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a b s t r a c t 

Reliable and accurate building energy consumption prediction is becoming increasingly pivotal in build- 

ing energy management. Currently, data-driven approach has shown promising performances and gained 

lots of research attention due to its efficiency and flexibility. As a combination of reinforcement learning 

and deep learning, deep reinforcement learning (DRL) techniques are expected to solve nonlinear and 

complex issues. However, very little is known about DRL techniques in forecasting building energy con- 

sumption. Therefore, this paper presents a case study of an office building using three commonly-used 

DRL techniques to forecast building energy consumption, namely Asynchronous Advantage Actor-Critic 

(A3C), Deep Deterministic Policy Gradient (DDPG) and Recurrent Deterministic Policy Gradient (RDPG). 

The objective is to investigate the potential of DRL techniques in building energy consumption predic- 

tion field. A comprehensive comparison between DRL models and common supervised models is also 

provided. 

The results demonstrate that the proposed DDPG and RDPG models have obvious advantages in forecast- 

ing building energy consumption compared to common supervised models, while accounting for more 

computation time for model training. Their prediction performances measured by mean absolute error 

(MAE) can be improved by 16%-24% for single-step ahead prediction, and 19%-32% for multi-step ahead 

prediction. The results also indicate that A3C performs poor prediction accuracy and shows much slower 

convergence speed than DDPG and RDPG. However, A3C is still the most efficient technique among these 

three DRL methods. The findings are enlightening and the proposed DRL methodologies can be positively 

extended to other prediction problems, e.g., wind speed prediction and electricity load prediction. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Building sector has become the largest energy consumer world-

ide due to population growth, increases of people comfort de-

ands, and global climate change [1] . Specifically, buildings are

esponsible for approximately 32% of world’s total energy con-

umption and even 40% in many developed countries (e.g., around

9% in the U.S. and 40% in Europe) [ 2 , 3 ]. Besides, new policies and

egulations have been promulgated in many countries for the ef-

ective design of new buildings, with the aim of achieving building

nergy conservation. Hence, improving building energy efficiency

as become a paramount issue around the world. In this context,

eliable and accurate prediction of building energy consumption is

ecoming increasing favorable and vital in improving building en-

rgy efficiency, since it plays a fundamental role in many building
∗ Corresponding author. 
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nergy management tasks, e.g., system fault detection and diag-

osis [4] , optimal operation strategy control [5] , and demand-side

anagement [6] . According to Ref. [7] , it was shown that build-

ng energy savings can reach 10% to 30% with reliable energy con-

umption predictions, indicating the great significance of building

nergy consumption prediction for building energy efficiency im-

rovement. 

Broadly speaking, existing approaches for building energy

onsumption prediction can be classified into three categories,

.e., engineering approach, statistical approach and artificial in-

elligence (AI) based approach [8] . Engineering methods, aka

hite-box methods, rely on the elaborate physical functions and

hermodynamic rules, and require developing and solving many

hysical equations for building energy behaviors estimation. Be-

ides, a large number of building parameters are needed for

ngineering calculation, such as building construction details,

hermal properties of building material, weather condition and

uilding occupancy, which are not always available. For these

https://doi.org/10.1016/j.enbuild.2019.109675
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.109675&domain=pdf
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Nomenclature 

RL Reinforcement learning 

DRL Deep reinforcement learning 

A3C Asynchronous Advantage Actor-Critic 

DDPG Deep Deterministic Policy Gradient 

RDPG Recurrent Deterministic Policy Gradient 

LOF Local outlier factor 

SVM Support vector machine 

MLR Multiple linear regression 

ANN Artificial neuron network 

DT Decision tree 

BPNN Back-propagation neural network 

MLP Multi-layer perceptron 

ACF Autocorrelation Function 

PACF Partial Autocorrelation Function 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 

RF Random Forest 

CART Classification and Regression Trees 

MAE mean absolute error 

RMSE root mean square error 

CV coefficient of variance 

R 2 coefficient of 

GSHP determination 

EC Ground source heat pump 

OT Energy consumption 

WS Outdoor temperature 

RH Wind speed 

SS Relative humidity 

s System status 

a state 

r action 

π reward 

V ( s ) policy 

Q ( s, a ) Value function 

γ Action-value function 

θ Discount factor 

w Parameters of Actor network 

δ Parameters of Critic network 

∇ θ log πθ ( s, a ) TD-error 

α Score function 

β Learning rate of Actor Learning rate of Critic 

reasons, the accurate estimation of building energy consumption

based on engineering methods is difficult and time-consuming,

and has intrinsic limitations in practice [9] . In term of statisti-

cal approaches, they simply correlate building energy consump-

tion with relevant input variables (e.g. weather variables), and have

been identified some deficiencies in practice, of which the most

important one is the lack of accuracy and flexibility [10] . 

By contrast, AI-based approaches work in a purely data-driven

fashion and require little domain knowledge. Such data-driven

methods can learn from historic data and aim to forecast the en-

ergy consumption based on previous energy use patterns. Specif-

ically, they attempt to develop prediction models in a supervised

manner through discovering and generalizing the underlying lin-

ear or nonlinear relationship between given inputs (e.g. historic

energy data and meteorological data) and outputs (i.e. building en-

ergy consumption). On the other hand, massive data available from

Building Automation System as well as the rapid development of

data science make the establishment of data-driven models more

convenient. Accordingly, data-driven methods have become a re-
earch hotspot in recent years due to their flexibility and efficiency

ompared to engineering and statistical methods [11] . 

