm based on Q-learning and ECMS is 
designed and developed to tackle this irksome problem and increase the 
convergence speed without degrading the optimality of results. Pseudo 
code is shown in Table 3. 

4.3. Data-driven optimal EMS based on improved Q-learning 

By applying the proposed algorithm, the experimental data can be 
learned to get TPM of power demand for optimizing power split of EMS. 
In this research, to learn a better management strategy, about 150 
thousand sets of experimental driving data (the years from 2017 to 
2019) are collected [39–41]. After removing the invalid data, more than 
40 thousand data points are selected. 

To get the TPM of power demand, maximum likelihood estimation 
and nearest neighbor method are considered, expressed as 

pk;ij ¼
Nk;ij

Nk;i 

Table 2 
Fuzzy rule base for FIS.  

fs  Pdemand  

NB NM NS ZE PS PM PB NB 

SoCESS  S S S RS B RB M RS 
RS S RS MS B RB M RS 
M RS RS M B M M S 
RB M M RB B RS RS S 
B RB RB B B RS S S 

N¼Negative, P¼Positive, S¼Small, M ¼ Medium, B¼Big, R ¼ Relatively, ZE ¼
Zero. 
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where Nk;ij is the frequency of occurrence that the power demand Pdemand 

transits from Pi
demand to Pj

demand at a certain vehicle velocity of vk, and Nk;i 

means the total counts of the frequency of occurrence that the power 
demand Pdemand transits from Pi

demand to all possible power demands at a 

certain vehicle velocity of vk. 
For the sake of simplification of data processing, the selected data are 

classified into 36 groups, then it is easy to get the TPM at different ve
locities varying from 0 km/h to 50 km/h in 10 km/h increments. The 
average TPM at each level of velocity can be calculated. Fig. 4 shows the 

Table 3 
Pseudo code of the proposed QL algorithm. 

Fig. 4. Transition probability maps of power demand at different velocities.  
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average transition probability maps at velocities of 20 km/h and 30 km/ 
h. 

According to the proposed algorithm, by using the obtained TPM, it 
is easy to get the optimal management strategy, shown in Fig. 5 (taking 
the scenario V ¼ 20 km/h and the SoCs of BAT and UC are all equal to 
0.7 as an example). The computation time of different optimization 
methods is listed and compared in Table 4 that shows the learning ef
ficiency of the proposed method. 

5. Simulation and analysis 

In this section, the optimal energy management strategy learned by 
RL-based method is applied to several commonly used driving cycles to 
testify the availability and validity of the proposed algorithm and ra
tionality of using RL technique to solve the energy management problem 
for three-source FCHEV. 

To verify the universality of proposed optimal strategy, an experi
mental driving cycle is discussed first, besides which six typical 
commonly used driving cycles are considered. They are HWFET, UDDS, 
WVUCITY, WVUINTER, WVUSUB, and a compound driving cycle 
imitating a vehicle runs from a city to another city through two arterial 
roads and an expressway. The simulation results are shown in Figs. 6 and 
7, as well as Supplementary Figs. 1–5 (Supplementary Figs. 1–5 are 
shown in Supplementary document for details). 

According to the simulation results shown in Fig. 6, it can be known 
that the peak power is provided/absorbed by UC, and during the driving 
cycle, the output power of FC is high enough and relatively stable 
resulting in the operational efficiency of FC is located in high-efficiency 
field, and the SoC value of BAT decreases mildly, except that as the 
vehicle runs at about 1300s, where exists a quick and strong acceleration 
needing much more sudden power than before, so all power sources 
have to provide more power to support the rapid demand, hence, at the 
same time, the SoCs of UC and BAT are all reduced, and the efficiency of 
FC is fluctuated. 

The driving cycles presented in Supplementary Figs. 1 and 2, can be 
categorized into a group, which is used for emission certification and 
fuel economy testing of light-duty vehicles. Analyzing the results of 

these two normal driving cycles, some common characteristics can be 
found: as the vehicle speeds up, the output power and operational effi
ciency of FC grow up as well, namely, the variation tendency of output 
power from FC approximates that of vehicle velocity, and thereupon the 
variation affects the efficiency of FC; and if velocity is relatively stable, 
UC and BAT hardly do any efforts resulting in a stable SoC value. 

