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a b s t r a c t

The design of high-level decision-making systems is a topical problem in the field of autonomous
driving. In this paper, we combine traditional rule-based strategies and reinforcement learning (RL)
with the goal of achieving transparency and robustness. On the one hand, the use of handcrafted rule-
based controllers allows for transparency, i.e., it is always possible to determine why a given decision
was made, but they struggle to scale to complex driving scenarios, in which several objectives need
to be considered. On the other hand, black-box RL approaches enable us to deal with more complex
scenarios, but they are usually hardly interpretable. In this paper, we combine the best properties of
these two worlds by designing parametric rule-based controllers, in which interpretable rules can be
provided by domain experts and their parameters are learned via RL. After illustrating how to apply
parameter-based RL methods (PGPE) to this setting, we present extensive numerical simulations in
the highway and in two urban scenarios: intersection and roundabout. For each scenario, we show
the formalization as an RL problem and we discuss the results of our approach in comparison with
handcrafted rule-based controllers and black-box RL techniques.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The development of the autonomous vehicle (AV) over the last
decades has experienced a progressive increase in the automation
level [1–5]. It is now established that the achievement of ex-
tensive decision-making capabilities is a fundamental element to
accomplish full automation of vehicles. In the autonomous driving
(AD) field, with decision maker, we refer to the software module
that, taking as input a representation of the environment around
the vehicle, selects a discrete high-level action (or maneuver)
leading to an appropriate driving behavior. The decision-making
module communicates its choice to the motion planning mod-
ule that, given the environment representation and the current
vehicle state, computes a spatial trajectory and a speed profile,
satisfying the constraints of the dynamical model of the vehicle,
in order to actuate the selected maneuver. Thus, decision-making
in AD concerns with abstract and intentional actions, delegat-
ing their physical actuation to the lower-level modules. Typical
examples of maneuver that the decision maker can select are:
‘‘follow the current path’’, ‘‘stop at a certain location’’, ‘‘change
lane to right or left’’, and ‘‘yield to incoming vehicles’’.
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Clearly, the decision maker has to be designed in order to
output an ‘‘appropriate maneuver’’ in every situation. However,
the notion of appropriateness is only intuitive, hard to formalize
and, for this reason, it is typically obtained as an emerging prop-
erty coming from the ensemble of different, possibly conflicting,
objectives:

i. Safety. The maneuver selected by the decision maker has
to satisfy certain safety requirements, avoiding dangerous
situations or causing any collision/accident.

ii. Comfort. The selected maneuver has to take into account
some performance indexes regarding the comfort perceived
by passengers of the AV.

Moreover, the decision process itself should satisfy a set of prop-
erties such as:

iii. Transparency. The decision making execution process has
to be traceable and reversible. This has to be assured in
order to reconstruct the complete decision tree flow in
investigating the motivations behind the selection of a
given action.

iv. Robustness. Decision making has to be robust in terms of
ability of handling all possible driving situations, avoiding
corner cases or misbehavior in unexpected scenarios.
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One of the main challenges of decision making in AD is to
fulfill simultaneously these four objectives. The driving domain is
highly unstructured, due to the almost arbitrary topology of the
roads, and unpredictable in presence of other vehicles that might
act in an adversarial way. Furthermore, given a driving situation
there could exist multiple appropriate actions that satisfy the
objectives stated above. Therefore, it is hard to find a unique
rigorous solution to the AD problem. Another challenge consists
in the sequential nature of the problem. The decision maker op-
erates in closed-loop, since actions chosen in a given state affect
next states in the near future. Therefore, the actions display a long
term effect that the decision module has to take into account.
For this reason, a greedy approach is not sufficiently far-sighted
for capturing the sequential nature of the problem and could
lead to heavily sub-optimal behaviors. Additionally, the nature
of the driving environment requires to perform negotiation and
to demonstrate intention awareness w.r.t. other driving partic-
ipants [6]. In every situation in which different agents interact
with each other, such as an intersection or a pedestrian crossing,
conflicting goals appear and the decision making has to deal with
them.

Early popular approaches to AD attempted to manually define
the action to perform in specific situations by using a finite state
machine or behavior trees [e.g., 7–10]. These solutions have been
successfully applied by the vehicle BOSS, that won the DARPA
Urban Challenge [DUC,7]. A similar technique can be found in
Junior, the Stanford’s proposal for the DUC [8]. Though pioneer-
ing, these approaches are unsuited for scaling to more realistic
testing scenarios, whereby the major drawback is a substantial
inability to understand the surrounding environment. Indeed, in
a rule-based decision maker it is hard to design universal hand-
crafted rules, able to deal with the complexity of all possible
cases, accounting for uncertainty and other vehicles’ intentions.
This results in a lack of robustness and generality. Nevertheless,
the rule-based approach can easily match two of the objectives
stated above. Safety can be achieved since the answers of the
system reacting to predefined events are hand-coded and they
can be designed to match the desired level of safety. Furthermore,
transparency is granted since it is immediate to traverse the
decision tree and appreciate how variables are evaluated by the
algorithm to output the prescribed action.