The prediction performances of data-driven models are greatly

nfluenced by three factors, i.e., the quality of recorded building

nergy consumption data, selection of the input variables and pre-

iction algorithms for models development [12] . For the first one,

any anomaly detection methods have been proposed and exten-

ively used to remove outliers in raw data, including statistical-

ased anomaly detection methods (e.g. “3-sigma” principle and

nterquartile range rule) [ 13 , 14 ], density-based methods (e.g. LOF

ethod) [15] , and machine learning methods (e.g. one-class SVM

nd Isolation Forest) [ 16 , 17 ]. Regrading to input variables selection,

revious studies mainly focus on engineering, statistical and struc-

ural features extraction [18–20] . With the development of deep

earning, auto-encoder has become another powerful and popu-

ar feature extractor to select suitable variables as model inputs

21] . The last factor, i.e. the prediction algorithm utilized for model

evelopment, is part and parcel in data-driven models establish-

ent process. In response, researchers have put their great ef-

ort on developing more robust models with higher accuracy and

ower computation load. Supervised machine learning algorithms

re the most widely used methods in forecasting building en-

rgy consumption, which can be classified into two categories, i.e.,

raditional machine learning methods and deep learning methods

22] . 

Traditional machine learning library mainly contains Multiple

inear Regression (MLR), Artificial Neural Network (ANN), Sup-

ort Vector Machine (SVM), Decision Tree (DT) and their devel-

pments. Authors in Ref. [23] applied ANN approach to forecast

he energy consumption of an administration building, and it was

ound that ANN based model can yield better prediction results

hen compared with simulation software prediction results. Li

t al. [24] used SVM to predict hourly building cooling load, and

he results showed that the forecasting performance of SVM was

etter than that of back-propagation neural network (BPNN). Yu

t al. [25] employed DT algorithm to predict building energy de-

and levels, and the resulting prediction accuracy can reach 92%

n testing data. To improve the robustness of models, ensemble

earning algorithms were proposed. In Ref. [26] , data decompo-

ition based ensemble models are investigated for ground source

eat pump load forecasting. The prediction results showed the en-

emble models could evidently enhance prediction accuracy. Wang

t al. [9] proposed Ensemble Bagging Trees (EBT) to predict build-

ng hourly electricity demand. In this ensemble model, DT was

sed as the base model and the EBT model output its predic-

ion results by averaging the outputs of each DT base models. The

esults indicated that this proposed ensemble model was supe-

ior to single prediction model in accuracy and stability. Neverthe-

ess, establishing such ensemble models were time-consuming and

eeded more computation load. 

The above-mentioned prediction methods, usually adopt ‘shal-

ow’ structures for modeling, which lead to limited power in fea-

ures extraction of their raw inputs. Deep learning, as the evolu-

ion of ANN, has multiple processing layers to automatically learn

uitable representations of raw inputs, thereby overcoming the in-

rinsic deficiency of traditional machine learning algorithms [27] .

n the field of building energy consumption prediction, deep learn-

ng has also gained a lot of research attention. In Ref. [28] , authors

redicted monthly building energy consumption using three deep

earning algorithms, including Deep Full Connected, Convolutional

nd Long Short-Term Memory neural networks. Fu [29] adopted

eep brief network combined with ensemble technique for build-

ng cooling load forecasting, and obtained competitive accuracy.

ahman [30] developed and optimized deep Recurrent Neural

etwork (RNN) models, to make medium-to-long term building

lectricity consumption, and found RNN outperformed 3-layered
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erception neural network. Some other similar studies can be seen

n Ref. [ 11 , 22 , 31 ]. 

Deep learning has gained the huge success not only in building

nergy consumption prediction, but also in many other areas, such

s visual object recognition and speech recognition [27] . Deep re-

nforcement learning (DRL), which is a sub-family of deep learning

lgorithms, is an active area in the artificial intelligence commu-

ity. DRL integrates the perceptual ability of deep learning and the

ecision-making ability of reinforcement learning, thereby realiz-

ng the direct control for complicated control problems with high-

imensional action space. DRL has made numerous breakthroughs

n various fields, such as games [32] , robotics [33] , as well as smart

riving [34] . In the building field, some recent works have devel-

ped DRL based models for optimal control of a variety of building

ystems, and good performances were achieved [35–37] . However,

uch a promising technique, i.e. DRL, has rarely deployed for build-

ng energy consumption prediction, and its potential in forecasting

uilding energy consumption is still unknown. 

To fill this research gap, this paper systematically investigates

he potential of DRL algorithms in forecasting building energy

onsumption. Three commonly-used DRL models, including Asyn-

hronous Advantage Actor-Critic (A3C), Deep Deterministic Pol-

cy Gradient (DDPG) and Recurrent Deterministic Policy Gradient

RDPG), are established for building energy consumption predic-

ion, and their comparative analysis is conducted from three per-

pectives, i.e., prediction accuracy, convergence speed, and com-

utation time. In addition, the detailed comparisons between DRL

odels and supervised models are also given. 

The rest of this paper is structured as follows. Section 2 in-

roduces the research outline and the theoretical background of

ethodologies as well as evaluation indices utilized in this study.

ection 3 describes the case building and data used. Data prepa-

ation process and modeling process are also presented in this

art. In Section 4 , the prediction results of DRL models and super-

ised models are presented and compared. Conclusions are drawn

n Section 5 . 

. Research methodology 

.1. Research outline 

Fig. 1 illustrates the research outline of this paper. Firstly, the

nergy consumption data is collected from case building with a

 min resolution. Meteorological data and expert knowledge are

lso introduced to enhance prediction accuracy and robustness.

hen, dataset establishment and data preparation are conducted.

ata preparation process mainly contains two tasks, i.e. outlier

etection and feature extraction. For outlier detection, Local Out-

ier Factor (LOF) method is adopted to remove potential outliers

rom building daily energy consumption profiles. And for feature

xtraction, Autocorrelation Function (ACF) and Partial Autocorrela-

ion Function (PACF) are deployed to select the optimal lag period.

hereafter, three common supervised models along with three

revailing DRL models are developed based on same input vari-

bles. Finally, a rounded comparison about the performances of

hese six models is presented from three perspectives, i.e. predic-

ion accuracy, convergence speed and computation time. 