By studying the three figures above, it is clearly recognized for light- 
duty vehicles, under the three testing driving cycles, the obtained 
optimal policy presents an ideal performance. After using the proposed 
energy management strategy, the power provided from FC is relatively 
high and stable guaranteeing the high efficiency (greater than 0.5 almost 
at any time) and long lifespan; the power from BAT is fluctuated in an 
acceptable variation range ensuring the lifespan of it as well (the energy 
consumption of BAT is about 5% per 800 s no matter what kind of the 
driving cycle is seem to be). And the SoCs of BAT and UC are reduced to 
some extents, which lead to the lower fuel consumption, higher fuel 
economy and longer driving range. Two exceptional things should be 
notated are, in Supplementary Fig. 1, firstly, at the end of the driving 
cycle, there exists a strong and rapid deceleration inducing the UC ab
sorbs a mass of braking energy resulting in the abruptly increasing SoC 
value in a short time, and, secondly, in Supplementary Fig. 2, due to a 
great deal of the times of rapid deceleration, the tendency of SoC of UC is 
generally increasing leading to a relatively low efficiency of FC, 
although the efficiency is still located in high-efficiency field (greater 
than 0.5). 

To verify the universality of proposed strategy, besides the driving 
cycles studied above, some more severe driving cycles (always for sci
entific research only) containing many extreme driving conditions are 

Fig. 5. QL-based optimal policy under the condition of V ¼ 20 km/h, and SoCBAT ¼ SoCUC ¼ 0:7  

Table 4 
Computation time comparison for training by three optimization methods.  

Optimization method Computation timea(hours) Improvementð%Þ

DP 164 – 
RL 97 40.9 
Proposed RL-based method 41 57.7  

a A 2.5 GHz microprocessor with 4 GB RAM was used. 
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taken into consideration. 
From Supplementary Figs. 3–5, it is reasonably seen that there are 

some apparent differences between Supplementary Figs. 1–2 and Sup
plementary Figs. 3–5. In the latter group, it is obvious the driving cycles 
are more uncertain, nevertheless, the output power and SoCs of three 
power sources perform well same as the former group. Something more 
important is that the efficiency of FC is degrading, especially in driving 
cycle WVUCITY, owing to the extreme driving conditions, the use ratio 
of UC is very high as well as the maximal output power of it, therefore, 
together with the low average velocity, the efficiency of FC is only 
varying in the range from 0.4 to 0.5. With regard to the driving cycle 
WVUINTER, thanks to high average velocity, particularly during the 
time interval from 200 to 1300 s, the efficiency of FC is located in high- 
efficiency field, and after this interval, the speed is getting lower 
resulting in a descending fuel efficiency. For cycle WVUSUB, from the 
analysis above, it is logically seen in Supplementary Fig. 5 that UC is 
frequently used to absorb sharply braking energy, which brings about 
the rising of its SoC value, and the frequent strong acceleration/decel
eration behaviors make the fuel efficiency fluctuating and relatively low 
(because of the higher speed compared with WVUCITY, the fuel effi
ciency of WVUSUB is,consequently, higher than that of WVUCITY). 

In each discussion above, it consists of only one single driving cycle, 
which is just thinking about the short-trip scenario. So here a kind of 
long-trip scenario simulates a travel that the driver wants to drive his/ 
her vehicle from the downtown he/she lives in to another downtown he/ 
she aims to arrive to. The whole driving cycle is illustrated in Fig. 7(a). 

From Fig. 7(b) and (c), some common properties same as the pre
vious discussions can be found, additionally, some new findings can be 
discovered. As the vehicle is driven on the arterial roads, the steady 
variation of velocity and the relatively high driving speed make the SoC 
of UC grow up, and make the efficiency of FC stands in the high- 
efficiency field. Furthermore, as shown in Fig. 7(d), the result, which 
is more important and not be mentioned before, is if the vehicle runs 
after the high-speed phases (like, arterial road or expressway), the fuel 
efficiency and the SoC of UC will be elevated to a new higher level 
accordingly within a certain period of time. This finding may have the 
ability to guide the optimal distribution of hydrogen refueling stations 
alongside the expressway in the future. 