In recent years, a vast amount of work has been developed
for addressing the decision-making problem in the framework
of machine learning [11], also for overcoming the limitations of
hand-crafted controllers [e.g., 12–14]. Learning-based methods
represent a promising direction thanks to their ability to gen-
eralize on unseen situations, possibly producing more robust
controllers [15]. Furthermore, they rely less on hand-coded fea-
tures and more on interaction with the environment. However,
the majority of these approaches disregard transparency and
explainability. End-to-end driving [16], in which a neural net-
work maps observations into low-level control actions (steering,
throttle and braking), is probably the most emblematic exam-
ple. Clearly, given the complexity of the network, no insights
or considerations on the motivations behind the choices made
by the algorithm are possible. These controllers, mapping ob-
servations to actions, can be trained by means of reinforcement
learning [RL,17]. In RL the optimal control problem is framed into
a learning problem in which an agent has to devise a mapping
from observations to actions, called policy, interacting with the
environment in a trial and error fashion. The learning process is
guided by a reward function that, intuitively, specifies how well
the agent is performing locally. Controllers learned via RL are
more robust since their reasoning mechanism is automatically
built and, therefore, can generalize to unexpected situations. Nev-
ertheless, the interpretability of the resulting controller heavily

depends on the model employed to map observations to actions
(e.g., neural networks).

The goal of this paper is to make a step towards the si-
multaneous achievement of the four objective listed above. We
propose an approach that combines rule-based controllers and
reinforcement learning, incorporating the strength points of both
methods. Specifically, we aim at preserving the safety and trans-
parency properties of the hand-crafted rule-based controllers,
while enhancing them with the generalization capabilities of RL.
For this purpose, we design a parametric rule-based policy, i.e., a
rule-based controller in which the rules are defined in terms of a
set of parameters, whose values are not manually set, but learned
by interacting with the environment using an RL algorithm. Our
framework is general and the execution process can be employed
in a variety of AD scenarios.

The paper is organized as follows. We start by providing a ba-
sic background about sequential decision-making problems and
RL (Section 2). Then, we present an overview of the state of art
of RL for AD (Section 3). In Section 4, we discuss how to employ
RL to learn the parameters of the rule-based policy, illustrating a
specific class of algorithms employed for this purpose. The sub-
sequent sections are meant to present the AD scenarios we face
(Section 5), how to model them as sequential decision-making
problem (Section 6), and how to design a suitable rule-based con-
troller (Section 7). Finally, Section 8 is devoted to the presentation
of the numerical simulation results.

2. Preliminaries

In this section, we provide the basics of reinforcement learn-
ing [RL,17] (Section 2.1) and briefly review the state-of-the-art
RL algorithms which are commonly employed in AD applications
(Section 2.2), with particular attention on the deep RL methods
(Section 2.3). For a thorough overview of RL we refer the reader
to Sutton and Barto’s book [17].

2.1. Markov decision processes

The interaction between the agent and the environment is typ-
ically modeled under theMarkov decision process [MDP,18] frame-
work. An MDP can be formalized as tuple M = ⟨X ,U, p, r, µ, γ ⟩,
where X is the state space, U is the action space, p(·|x, u) is the
transition model providing the distribution of the next state given
that action u is taken in state x, r : X ×U×X → R is the reward
function, µ is the initial-state distribution, and γ ∈ [0, 1] is the
discount factor. A deterministic control policy π : X → U is a
mapping from states to actions. At the beginning of each episode
of interaction, the initial state x0 is drawn from µ. Then, the agent
chooses an action u0 = π (x0) according to its policy π , it tran-
sitions to the next state x1, which is chosen by the environment
according to p(·|x0, u0), and it receives a reward r(x0, u0, x1). The
process is then repeated for H steps, where H is called horizon of
the task. The result of this repeated interaction is called episode
and denoted as τ = ⟨x0, π (x0), . . . , xH−1, π (xH−1), xH⟩. The goal
of the agent is to find the policy π∗ maximizing the discounted
expected return:

Jπ = E
x0∼µ

xt+1∼p(·|xt ,π (xt ))

[
H−1∑
t=0

γ t r(xt , π (xt ), xt+1)

]
. (1)

To this end, we define the state–action value function Q π (x, u)
as the expected return obtained by taking action u in state x
and following the policy π thereafter. Similarly, we define the
optimal state–action value function Q ∗(x, u) as the expected re-
turn obtained by taking action u in state x and following an
optimal policy thereafter. Then, an optimal policy π∗ is a policy
that is greedy w.r.t. the optimal value function, i.e., π∗(x) ∈
argmaxu∈UQ ∗(x, u) for all states x.
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2.2. Reinforcement learning

Many algorithms have been proposed in the literature to find
the optimal policy when the MDP model is known (i.e., the
agent has access to the reward and transition models). Dynamic
programming approaches such as policy iteration and value it-
eration [e.g., 18] are well-known examples. Unfortunately, the
knowledge of the environment dynamics is hardly available in
practice. For instance, in AD applications one does not perfectly
know the effects of all actions unless a very precise model of the
car and of its surrounding environment is given. RL addresses this
issue by providing algorithms to learn solely by experience, i.e., by
interacting with the environment, without requiring any model
of the underlying MDP. More precisely, the agent is allowed to
try different actions and receives local feedback from the envi-
ronment (the immediate reward and next state). As the learning
process goes on, the agent figures out which actions are beneficial
to maximize the expected return and starts choosing those more
frequently, until convergence to an optimal behavior.

According to the general taxonomy [17], RL algorithms can
be model-based, if they use experience to build an approximate
model of the environment from which an optimal policy can be
computed, or model-free, if they directly compute the optimal
policy from the collected samples. Furthermore, RL algorithms are
classified into value-based, policy-based, and actor–critic. Value-
based algorithms focus on estimating the optimal value function,
from which the optimal policy can be easily derived. Policy-based
algorithms, on the other hand, directly search in the space of pos-
sible policies for the one maximizing the expected return. Finally,
actor–critic methods combine the evaluation functionalities of
value-based algorithms with the search strategies of policy-based
methods to provide more general approaches.