The following subsections present an overview on data prepa-

ation methods and prediction techniques. The evaluation indices

sed in this paper are also exhibited. 

.2. Data preparation methods 

Data preparation methods mainly contain outlier detection

ethod and feature extraction method. Outlier detection method is

mployed to remove the potential outliers in the raw data, thereby
nhancing the data quality. In this work, LOF algorithm is applied

o detect the abnormal data from building daily energy consump-

ion profiles. LOF algorithm is a density-based unsupervised tech-

ique for identifying abnormal data and local outliers, which has

een proved to be useful in previous studies [ 15 , 38 , 39 ]. LOF finds

ossible outliers by calculating local density deviation (defined as

OF value) for each sample to their neighbors. If a sample belongs

o a dense cluster and is normal, it tends to have a low value of

OF as the average local reachability density of its neighborhoods

s close to corresponding local reachability density of the sample.

n contrast, samples deviating from the overall observations have

igher values of LOF compared to normal points. That means, sam-

les with higher LOF values, have more sparse neighborhoods and

re more likely to be considered as outliers. 

With respect to features extraction method, ACF and PACF are

sed to analyze the inherent correlation between observations in

 time series. The ACF denotes the linear correlation between two

ime points of a variable, while the PACF denotes the correlation

etween the two time points without considering the effect of ob-

ervations between them. Therefore, ACF and PACF can be utilized

o choose appropriate input features for time series data and help

etermine potentially useful model structures. 

.3. Deep reinforcement learning 

.3.1. Reinforcement learning 

Reinforcement learning (RL) is a sub-family of machine learn-

ng, which studies how the artificial agent performs the optimal

ction based on observed environment state by reward and pun-

shment [40] . Almost all RL problems can be described as decision-

aking problems. There are five significant concepts in RL: state

denoted as s ), action (denoted as a ), reward (denoted as r ), pol-

cy (denoted as π ), as well as value function (denoted as V ( s ))

r action-value function (denoted as Q ( s, a )). Here, policy defines

he agent’s behavior function. At time step t , agent firstly observes

he environment state s t , executes action a t (according to policy

), and receives immediate reward r t . The immediate reward is a

calar feedback signal which can indicate how well agent is doing

nd how far it is from the optimal policy (denoted as π ∗). The final

oal of RL is to find the optimal policy. 

In a RL algorithm, either value function or action-value function

s used for the prediction of future reward. Value function denotes

he expected total discount reward starting from state s : 

 (s ) = E π

[ 

∞ ∑ 

k =0 

γ k r t+ k +1 | s t = s 

] 

(1) 

here γ is discount factor. Action-value function denotes the ex-

ected total discount reward starting from state s and taking action

 : 

(s, a ) = E 

[ 

∞ ∑ 

k =0 

γ k r t+ k +1 | s t = s, a t = a 

] 

(2) 

.3.2. Actor-Critic 

Currently prevailing deep reinforcement learning (DRL) algo-

ithms, integrates the perceptual ability of deep learning and the

ecision-making ability of reinforcement learning, thereby realiz-

ng the direct control for complicated control problems with high-

imensional action space. DRL algorithms deploy non-linear ap-

roximator such as neural networks to estimate the value function

or action-value function) and current policy. A3C, DDPG as well as

DPG are three of the most commonly-used DRL techniques, which

ave yielded good performances in many continuous control tasks

41–43] . All these three DRL techniques are based on Actor-Critic
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Fig. 1. Research outline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

A  

C  

w  

t

2

 

C  

i  

c  

T  

t  

r  

r  

o  

t  

c

framework [44] . Therefore one effective way to understand these

three DRL techniques is to understand Actor-Critic. 

Fig. 2 displays the schematic diagram of Actor-Critic. It can be

observed that Actor-Critic contains two neural networks, namely

Actor network and Critic network, respectively. Actor network with

parameter θ is responsible to estimate the current policy (de-

noted as πθ ( s, a )) and output an action based on its input state.

Whereas the Critic network with parameter w is deployed to es-

timate the action-value function, which is then used to update

the current policy (i.e. the parameters of Actor networks). In one

training episode of Actor-Critic, agent interacts with environment

based on current policy (i.e. Actor network) and gains transition

( s t , a t , s t+1 , a t+1 , r t+1 ) . Then the action-value function of two tu-

ples, i.e. ( s t , a t ) and ( s t+1 , a t+1 ) , are computed by Critic network.

Afterwards, TD-error (denoted as δ) can be calculated: 

δ= r t+1 + γ Q( s t+1 , a t+1 ) − Q( s t , a t ) (3)

It should be noted that if value function is used (e.g. A3C), the

calculation of TD-error would follow as bellow: 

δ= r t+1 + γV ( s t+1 ) − V ( s t ) (4)
Moreover, the parameters of Actor and Critic network can be

pdated using TD-error as follows: 

ctor : dθ = α∇ θ log πθ (s, a ) · δ (5)

ritic : dw = β · ∂ 
∑ 

δ2 

∂w 

(6)

here, ∇ θ log πθ ( s, a ) denotes score function, α and β represent

he learning rates of Actor and Critic network, respectively. 

.3.3. A3C 

Asynchronous Advantage Actor-Critic (A3C), which is an Actor-

ritic based deep reinforcement learning framework, was proposed

n 2016 [45] . A3C deploys a number of agents in parallel to cal-

ulate gradient simultaneously, each with their own environment.

hese agents perform asynchronous gradient descent to optimize

he parameters of the same global agent, and each local agent pe-

iodically copies the parameters of global agent as their own pa-

ameters. Therefore, A3C is efficient and lightweight compared to

ther DRL techniques. A3C also overcomes the problem that tradi-

ional Actor-Critic is hard to converge due to the sample diversity

aused by asynchronous learning. 
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Fig. 2. Schematic diagram of Actor-Critic. 