According to the discussions above, it is reasonably recognized that 
the proposed energy management strategy based on RL technique can 
manage these different power sources for meeting the power demand 
from the driver coordinatively with a harmonious relationship. And by 

Fig. 6. Simulation results of an experimental driving cycle.  
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using this strategy, the lifespan of BAT and FC can be extended. To 
testify the better performance on fuel consumption of the proposed 
policy, a simple comparison is made, listed in Table 5. In this compar
ison, the RL-based results are gained by using proposed RL algorithm 
considering ECMS, while the dissimilitude is, in this paper, the ECMS- 
based ones are calculated by conventional single objective optimiza
tion based ECMS. 

As the table shows, the RL-based strategy improves the fuel economy 
further, compared with the traditional ECMS-based strategy. In partic
ular, the RL-based strategy performs better if the vehicle runs in an 
urban area, has a long-trip, and be driven by a reckless driver with bad 
driving behaviors, due to the learning ability of RL technique that can 
deal with many unexpected conditions, which is not possessed by ECMS- 
based one. 

In summary, according to Table 4, it is clearly recognized the pro
posed RL-based method has the lowest computation complexity 
compared with DP and conventional RL. And as shown in Table 5, the 
comparison table shows that the proposed RL-based strategy can lead to 
a lower hydrogen consumption confronted with traditional ECMS-based 
strategy, which has been proved to achieve near-optimal performance 
[42]. And as use the proposed RL-based strategy to settle many different 

typical driving cycles, the equivalent hydrogen consumptions of all 
driving cycles are lower than those obtained by traditional ECMS-based 
strategy, which means the proposed RL-based strategy has a better 

Fig. 7. Simulation results of a compound driving cycle.  

Table 5 
The comparison of RL- and ECMS-based strategies on equivalent fuel 
consumption.  

Driving cycle Equivalent fuel consumption (L/100 
km) 

Improvement 

RL-based 
strategy 

ECMS-based 
strategy 

Experimental driving 
cycle 

3.6 4.4 18.2%  

HWFET 2.6 2.8 7.1%  
UDDS 2.9 3.2 9.4%  
WVUCITY 5.0 6.1 18.0%  
WVUINTER 2.9 3.2 9.4%  
WVUSUB 3.2 3.5 8.6%  
Compound driving cycle 2.8 3.8 26.3%   
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feasibility compared with the traditional ECMS-based one. 

6. Conclusions 

In this paper, RL technique was used to solve the energy management 
problem for FCHEV. First, according to the real test bench, the structure 
of FCHEV has been determined, and the detailed model of each power 
source has been established, based on which a multi-objective optimi
zation problem was built according to ECMS. Then, MC model and Q- 
learning algorithm were studied, and a more efficient Q-learning algo
rithm was proposed. After that, the hierarchical structure of EMS was 
presented to reduce the space scale by applying an adaptive fuzzy filter. 
Afterwards, based on the experimental data, TPM and reward matrix 
were figured out, and the optimal power splitting policy was found via 
MATLAB. To compare the computation efficiency of the proposed 
optimization method, DP and conventional RL were selected. Compar
ative results presented that the proposed RL algorithm with a hierar
chical power splitting structure has an ability to reduce the computation 
load effectively. Finally, some commonly used driving cycles were 
employed to ensure the effectiveness and availability of the proposed 
method. Simulation results showed that the proposed RL-based optimal 
strategy has a more environmentally friendly and promising ability to 
extend the lifespan of FC and BAT, and improve the operational effi
ciency of FC in different driving cycles. While the use rate of UC and BAT 
is not high enough, on account of the using of hierarchical structure. 
Additionally, from this research, some energy-saving tips can be found 
that are driving faster without frequent strong acceleration and decel
eration, and after a high-average-velocity driving period, the fuel con
sumption will stay in a relatively low level in a certain period of time, 
which will helpful, in future, for optimizing the best distribution of fuel 
stations. 
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