2.3. Deep reinforcement learning

Since real-world problems often involve high-dimensional and
continuous state–action spaces, state-of-the-art RL algorithms
consider parametrized policies and/or value functions and di-
rectly learn in the space of possible parameters. Deep neural
networks represent the most common approximator, which has
led to the recent field of deep reinforcement learning [19,20].
Deep RL algorithms have obtained impressive results in a vari-
ety of domains, including video-games [21,22], robotics [23–26],
and, as we shall discuss later, autonomous driving. Deep Q net-
works [DQNs,22] constitute one of the most common approaches
in this context. A DQN is a value-based method that approximates
the optimal state–action value function Q ∗ using a deep neural
network. This state–action value function is learned by minimiz-
ing an approximation loss via gradient descent, by relying solely
on the experience collected online using a policy in charge of
enforcing exploration (e.g., ϵ-greedy policy or Boltzmann distri-
bution). For instance, in the case of ϵ-greedy exploration, given
the current Q function, the policy chooses the corresponding
optimal action with probability 1 − ϵ and a random action with
probability ϵ. When the exploration rate ϵ is decayed at a suitable
rate, the algorithm eventually converges to optimal behavior.
Compared to standard Q-learning with function approximation,
DQN introduces new techniques to stabilize and speed up the
learning process when the function approximator is a neural net-
work, such as experience replay memory [27] and the concept of
target network [22]. A variety of modifications to further improve
the learning process of the DQN have been proposed, including
the Double DQN [28], the dueling architecture [29], and several
others [e.g., 30–32]. DQNs are typically well-suited for finite
action spaces. For continuous control problems, policy-based or
actor–critic algorithms are more common [e.g., 24,33–36].

3. Reinforcement learning for autonomous driving

In the recent years, there has been a growing interest in ap-
plying RL techniques to AD and several methodologies have been
proposed that show promising results. End-to-end approaches are
a well-known demonstration of the capabilities of RL algorithms.
Here the goal is to learn a direct mapping between raw inputs
(e.g., sensors or cameras) and controls. For instance, several works
have shown that it is possible to learn driving policies from
pixels in a variety of AD scenarios, including car racing [24,37,38],
lane following [39], and the most general case of urban driv-
ing [40,41]. Standard sensor data, such as distances and velocities,
have been used as an alternative to images [14,42–44]. Since
end-to-end algorithms typically require an enormous amount
of experience when learning from scratch, several works apply
imitation learning to speed up the training process by leveraging
expert demonstrations [e.g., 40,45–50]. Due to the adoption of
deep neural networks, one of the key advantages of end-to-end
approaches is the ability to extract relevant features from the raw
inputs, which removes the burden from the system designer. On
the negative side, this makes the resulting policies poorly inter-
pretable and non-safe. Thus, these algorithms are typically tested
on simulated domains, though there have been some attempts to
deploy the resulting policies to the real world [41].

In order to achieve the desired objectives for an AD system
(the ones mentioned in the Introduction) and facilitate deploy-
ment to real vehicles, a large body of literature applies RL to
high-level decision-making problems. In this setting, the decision
maker has access to a high-level representation of the world
(e.g., features or occupancy grids rather than raw sensor data),
which is built by other modules in the AD stack. Due to the sim-
plicity in modeling the environment, highway driving is perhaps
the most common task in these settings and has been widely
adopted as a testbed for RL and imitation algorithms [51,52]. For
such problems, in [12] a method for learning lane change deci-
sions is proposed. A DQN is used to choose among five discrete
actions given as input a high-level occupancy grid combined with
some sensor readings. In [53] several components are studied to
make RL algorithms more suitable to tactical decision making.
In [13], the authors model the behavior of all agents involved and
propose a method that reacts to the actions of the other drivers.
The latter is tested on both simulated and real highway data. Sim-
ilarly, in [54] relevant issues in AD settings are addressed, such
as safety and dealing with multiple agents. Other works consider
the more complicated problem of crossing intersections. Here
the agent faces several complications, such has handling partial
observability and negotiations. In [55] the former complication is
addressed by designing a suitable set of actions. Finally, in [56]
RL is combined with tree search to learn complex task plans.

Despite the impressive results, the application of RL algo-
rithms to real-world autonomous driving problems still suffers
several complications. Ensuring safety of the learned policies
is perhaps the most relevant and well-known difficulty. Some
recent solutions have been proposed to overcome this limita-
tion, typically involving the inclusion of constraints [57] or prior
knowledge [58] into the learning process. Another relevant prob-
lem is the high sample complexity required by RL agents to
learn complicated tasks (such as most of the AD ones) from
scratch. Similarly to the safety issue, the most common solution
is to leverage prior knowledge. The latter can be either from
human experts, e.g., driving demonstrations, or ‘‘artificial’’ from
previously-learned tasks. Both cases fall under the transfer RL
setting, where the goal is to build algorithms capable of reusing
past knowledge to speed-up the learning process of new tasks.
This is perhaps one of the most promising directions to scale
RL methods to real-world AD applications and several works
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have been recently proposed in this direction [e.g., 41,59–63].
In addition to these limitations, policies learned by (deep) RL
approaches are typically very hard to interpret, which further
complicates their deployment to real vehicles [64,65].

4. Reinforcement learning with parametric rule-based policies

In this section, we illustrate how to employ RL techniques to
learn the parameters of rule-based policies. We start by framing
the problem of learning a controller of an AD system as an RL
problem (Section 4.1). Then, we present the Policy Gradients with
Parameter-based Exploration [PGPE,66], a class of policy-based RL
algorithms suited for our setting (Section 4.2).