Table 1 

Four neural networks in DDPG and their functions. 

Neural network Function 

Actor network Output a t based on input s t 
Target Actor network Output a t+1 based on input s t+1 

Critic network Calculate action-value function Q ( s t , a t ) 

Target Critic network Calculate action-value function Q( s t+1 , a t+1 ) 
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Fig. 3. Schematic diagram of LSTM. 
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.3.4. DDPG 

To improve the trainability of existing Actor-Critic based DRL

lgorithms, Lilllicrap et al. [46] proposed Deep Deterministic Pol-

cy Gradient (DDPG) method. Compared to Actor-Critic, there are

hree improvements in DDPG. Firstly, DDPG utilizes an experience

uffer as memory device to store all historical transitions, and

t learns in mini-batches randomly sampled from the experience

uffer rather than learning online. Secondly, separate target net-

orks for both Actor and Critic are established to weaken over

stimation of action-value function. Consequently, there are four

eural networks in DDPG. These four neural networks and their

unctions are listed in Table 1 . Thirdly, the parameters of the two

arget networks are no longer directly copied from original net-

orks, but updated by having them slowly track the original net-

orks. This “soft” update strategy can constrain target networks

rom rapid change and make training process stable. 

.3.5. RDPG 

In conventional DDPG method, multi-layer perceptron (MLP),

hich is consisted of multi-layer fully-connected networks, is de-

loyed for both Actor network and Critic network. One limitation

f that is the estimation of action-value function would not be ac-

urate enough when coping with complicated control problem, due

o the incompetence of MLP in capturing intricate nonlinearity. To

meliorate this problem, a novel method, namely RDPG, are pro-

osed in this study. The only improvement of RDPG compared to

DPG is that RDPG uses Long Short-Term Memory (LSTM) which

s an improved RNN to represent Critic and estimate action-value

unction. As shown in Fig. 3 , LSTM stores information over long

ime periods by using purpose-built memory cell based on the

tructure of RNN. Three important “gates” (i.e. input gate, output

ate, and forget gate) are designed to control the information flow

nside each memory block. More details about LSTM can be seen

n Ref. [47] . By using LSTM as Critic, RDPG can yield more accu-

ate estimation of action-value function than DDPG method, as the

ritic network for estimating Q w 

( s, a ) is able to aggregate obser-

ations over time. Hence, more accurate TD-error can be provided

or better update of Actor network. 
.4. Supervised prediction techniques 

Three supervised prediction techniques, including multiple lin-

ar regression (MLR), Back Propagation Neural Network (BPNN)

nd Random Forest (RF), are also applied for building energy con-

umption forecasting. MLR is a linear technique while BPNN and RF

re non-linear techniques. These three techniques are selected to

ompare prediction performance with above-mentioned DRL tech-

iques due to their popularity in previous studies. 

MLR attempts to capture the relationship between multiple ar-

uments and one dependent variable in the form of: y = a 0 +
 1 x 1 + ... + a n x n , thereby making the resulting model interpretable.

n addition, MLR is regarded as an efficient technique and requires

ittle computation load. The main drawback of MLR is the poor

bility in coping with intricate nonlinearity. Hence, MLR serves as

he performance benchmark in this study. 

BPNN is one of the most commonly-used prediction technique,

hich has the same architecture as MLP and is trained by error

ack-propagation scheme. The error back-propagation is designed

o minimize the mean square error between its actual outputs and

xpected outputs. It has been proven that BPNN is capable of solv-

ng linear and nonlinear problems with good accuracy and gener-

lization. 

With respect to RF, it’s an ensemble prediction model which

onsists of a collection of Classification and Regression Trees

CART). These trees are independent with each other as their train-

ng data and input variables are randomly selected. The prediction

esult of RF is the mean of the predictions of its constituent trees.

sing the ensemble of multiple trees with high diversity instead
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of a single tree makes the model more stable and better prevent

overfitting problem. 

2.5. Evaluation indices 

In this study, four evaluation indices are used to assess predic-

tion accuracy of proposed models, including mean absolute error

(MAE), root mean square error (RMSE), coefficient of determination

( R 2 ) and coefficient of variance (CV). MAE describes the mean off-

set between actual values and predicted values by using absolute

error, while RMSE denotes the standard deviation of the residuals

of the actual and predicted values. Both MAE and RMSE are scale-

dependent indices, and describe prediction errors in their origi-

nal scale. By contrast, CV is scale-independent since the equation

denominator is the mean of actual values, making it suitable for

performance comparison with other studies. Moreover, R 2 , which

ranges from 0 to 1, measures the goodness of fit between actual

values and predicted values. These four indices are formulated as

bellow. 

MAE = 

1 

N 

N ∑ 

i=1 

| y i − p i | (7)

RMSE = 

√ 

1 

N 

N ∑ 

i=1 

( y i − p i ) 
2 (8)

V = 

√ 

1 
N 

N ∑ 

i =1 

( y i − p i ) 
2 

ȳ i 
(9)

R 

2 = 

N ∑ 

i =1 

( p i − ȳ i ) 
2 

N ∑ 

i =1 

( y i − ȳ i ) 
2 

(10)

where, y i is the actual value at time point i, p i is the predicted value

at time point i , ȳ i denotes the mean of actual values, and N denotes

the number of samples. 

3. Case study 

3.1. Case building description 

The building studied in this paper is an office building situ-

ated in Henan province, China. It was put into use in 2014. The

case building consists of nine floors and has a height of 42.9 m.