4.1. Problem definition

We denote a parametric rule based policy as πθ : X → U , i.e., a
function taking a state of the environment x as input, producing a
control action u = πθ(x) and parametrized by θ ∈ Θ ⊆ Rd. Thus,
θ is a d-dimensional vector belonging to a subset of Rd, denoted
by Θ , the parameter space. Recall from Section 2 that the goal of
an RL agent consist in finding the optimal policy, i.e., the policy
maximizing the expected return, as defined in Eq. (1). When we
deal with parametric policies πθ , denoting for conciseness J(θ) =
Jπθ , the goal becomes to find the best parameter in the parameter
space Θ , maximizing the expected return:

max
θ∈Θ

J(θ) = E
x0∼µ

xt+1∼p(·|xt ,πθ (xt ))

[
H−1∑
t=0

γ t r(xt , πθ(xt ), xt+1)

]
. (2)

As mentioned in Section 2.2, having access to the full vehicle
model and exploiting the physics of the vehicle-environment
interaction we could, in principle, address this problem using dy-
namic programming [18]. However, this approach would require
either to exploit complex models with notable computational
effort or make use of simplified versions, getting likely sub-
optimal solutions. In the RL framework, no environment model
is requested as the expectation is estimated through Monte Carlo
simulation. In other words, we interact with the environment
executing policy πθ , collecting N independent episodes {τi}Ni=1 and
replacing the expectation with the corresponding sample mean,
leading to the estimator of the expected return:

Ĵ(θ) =
1
N

N∑
i=1

H−1∑
t=0

γ t r(xi,t , πθ(xi,t ), xi,t+1). (3)

It is worth noting that the optimization of such objective requires
to test multiple values of the parameters θ in order to figure
out which is the best one. In other words, each evaluation of
the objective implies an interaction with the environment with
a different and possibly bad parametrization that might make
the vehicle behave in an undesired, possibly dangerous, way.
For this reason, the standard RL approach can be freely applied
in simulation, while requires more care in the deployment in
the real-world scenario [67]. This represents an instance of the
well-known exploration–exploitation dilemma [17].

4.2. Parameter-based policy optimization

The optimization of the objective function at Eq. (3) can be
carried out using essentially two class of policy-based meth-
ods: action-based policy optimization and parameter-based policy
optimization. Action-based methods, also named policy gradient
methods, update the parameters θ by following the improving
direction of the gradient [68,69]:

θ← θ + α∇̂θ J(θ), (4)

Fig. 1. Graphical representation of action-based methods.

Fig. 2. Graphical representation of parameter-based methods.

where α > 0 is a learning rate and ∇̂θ J(θ) is a Monte Carlo
estimator of the policy gradient ∇θ J(θ), i.e., the gradient of the
expected return J(θ), obtained with a set of episodes collected in
the environment {τi}Ni=1 (Fig. 1). These methods require that the
policy πθ is differentiable w.r.t. to the parameters θ, which is not
the typical case when considering rule-based policies. Further-
more, they require the policy to be stochastic in order to enforce
a sufficient degree of exploration. Stochastic policies are highly
undesirable in the AD scenario since they prevent enforcing trace-
ability of the decision making process.1 For a broader view of the
policy gradient methods refer to the survey [70].

For these reasons, we resort to parameter-based policy op-
timization methods, also named policy gradient with parameter-
based exploration [PGPE,66]. These approaches allow for non-
differentiable and deterministic policies, as they move the explo-
ration problem to a higher level. Instead of having a stochastic
policy at the action level, exploration is moved to the parameter
level. The parameters θ are sampled from a hyperpolicy νρ de-
pending itself on a parameter vector ρ ∈ P ⊆ Rp. It is required
that νρ is stochastic and differentiable w.r.t. ρ. Thus, exploration
is carried out by testing different parameters sampled from νρ .
Consequently, the policy πθ can be chosen to be deterministic and
non-differentiable.

Example. Consider learning a tree-based policy πθ with a single
parameter θ ∈ R. For instance, πθ (x) might be a rule of the
form ‘‘if f (x) > θ then take action u1, else take action u2’’, for
some function f : X → R. Clearly, the mapping between states
and actions is not necessarily differentiable with respect to θ and
direct optimization of the expected return as a function of θ is
difficult. However, we could instead learn the parameters ρ of a
distribution νρ over θ . For instance, we could choose ρ = (µ, σ 2)
and νρ(·) = N (µ, σ 2), a Gaussian distribution with mean µ and
variance σ 2. As we formally explain shortly, it turns out that the
expected return is indeed differentiable as a function of µ and
σ 2, and standard gradient-based techniques could be applied to
learn these parameters. At the end of the learning process, the
resulting distribution (i.e., its mean µ) should concentrate around
the most performing parameter, and thus one can take πµ as the
final decision-tree.

1 As we shall see in Section 7, rule-based policies can be seen as parametrized
decision trees. Thus, they are not in general differentiable and surely not
stochastic.
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Table 1
Gradient for a d-variate Gaussian hyperpolicy
with diagonal covariance νµ,σ = N (µ, diag(σ)),
i ∈ {1, . . . , d}.
∇µi log νµ,σ (θ) ∇σi log νµ,σ (θ)

θi − µi

σ 2
i

(θi − µi)2 − σ 2
i

σ 3
i

Algorithm. In this setting, it is convenient to redefine the ex-
pected return as a function of ρ:

J(ρ) = E
θ∼νρ

[J(θ)]

= E
θ∼νρ

[
E

x0∼µ

xt+1∼p(·|xt ,πθ (xt ))

[
H−1∑
t=0

γ t r(xt , πθ(xt ), xt+1)

]
J(θ)

]
. (5)