In addition, it mainly comprises a variety of office rooms, equip-

ment rooms and tool rooms, and its gross floor area is approxi-

mately 250 0 0 square meters. The office hours approximately run

from 08:00 to 17:30 every weekday (UTC + 8). 

Ground source heat pump (GSHP) system is deployed in the

case building for refrigerating and heating. It should be mentioned

that the energy consumption data used in this study was col-

lected in summer, when the GSHP system was working in cool-

ing mode. Accordingly, heating mode of the GSHP system is ne-

glected in this study. Fig. 4 illustrates the schematic diagram of

the GSHP system, which mainly consists submarine pumps, cy-

clone desanders, chillers, circulating pumps, water distributor, wa-

ter collector as well as building terminals. The blue lines denote

cooling water loop and the red lines denote water-supply pipes,

whereas the green lines represent water-return pipes. When sys-

tem works, groundwater is pumped by submarine pumps and cy-

clone desanders help filter the solid impurities in the water. After-

wards water is delivered to chillers. Chillers are the main device

of the GSHP system as the heat exchange between groundwater
nd backwater from building terminals is accomplished here. Af-

er heat exchange, the groundwater is pumped to backwater wells,

hereas the chilled water from chillers is sent to building termi-

als by water distributor. The circulating pumps play an important

ole in cycling supply and return water of building terminals. 

.2. Data description 

The concerned building energy consumption (EC) data were col-

ected from the GSHP system of case building, which comprises

istoric time series data from June 15 to July 27 in 2017 with a

 min resolution. Note that the energy consumption in this paper

efers to the sum of powers of all system devices, including chillers

ower, total pumps power (the sum of submarine pumps power

nd circulating pumps power), and auxiliary devices power. These

owers values are measured by power meters embedded in the

SHP system. The energy consumption data contains 12384 ob-

ervations in total. Besides, the local meteorological data are also

ollected from the local weather station, since outdoor weather

onditions heavily influence building energy consumption as well.

ence, the introduction of meteorological data can enhance predic-

ion accuracy and model robustness [21] . The collected meteoro-

ogical data mainly consist of three variables: outdoor temperature

OT), wind speed (WS), and relative humidity (RH). The collected

nterval is 1 h. 

In addition, an expert variable, namely system status (SS), is

dded according to the compressor power of the GSHP system. In

ther words, SS is a Boolean variable which equals to True when

ompressor is greater than zero and otherwise it equals to False .

onsidering that the Boolean values can’t serve as model inputs,

he SS variable is encoded into a one-hot representation. The rea-

on for introducing this expert variable is that there is no complete

ontrol logic for the system operations and the on-off operations

f the case GSHP system is controlled by building operation staffs.

herefore, expert variable is added, aiming to help better identify

he switch status of the GSHP system operations. 

Notably, there are other variables affecting the building energy

onsumption, which can be introduced as model inputs, such as

uilding occupancy, global solar radiation, etc. The reason why this

tudy doesn’t use more input variables is twofold. Firstly, the input

ariables are sufficient, as the main focus of this study is to explore

he predictive performance of DRL algorithms. Secondly, some of

hese variables are typically not available in practice. The summary

f the main variables in this study are listed in Table 2 . 

.3. Data preparation 

Data preparation mainly contains two tasks, i.e. outlier detec-

ion and features extraction. Outliers in the energy consumption

ata should be removed prior to model development, since abnor-

al and low-quality data could exert negative effect on the final

odel performance. According to the compressor power, the raw

nergy consumption data are categorized into two types: system-

n data and system-off data. LOF algorithm, which has been intro-

uced in Section 2.2 , is used for detecting the outliers from daily

nergy consumption profiles (i.e. system-on data). Fig. 5 presents

artial results of outlier detection in the daily energy consumption

rofiles. A simple and feasible way to cope with the detected out-

iers is to replace them by linear interpolation. For system-off data,

he energy consumption values are always a little larger than zero,

hich is caused by pre-heating logic in the compressor. Since the

peration company decides to stop pre-heating to conserve energy,

hese non-zero data should be replaced by zero in system-off pe-

iod [48] . 

Feature extraction is conducted by analyzing ACF and PACF of

nergy consumption time series data. Fig. 6 shows the ACF and
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Fig. 4. Illustration of GSHP system. 

Table 2 

Summary of main variables. 

Variables Resolution Data type Units Range 

Energy consumption (EC) 5 min numeric kW [0.00, 600.05] 

Outdoor temperature (OT) hourly numeric °C [18.00, 38.00] 

Wind speed (WS) hourly numeric m/s [0.00, 7.00] 

Relative humidity (RH) hourly numeric % [24.63, 100.00] 

System status (SS) 5 min bool / {0, 1} 

Fig. 5. Partial results of outlier detection using LOF method. 
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Fig. 6. ACF and PACF of energy consumption. 
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PACF diagrams of building energy consumption. The black dotted

lines denote the significance threshold, which is set to 5% in this

study. Each time step exceeding that threshold is considered heav-

ily related to the current energy consumption. The maximum time

lag is set to 40. According to the ACF and PACF results, it can be

found that the PACF of building energy consumption is no longer

significant when the time lag is greater than 25. Therefore, the op-

timal time lag period is chosen to be 25. It should be mentioned

that only the first 5 time steps are chosen to serve as model inputs

in the latter single-step ahead prediction, because the single-step

ahead prediction is a simple task and 5 time steps are sufficient. As

opposed to that, all 25 time steps are selected as the model inputs

for multi-step ahead prediction. The chosen 5 time steps for single-

step ahead prediction or 25 time steps for multi-step ahead predic-

tion are all historical data points of EC variable, which is one of the

main variables in this study (as shown in Table 2 ). Apart from EC

variable, the other four variables in Table 2 (i.e. OT, WS, RH and

SS) are also introduced into model inputs, to enhance model ac-

curacy and robustness. Only the data point at current time step

of these four variables are selected as input features. To sum up,

single-step ahead forecasting has 9 input features (i.e. five histori-

cal data points of EC variable, three data points of three meteoro-

logical variables and one data point of the expert variable at cur-

rent time step), whereas multi-step ahead forecasting has 29 in-

put features (i.e. 25 historical data points of EC variable, three data

points of three meteorological variables and one data point of the

expert variable at current time step). 