The learning process is described in Algorithm 1 and proceeds as
follows. A set of N parameters {θi}

N
i=1 are sampled independently

from the hyperpolicy νρ . For i ∈ {1, . . . ,N}, we run the rule-based
policy πθi in the environment, collecting M independent episodes
{τij}

M
j=1 (Fig. 2). Finally, we employ the NM episodes to estimate

the objective:

Ĵ(ρ) =
1
N

N∑
i=1

Ĵ(θi)

=
1
N

N∑
i=1

1
M

M∑
j=1

H−1∑
t=0

γ t r(xij,t , πθ(xij,t ), xij,t+1)

Ĵ(θi)

.
(6)

Now, since the hyperpolicy is stochastic and differentiable we
can easily compute the gradient, exploiting the log-trick [66]:
∇ρJ(ρ) = E

[
∇ρ log νρ(θ)J(θ)

]
. Thus, at each iteration the hy-

perpolicy parameters are updated with a single step of gradient
ascent:

ρ← ρ + α∇̂ρJ(ρ), ∇̂ρJ(ρ) =
1
N

N∑
i=1

∇ρ log νρ(θi )̂J(θi), (7)

where α > 0 is the learning rate and ∇̂ρJ(ρ) is the estimator of the
gradient ∇ρJ(ρ) obtained with the collected episodes {{τij}Mj=1}

N
i=1.

It is common to select a Gaussian hyperpolicy with a diagonal
covariance matrix νµ,σ = N (µ, diag(σ)), having, consequently,
ρ = (µ, σ) as parameters. Refer to Table 1 for the expression of
the gradients in such case.

One of the main drawbacks of PGPE is that we cannot directly
reuse the same episode more than once to perform multiple gra-
dient steps since the hyperpolicy parameters change as an effect
of the update. Nevertheless, it is possible to employ importance
sampling [71] techniques to estimate the gradient of the expected
return w.r.t. to the hyperpolicy parametrization ρ′ having sam-
ples collected with a different hyperpolicy parametrization ρ.
This allows performing multiple updates with the same collected
episodes [72], possibly improving the sample complexity of the
PGPE algorithm.

5. Autonomous driving scenarios

In this work, we consider three autonomous driving scenarios
that fall into the following areas: highway and urban. For the
former area, we consider the lane change scenario along the
highway where the goal is to drive the ego vehicle displaying a
‘‘natural’’ behavior, respecting the driving rules and safety con-
straints, while maximizing the speed. For the urban area, the

Algorithm 1 PGPE.
Input: N number of sampled policy parameters

M number of episodes per policy parameter
Ite number of iterations
(αh)Ite−1h=1 learning rate schedule

Initialize the hyperpolicy parameters ρ0 arbitrarily
for h = 0, 1, ..., Ite− 1 do

Sample N policy parameters {θh
i }

N
i=1 independently from νρh

Collect M trajectories {τ h
i,j}

M
j=1 independently for each {πθhi

}
N
i=1

Update the hyperpolicy parameters ρh+1
= ρh

+ αh
∇̂ρJ(ρh)

end for

scenarios faced are the crossroads scenario and the roundabout
scenario (Fig. 3). In the crossroads scenario the goal is to drive
the ego vehicle through the intersection, fulfilling the right of
way, whereas in the roundabout the ego vehicle has to give way
to the vehicles inside and then follow the roundabout until the
exit. While the highway is a continuing task, i.e., the agent has to
learn how to trade-off multiple conflicting objective (e.g., keeping
a high speed, staying on the rightmost lane), the crossroads and
the roundabout are goal-based task, i.e., the agent has to complete
the intersection in the minimum amount of time possible.

Similarly to what happens in real autonomous vehicles, in
our framework we assume the presence of a low-level controller,
which assures the fulfillment of the safety distance with the other
vehicles, managing the speed accordingly and maintaining the
center of the lane. This allows us to focus on high-level decisions.
Informally, in the lane change scenario, the decision consists
in finding the right timing at which performing a lane-change
on the right or on the left. Instead, in the crossroads case the
decision consists in adjusting the velocity so that the intersection
is completed in the minimum time possible, accounting for the
presence of other vehicles.

In this section, we introduce the simulation tool we employed
in our experimental campaign (Section 5.1) and we provide a
more detailed description of the three scenarios we address (Sec-
tions 5.2–5.4). In the following, we will refer to the vehicle we
control as ego vehicle.

5.1. The SUMO simulator

We employ SUMO simulator, an open source, highly portable,
microscopic and continuous road traffic simulation package de-
signed to handle large road networks [73]. SUMO focuses on the
high-level control of the car, integrating an internal system that
controls the vehicle dynamic. For all the driving tasks considered,
we model in the simulator different scenarios of road topology
and traffic intensities, randomizing the flow of vehicles, to ensure
producing general driving policies, and avoid overfitting their
behavior to a specific driving case. One parameter of interest of
the simulator is the frequency of control, i.e., the frequency at
which the control signal is issued. We set the control frequency
to 10 Hz for all our experiments, meaning that we choose an
action to perform every 100ms. Fig. 4 shows an instance of the
graphical interface of the simulator. During the simulation, SUMO
provides information about the other vehicles around the ego
vehicle. More specifically, we can query SUMO for positions and
velocities of all the cars in the simulation. This information is
also available to the decision-making module in a real car, being
provided by the sensing module.2

2 Modeling the noise in the sensors is out of the scope of this paper, although
we believe it is an important future extension of the work.
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Fig. 3. An example of (a) lane change, (b) crossroads, and (c) roundabout scenarios.

Fig. 4. SUMO graphical interface.