In addition, local meteorological data is completed using linear

interpolation method, in order to make meteorological data have

the same observation number as other variables in the dataset.

Data transformation is another important task in data prepara-

tion process. Data normalization is the main transformation type

and the main purpose is to make each input feature in the simi-

lar scale, helping to find the global optimum by Stochastic Gradi-

ent Descent when prediction techniques are applied. Fig. 7 displays

the hourly heat map of the building energy consumption data af-

ter data normalization for 43 days. The horizontal axis denotes the

43 days while the vertical axis denotes the 24 h in each day. The

blocks in the picture represent the hourly energy consumption of

the case building. More notably, the blocks in red, white and blue

respectively indicate that the associated energy consumption is rel-

atively high, medium and low. 

Finally, the dataset is partitioned into two parts with a ratio of

0.75:0.25 for models training and testing purposes. 
.4. Development and optimization of prediction models 

.4.1. Development of prediction models 

In this study, all models are developed for single-step ahead

orecasting (5 min in advance) and multi-step ahead forecasting

1 h in advance). As for three supervised models, their establish-

ent process is similar to previous studies. The model inputs are

he extracted features set at each time step while the output is the

orresponding building energy consumption. 

The development of DRL prediction models is one of the key

arts in this study. To apply DRL for building energy consump-

ion forecasting, energy consumption prediction problem should

e translated into a RL control problem. Therefore, the mean-

ng of state, action and reward should be defined. The state at

ach time step is represented by the extracted features set as

he input of supervised models. Take single-step ahead predic-

ion as an example, the state at time T is represented by vec-

or [ E C T −4 , E C T −3 , E C T −2 , E C T −1 , E C T , O T T , W S T , R H T , S S T ] . The state

pace consists of the state of each time step. And the action

pace consists of the continuous energy consumption values rang-

ng from 0 to 610 (this range is set according to historic data).

uring training process, artificial agent outputs an energy con-

umption value from [0,610] based on its observed state. Note

hat the output energy consumption value is exactly the predicted

alue (single-step ahead or multi-step ahead). A method to in-

orm agent whether its prediction is accurate is to set a reason-

ble reward function. In this study, the reward function is set as

elow. 

 t+1 = −| E C t − a t | (11)

here, the EC t denotes the real energy consumption value at time

tep t, a t denotes the action performed by agent (i.e. the predicted

nergy consumption value) at time step t . If the output action is

lose to real energy consumption, the reward would be close to

ero, and otherwise the reward would be far away from zero in

egative direction. 

Once the energy consumption prediction problem is trans-

ormed into decision-making problem, DRL techniques can be ap-

lied to solve it. The main training processes of A3C, DDPG and

DPG are respectively presented in Tables 3 and 4 . The training

rocess of RDPG is very similar to that of DDPG. The only differ-

nce is that RDPG adopts LSTM for the development of Critic net-

ork. Further details of the development of DRL models can be

een in Ref. [49] . 
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Fig. 7. The hourly heat map of the building energy consumption data for 43 days. 

Table 3 

Pseudo code of A3C for energy consumption forecasting. 

Pseudo code: A3C 

Initialize the global Actor and Critic networks with parameters θ and w 

Initialize the thread-specific networks with parameters θ ′ and w 

′ 
Repeat (for each episode) 

Reset gradient: d θ ← 0; dw ← 0 

Synchronize thread-specific parameters: θ ′ ← θ ; w 

′ ← w 

Randomly select an initial state s (denoted as s t ) from state space 

Repeat (for each step) 

Choose a t from s t according to Actor network (Note: a t is the predicted value) 

Execute action a t , receive immediate reward r t according to Eq. (9) 

Set the subsequent state to s t+1 

Until terminal s t or maximum number of steps is reached 

Compute the value function of the last state using thread-specific Critic: 

V ( s t ) = { 0 forterminal s t 
V w ′ ( s t ) fornon − terminal s t 

for each step (from last state to initial state) 

compute TD-error of each step using Eq. (4) 

accumulate Actor’s local gradient using Eq. (5) 

accumulate Critic’s local gradient using Eq. (6) 

end for 

Perform asynchronous update of θ and w using local accumulative gradient 

Until maximum number of episodes is reached 
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.4.2. Optimization of model parameters 

Model parameters can greatly influence the model performance

o some extent. For three supervised models, parameters of MLR

re determined by using the least squares principle and there are

o parameters required to be optimized. BPNN has two parame-

ers required optimization, i.e. the size of hidden neurons and the

ctivation function of each layer. Its number of layers is set to 3.

n addition, two parameters, i.e. the maximum tree depth and the

aximum number of features to consider when looking for the

est splitting, should be optimized for RF model. And to guaran-

ee the performance of RF model, the number of base trees is set

o 10 0 0. 

Compared to supervised models, DRL models have more com-

lex training schemes and more parameters required to be opti-

ized. The optimizations of Actor and Critic networks structures

re the pivotal ingredient in Actor-Critic based DRL models op-

imization process. For the three DRL models studied in this pa-

er, the number of layers of both Actor and Critic is fixed as 3 to
ake a fair comparison with supervised models. And other four

mportant parameters (i.e. the sizes of hidden neurons and activa-

ion functions of each layer in both Actor and Critic) are consid-

red. In this study, all the parameters optimization processes are

erformed based on genetic algorithm. After extensive numerical

xperiments, the optimization results of the six models are sum-

arized in Table 5 . 

. Results and discussion 

In this section, the prediction performances of the six tech-

iques, including three DRL models and three supervised models

re presented and compared. The forecast time horizon is first set

o 5 min to explore the single-step ahead prediction performance

f these six models, then 1 h is chosen to verify their multi-step

head prediction performance. The comparative analysis is con-

ucted from three perspectives, i.e. prediction accuracy, conver-
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Table 4 

Pseudo code of DDPG/RDPG for energy consumption forecasting. 

Pseudo code: DDPG/RDPG 

Initialize Actor and Critic networks with parameters θ and w 

Initialize target Actor and Critic networks with parameters: θ ′ ← θ , w 

′ ← w 

Repeat (for each episode) 

Randomly select an initial state s (denoted as s t ) from state space 

Repeat (for each step) 

Choose a t from s t according to Actor network (Note: a t is the predicted value) 

Execute action a t , receive immediate reward r t according to Eq. (9) 

Set the subsequent state to s t+1 

Choose a t+1 from s t+1 according to target Actor network 

Store transition ( s t , a t , s t+1 , a t+1 , r t ) in experience buffer 

Sample a mini-batch from experience buffer 

Compute action-value functions Q ( s t , a t ) using Critic network 

Compute action-value function Q( s t+1 , a t+1 ) using target Critic network 

Compute TD-error using Eq. (3) 

Update Actor network using Eq. (5) 

Update Critic network using Eq. (6) 

Update target networks (soft update) 

s t ← s t+1 

Until terminal s t or maximum number of steps is reached 

Until maximum number of episodes is reached 

Table 5 

Parameters optimization results of the six models 

Model Parameter Results (single-step ahead) Results (multi-step ahead) 

MLR / / / 

BPNN Neurons 9, 23, 1 18, 46, 1 

Activation function Relu / Linear Relu / Linear 

RF Tree depth 5 6 

Maximum features 8 13 

A3C Neurons (Actor) 9, 52, 2 18, 75, 2 

Activation function (Actor) Relu / Tanh Relu / Tanh 

Neurons (Critic) 10, 48, 1 19, 79, 1 

Activation function (Critic) Relu / Linear Relu / Linear 

DDPG Neurons (Actor) 9, 46, 1 18, 64, 1 

Activation function (Actor) Relu / Sigmoid Relu / Sigmoid 

Neurons (Critic) 10, 42, 1 19, 74, 1 

Activation function (Critic) Relu / Linear Relu / Linear 

RDPG Neurons (Actor) 9, 54, 1 18, 86, 1 

Activation function (Actor) Relu / Sigmoid Relu / Sigmoid 

Neurons (Critic) 10, 58, 1 19, 80, 1 

Activation function (Critic) Relu / Linear Relu / Linear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Single-step ahead prediction accuracy on testing data 

Model MAE RMSE R 2 CV 

MLR 8.527 25.481 0.984 17.526% 

BPNN 5.465 17.244 0.992 11.860% 

RF 5.625 17.885 0.992 12.301% 

A3C 14.767 55.742 0.925 38.339% 

DDPG 4.550 17.390 0.993 11.961% 

RDPG 4.700 16.668 0.993 11.464% 
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gence speed as well as computation time. The detailed results and

discussion are exhibited below. 

4.1. Single-step ahead prediction 

In single-step ahead prediction, the forecast time horizon is

chosen to be 5 min, which can inform facility operation staffs of

the real-time information of energy consumption fluctuation. Fig. 8

displays the prediction results of the six models in single-step

ahead forecasting. The solid lines denote ideal fitting lines, which

indicate the predicted value is equal to measured value. The two

dotted lines represent ±20% error lines, which indicate the pre-

dicted value is 20% larger or 20% smaller than measured value.

It can be observed that BPNN and RF obviously outperform the

benchmark model (i.e. MLR), which indicates that non-linear tech-

niques can yield more promising results than linear techniques.

In regard to three DRL models, A3C perform worst among these

six models. The prediction result of A3C is even worse than MLR.

By contrast, the other two DRL models, i.e. DDPG and RDPG, pre-

dict the building energy consumption 5 min in advance with flying

colors. For better comparison of these six models, the four eval-

uation indices described in Section 2.5 are used to assess their

prediction accuracy on testing data and the results are listed in

Table 6 . The evaluation results of the predictions show that the

prediction performance of A3C measured by MAE, RMSE, R 2 and
V are 73.18%, 118.76%, 6.00% and 118.75% worse than MLR, re-

pectively, indicating the incompetence of A3C in single-step ahead

orecasting. DDPG and RDPG models outperform the three super-

ised models and have the best performances in all indices. The

esult that RDPG model doesn’t show advantages over DDPG is not

n correspondence with expectation. A possible explanation is that

he single-step ahead prediction task is simple and the MLP net-

ork in DDPG is sufficient to capture the nonlinearity. 

Fig. 9 presents the prediction error varying tendencies of three

RL models in single-step ahead forecasting. It can be intuitive

o see that the prediction errors of DDPG and RDPG decrease

apidly near the 100th iteration, and both of these two models

ave converged before the 200th iteration. DDPG converges fastest

mong these three models and RDPG converges slightly slower
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Fig. 8. Single-step ahead prediction results of the six models. 

Fig. 9. Prediction error varying tendencies of three DRL models in single-step ahead forecasting. 

t  

m  

4  

s

 

i  

e  

f  

a  

n  

Table 7 

Computation time of these six techniques in single- 

step ahead forecasting 

Model Time for training Time for prediction 

MLR 0.003 0.001 

BPNN 27.559 0.033 

RF 9.361 0.095 

A3C 76.576 0.639 

DDPG 161.875 0.534 

RDPG 1594.006 0.523 
han DDPG. By contrast, the prediction error of A3C decreases

uch slower than the other two models and converges at nearly

00th iteration. Therefore, the maximum number of iterations is

et to 200 for DDPG and RDPG, and 400 for A3C. 