5.2. Lane change scenario

The lane change problem consists in controlling the ego vehi-
cle in the highway and deciding when it is convenient to perform
a lane-change on the left in order to overtake, or a lane-change
on the right, to occupy the rightmost free lane. This is one of
the most tackled problems in the practical application of RL
to AD, thanks to the potentially simple representation of the
environment and the ‘‘few-constrained’’ possibility in choosing
the action. The goal of this problem is to control the ego vehicle
along the highway, exposing a natural behavior, going as fast
as possible and avoiding dangerous maneuvers. We qualify as
dangerous a lane-change maneuver that would violate the safety
distance with other vehicles in the target lane. The safety distance
is defined as a function of the stopping distance of two vehicles,
a follower and a leader. More formally, the safety constraint
between a follower vehicle and a leading vehicle is defined via
the condition:
diststop_follower +min_gap < diststop_leader + vehicle_gap,

diststop_follower = distreaction + distbrake

= τ
vf + (vf + τa)

2b
+

(vf + τa)2

2b
,

diststop_leader = distbrake =
v2
l

2b
,

(8)

where min_gap is the minimum safety distance between two
vehicles, vehicle_gap is the distance between the leading and

Table 2
Parameters for the highway scenario.
min_gap τ a b

2.5 m 1s 3 m
s2

3 m
s2

following vehicle, τ is the reaction time, vf is the speed of the
follower, a is the acceleration of the follower, b is the emergency
deceleration and vl is the speed of the leader. So the safety
distance is composed of three parts, the distance traveled during
the reaction time τ , for which we assume maximum acceleration
a, the braking distance, assuming maximum deceleration b, and
the min_gap safety gap between two vehicles. Table 2 shows the
values of the safety distance parameters used in our experiments.
Fig. 5 shows an example where the safety constraints are satis-
fied. The following vehicle’s stopping distance is shown in red.
It is composed of three parts, the reaction time distance, braking
distance and min_gap. This stopping distance is lower than the
sum of the distance between the two vehicles (shown in blue)
and the stopping distance of the leader vehicle (shown in yellow).

The low-level controller prevents dangerous maneuvers from
being executed, considering the vehicle inside the sensors range
only. To ensure that the resulting policy avoids requesting unsafe
actions (even if blocked in lower control levels), these maneuvers
are recorded and are considered to compute the reward signal.
With the low-level controller maintaining the safety distance
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Fig. 5. Safety distance in a lane change scenario.

Fig. 6. Safety distance in a crossroads scenario.

Table 3
Parameters for the crossroads scenario.
min_gap τ amax b

2.5 m 1s 0 m
s2

3 m
s2

with the other vehicles, the task is reduced to finding the right
timing to perform the lane-changes on the left and on the right,
in order to maintain a high-speed profile and a general respectful
behavior.

5.3. Crossroads scenario

The crossroads scenario consists in an intersection with an
arbitrary number of roads. The ego vehicle coming from the
source road has to reach a target road, with a higher priority. We
consider a priority intersection, thus, the ego vehicle has to give
way to the other vehicles, but not necessarily stop before entering
the intersection.3 The goal of the agent is to drive the ego car
and enter the target road, avoiding dangerous maneuvers. The
agent can control the car by accelerating and decelerating. The
route of the car is managed by the low-level controller, that also
maintains the safety distance with the car in front of the same
road. If the ego vehicle performs a dangerous entrance, the task is
considered failed. A dangerous entrance is defined as an entrance
where there is a car ‘‘too close’’ to the junction on one of the other
roads entering the junction, where by ‘‘too close’’ we mean the
case in which if the ego vehicle stops in the junction, the other
vehicle cannot stop before entering the junction, generating an
unsafe situation. In this manner, a dangerous entrance is defined
as a function of the stopping distance of the other cars in the
road. We can compute the stopping distance diststop of a vehicle
as follows:
diststop = distreact + distbrake +min_gap

= τ
v + (v + τa)

2
+

v + τa
2b

+min_gap,
(9)

where v is the distance of the car from the junction, τ is the
reaction time, a is the acceleration during the reaction time, b
is the maximum deceleration and min_gap is the minimum gap
allowed between two vehicles. The values of these parameters
are reported in Table 3. Fig. 6 shows an example where the ego
vehicle respects the safety distances, while entering the junction

3 A scenario with the stop signal at the intersection is trivial from a learning
standpoint: the ego car slows down comfortably before the intersection to stop
right before it, and then it enters the junction as soon as possible, when the
other vehicles are at safe distance.

Fig. 7. Junction and road considered for a roundabout scenario.

to reach the destination road on the left. The segments in red
show the components of the safety distance. It is important to
note that this definition of dangerous entrance is very conserva-
tive, and makes the task harder to learn. This choice is justified
since it ensures that no crashes can occur.

5.4. Roundabout scenario

The roundabout scenario can be interpreted, and consequently
modeled, as a particular instance of a crossroad. This model-
ing choice allows reusing the state representations and policies
employed in the crossroads. We limit out treatment to single
lane roundabouts. The ego vehicle has to enter the roundabout
in a safe way and stay in the roundabout until its exit. When
entering, the ego vehicle has to give way to the cars already in
the roundabout. This scenario can be reduced to an intersection
of the portion of the roundabout where the road of the ego
vehicle merges. The only road to consider to chose the action,
is the portion of the roundabout that enters in this intersection
from the left, as seen in Fig. 7. The entrance in the roundabout
is considered dangerous if there is a car on the roundabout
coming from the left of the junction too close. The safety distance
rules considered for the roundabout are the same as the cross-
roads scenario. The only difference, in our experiments between
a roundabout and a normal crossroads, is the maximum speed of
the road which was set to 8.5m

s instead of 14m
s .