Moreover, the computation times of these six models are also

nvestigated. The computation times spent for model training and

nergy consumption predicting are listed in Table 7 . The processor

or computation in this study is 3.20 GHz Intel Core i5-4570. And

ll the computation is conducted in Python 3.7 using the neural

etwork construction package Tensorflow [50] . As can be seen from
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Fig. 10. Multi-step ahead prediction results of the six models. 

Table 8 

Multi-step ahead prediction accuracy on testing data 

Model MAE RMSE R 2 CV 

MLR 38.806 57.574 0.920 39.599% 

BPNN 15.745 31.165 0.977 21.435% 

RF 16.012 34.834 0.971 23.959% 

A3C 42.430 112.104 0.698 77.105% 

DDPG 13.175 30.440 0.978 20.937% 

RDPG 12.218 28.787 0.980 19.800% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Computation time of these six techniques in multi- 

step ahead forecasting 

Model Time for training Time for prediction 

MLR 0.006 0.001 

BPNN 30.991 0.050 

RF 13.336 0.107 

A3C 81.586 0.643 

DDPG 177.815 0.530 

RDPG 1618.567 0.540 
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Table 7 , both the training times and predicting times of DRL mod-

els are much larger than those of supervised models. Linear tech-

nique (i.e. MLR) needs less computation time than other non-linear

techniques. RDPG is the most computational expensive one among

these six models due to the complex training scheme of LSTM. Be-

sides, A3C is the most efficient one among three DRL models, even

though its training process needs more iterations. Once the mod-

els have been established, the computation time for predicting is

so short compared with time spent for training that it can be ne-

glected. 

4.2. Multi-step ahead prediction 

In regard to multi-step ahead forecasting, the building energy

consumption is forecasted 1 hour in advance. Fig. 10 exhibits the

multi-step ahead prediction results of these six models. It can be

found the performances of multi-step ahead prediction is worse

than those of single-step ahead prediction. The reason for this is

that the dependency of a time point in a time series variable on its

past becomes weaker as the forecast time horizon increases. MLR

doesn’t show a reasonable accuracy compared to BPNN and RF as

it does in single-step ahead forecasting task, since the nonlinear-

ity in multi-step ahead prediction is hard to capture using linear

technique. With respect to DRL models, A3C still performs a poor

prediction result, whereas RDPG shows an evident advantage over

other five models. The resulting MAE, RMSE, R 2 and CV are sum-

marized in Table 8 . BPNN is the most accurate model among three
upervised models. More notably, compared to BPNN, RDPG model

an enhance the prediction accuracy and the resulting CV can be

elow 20%. RDPG performs better than the three supervised mod-

ls with MAE, RMSE, R 2 and CV of at least 22.40%, 7.63%, 0.31%

nd 7.63%, respectively. The results indicate that the introduction

f LSTM can greatly boost the prediction accuracy in multi-step

head prediction. 

Fig. 11 exhibits the prediction error varying tendencies of three

RL models in multi-step ahead forecasting. Similar but different

rom the above single-step ahead predictions, DDPG as well as

DPG shows fast convergence speed, while A3C shows a much

lower convergence speed than DDPG and RDPG. It should be

oted that the final convergent error of RDPG is obviously lower

han those of DDPG and A3C, indicating a better training perfor-

ance of RDPG. 

Computation times of these six techniques in multi-step ahead

orecasting are listed in Table 9 . Compared to single-step ahead

rediction, multi-step ahead prediction costs more computation

ime in models training, which is attributed to the increase of

nput features and consequent increase of model parameters re-

uired to be optimize. Similar findings can be obtained as above-

entioned single-step ahead prediction. For instance, A3C is the

ost efficient technique among the three DRL models, and RDPG

s the most time-consuming one. 
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Fig. 11. Prediction error varying tendencies of three DRL models in multi-step ahead forecasting. 
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. Conclusion 

This paper comprehensively investigates the potential of DRL

echniques in forecasting building energy consumption. Three

ommonly-used DRL techniques (i.e. A3C, DDPG and RDPG) are ap-

lied for both single-step ahead forecasting and multi-step ahead

orecasting. Comparing with three common supervised models (i.e.

LR, BPNN and RF), a rounded analysis between these six mod-

ls is conducted from three perspectives, i.e. prediction accuracy,

onvergence speed as well as computation time. 

The research results show that DDPG outperforms supervised

odels both in single-step ahead prediction and multi-step ahead

rediction. RDPG model doesn’t have advantages over DDPG in

ingle-step ahead prediction, yet leads to evident accuracy im-

rovement in multi-step ahead prediction. A possible reason is that

he nonlinear relationship in single-step ahead prediction is sim-

le and DDPG is sufficient to capture. By contrast, A3C presents

oor performances both in single-step ahead prediction and multi-

tep ahead prediction, indicating its incompetence in forecast-

ng building energy consumption. Among these three DRL tech-

iques, both DDPG and RDPG converge quickly while A3C shows

 much slower convergence speed. In terms of computation time,

RL models account for more computation time for model train-

ng compared with supervised models due to their more complex

raining schemes. Among three DRL models, RDPG takes the most

omputational time for model training while A3C is the most effi-

ient one, although A3C requires more training iterations. 

This work demonstrates that DRL techniques have great po-

ential in the application for building energy consumption predic-

ion. Further studies will focus on exploring the prediction perfor-

ances of DRL methods in medium and long-term building energy

onsumption prediction. 
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