6. Design of the Markov decision problem

In the previous section, we introduced the three driving sce-
narios we will address with RL. We now discuss how to design
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a suitable MDP. Specifically, we will illustrate the state space
representation (Section 6.1), the action spaces (Section 6.2), and
the reward function design (Section 6.3). In our experiments, we
employed a value for the discount factor γ = 0.999.

6.1. State space representation

The design of the state space X is a crucial choice for the
high-level controller, as the information made available to the
decision module must be, at the same time, exhaustive and con-
cise, in the sense that it must contain all the information available
needed to make an optimal decision, possibly preprocessed in a
set of features on which we can effectively build a rule-based
policy. Classical state representation approaches used in the au-
tonomous driving literature, such as raw sensors, images, or
occupancy grids [74], are inappropriate for our purposes as any
decision made directly on these input spaces would hardly be
interpretable.

In our framework, the state is composed of a vector of features
related to the ego vehicle and the other vehicles of interest, that
are located within the sensor range. The definition of these ve-
hicles depends on the specific AD scenario faced. For instance, in
the lane change scenario, we include in the state the information
about the vehicles in the lanes around the ego vehicle, whereas,
in the crossroads case, we consider the vehicles in the roads
entering the junction. For each vehicle of interest and for the
ego vehicle, we record the speed and position, along with some
additional features depending on the scenario (see Appendix A for
details). It is important to stress that the features extracted from
the environment to construct the state of the decision maker are
easily obtainable from the sensing module of the real-life car.

Modeling the state in this way produces a factored represen-
tation, in which each factor corresponds to a single vehicle (the
ego vehicle or a vehicle of interest). As a consequence, the full
state turns to have variable length, according to the number of
vehicles placed within the sensor range. More formally, the state
of the environment x is composed of a vector of k variables
regarding the ego vehicle’s state and the concatenation of vectors
of h variables for each of the n vehicles of interest in the sensor
range:

x = ⟨ x0
∈Rk

ego vehicle

, x1
∈Rh

, . . . , xn
∈Rh

vehicles of interest

⟩ ∈ Rk+nh.

Remarkably, this makes our state general w.r.t. the road topol-
ogy, meaning that we can represent a variety of scenarios.4 For
instance, in the crossroads scenario, a state coming from an
intersection with five incoming roads is indistinguishable from a
state coming from a three roads intersections. As a consequence,
the same policy can be used in both of this scenarios. Similarly,
this state representation allows handling highways with different
number of lane.

Partial observability. An important issue to face in the
autonomous driving task is partial observability (PO). Typically,
the state representation does not capture all the relevant infor-
mation of the environment needed to make the optimal decisions.
Obvious sources of PO include, but are not restricted to, the
limited sensor range and the partial occlusions of objects of
interest (e.g., vehicles in the lanes around the ego vehicle or
entering the junction) from objects in the road or objects outside

4 It is worth noting that no information about the topology of the road
is embedded in the state. Indeed, the rooting is in charge of the lower
level controller, allowing a totally topology-agnostic modeling at the high-level
decision-making stage.

the road (e.g., buildings in the side of the road). In this work, we
address these two sources of PO in a conservative way, by means
of a preprocessing of the state. Thus, we add, at the limits of the
visible range (which could be the end of the sensor ranges in the
roads of interest or the closest portion of visible road not occluded
from obstacles) fictitious vehicles, i.e., extra vehicles at the limits
of visibility, with worst-case speeds. More specifically, in the
highway scenario, we add to the state extra vehicles, positioning
them at the limits of the sensor ranges, in front and behind our
vehicle, in all the lanes. In the crossroads scenario, we consider
also occlusion due to outside objects as in Fig. 8(a). The building
is represented from the gray rectangle in the bottom-right corner.
The effect of the building on the visibility range of the ego vehicle
is easy to calculate through standard triangle similarities. The
yellow vehicle, shown in the border of the visible portion of the
road is a fictitious vehicle added to the state of the controller.
These vehicles are not really part of the simulation. Their distance
from the junction is set to the limit of the visibility and their
speed vfict is set such that the fictitious vehicle will enter the
junction at the same time with the ego vehicle, assuming constant
velocity. Calling tteego the time to enter of the ego vehicle, with
the assumption of constant velocity, svis the visibility range, the
speed of this fictitious vehicle is given by:

vfict =
svis
tteego

=
svisvego

sego
,

where vego and sego are the speed and distance from the junction
of the ego vehicle. By setting the fictitious vehicles in the state,
for each road, at the limit of the visibility, with the speed dis-
cussed above, we effectively formalize the worst-case scenario,
producing conservative behaviors. The case of vehicles occluding
other vehicles is handled in the same way as in Fig. 8(b), setting
a fictitious vehicle in the portion not occluded from a vehicle.

This is a very conservative handling of PO as we do not
consider earlier versions of the state in which the vehicle was
not occluded. As soon as a vehicle becomes occluded, we ‘‘jump’’
its speed and distance from the junction to the worst case. As
an alternative, a tracking model could be employed to give more
realistic predictions of the speed and distance of the occluded
vehicles when they are not visible. This would produce less
conservative behaviors. Nevertheless, it is important to stress,
that the same policies, trained with these conservative values for
the fictitious vehicles, could be employed with less conservative
state pre-processing such as the vehicle tracking, as it would only
change the state given in input to the decision module.

6.2. Action spaces

We now introduce the action spaces U we will employ in the
different scenarios. For both, we introduce a total order relation-
ship ≺, that we will employ in the execution of our rule-based
controller (Section 7). The idea is to rank the available actions ac-
cording to their degree of ‘‘conservativeness’’ (e.g., a deceleration
is more conservative compared to an acceleration), in order to
select, at the decision stage, the most restrictive one.

Lane change action space. The action space in the lane change
highway scenario is composed of three actions, having the fol-
lowing ordering:

car_following ≺ lane_change_right ≺ lane_change_left

The car_following action leaves the control of the car to the low-
level controller which follows the route planned, curving when
it is necessary, but does not perform lane changes. Furthermore,
it controls the speed of the vehicle in order to avoid collisions
and maintains a safe distance with the vehicle in front. The con-
troller sets the safety speed considering the vehicles that are in
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Fig. 8. Models of partial observability.

sight of the sensors only and adjusts it respecting the maximum
deceleration and acceleration viable. The remaining two actions
are the lane changes, left or right. These maneuvers are non-
interruptible, once they are issued, they cannot be reverted. In our
simulations, they last 3.1s and are performed with a maximum
lateral acceleration of 2m

s2
.

Crossroads action space. The decision module of the crossroad
scenario is in charge of controlling the acceleration of the ego
vehicle. At each decision step, this modules takes in input a state
of the environment and outputs an acceleration value in the range
[umin, umax]. In our experiments, we employed the values umin =

−3m
s2

and umax = 1m
s2
. One of the main concerns in the cross-

roads scenario consists in ensuring a sufficient degree of com-
fort, which requires avoiding too many deceleration–acceleration
switches.5 For this reason, we evaluated two different action
space: a discrete action space and a continuous one.

• Discrete Action Space. The action space is composed of six de-
celeration levels {−3,−2.5,−2,−1.5,−1,−0.5}m

s2
, an ac-

celeration action corresponding to the value 1m
s2

that is kept
until the maximum allowed speed is reached, and a no-
acceleration action. Overall, the action space is composed of
eight actions, having the following ordering:

dec_3 ≺ dec_2.5 ≺ dec_2 ≺ dec_1.5 ≺ dec_1 ≺ dec_0.5
decelerations

≺

zero
no-acceleration

≺ acc_1
acceleration

.

• Continuous Action Space. The action is chosen in the con-
tinuous interval U = [−3, 1] and the ordering is simply
given by the natural ordering of real numbers. This case,
employing a superset of actions compared to the first one,
offers the vehicle greater control, but, on the other hand, it
might make the problem harder to optimize.

6.3. Reward function

We turn now to the design of the reward functions used in
our work. A good reward function needs to encode all aspects
of the desired behavior. For example, a good driving controller
in the crossroads scenario should enter the junction as fast as
possible, while respecting the safety constraints, and producing
a smooth trajectory to ensure the comfort of the passengers.
The lane change scenario, on the other hand, has different goals,
which implies a different reward function. We consider linear
reward functions only, for both driving tasks considered. Thus, the
reward is a linear function of a vector of p features, defined over

5 We will formalized this requirement with the notion of jerk in Section 6.3.

Table 4
Reward features and corresponding weights for the highway scenario.
Feature φ Domain Objective Weight w

target_speed_distance [0, 1] High speed profile −3.3
free_right {0, 1} Good driving behavior −1
useless_lane_change {0, 1} Comfort −16
safety_violation {0, 1} Safety −1

the tuple (x, u, x′), where x is the current state, u is the action
executed in x and x′ is the next state:

r(x, u, x′) = wTφ(x, u, x′), (10)

where φ : X × U × X → Rp is a feature function mapping
the experience tuples to a vector of features and φ and w ∈ Rp

is a weight vector. The design of the reward function includes
two design choices: i. engineering the set of feature functions
{φi}

p
i=1 and, afterwards, ii. choosing an appropriate weight vector

w. The weight vectors we employed were a product of a grid
search, meant do identify a suitable weighting vector allowing for
a behavior compatible with the intuitive notion of ‘‘driving well’’.
Automatic ways to derive the weighting vector starting from a set
of expert demonstrations, i.e., episodes collected from an agent
playing the optimal policy (e.g., a human) exist and they are based
on inverse reinforcement learning [75].

Lane change reward function. The lane change scenario is the
classical example of a multi-objective problem. The agent has
to maximize different conflicting objectives. The agent has to
maintain a high speed profile, while staying in the rightmost lane
as much as possible, and avoiding useless lane changes to ensure
the comfort of the passengers. Clearly, the agent’s behavior must
respect the safety constraints. Table 4 shows the features and
the corresponding weights used in this task. To ensure a high
speed profile, we give a negative reward proportional with the
difference between the ego speed and the maximum speed of
the road (target_speed_distance). This encourages the agent to
maintain high speeds to avoid the punishment. Additionally, we
consider three binary features to model unwanted situations.
First, the feature free_right is activated when the lane on the right
is free, while the useless_lane_changes is activated when a lane
change on the left is performed without overtaking. Finally, the
safety_violation feature is activated when the agent requests an
action that would violate the safety constraints.

Crossroads reward function. In the crossroads scenario we con-
sider a constant feature at each decision step, weighted with −1
(constant_time). This is a standard reward feature in goal-based
problem as it incentivizes the agent to finish the episode as fast
as possible. Moreover, we add a binary feature, harsh_slow_down,
which activates whenever ut is lower than a threshold (the
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Table 5
Reward features and corresponding weights for the Crossroads scenario.
Feature φ Range of Values Objective Weight w

constant_time {1} fast completion −1
harsh_slow_down {0, 1} Comfort −2
jerk [0, 1] Comfort −0.25
dangerous_entrance {0, 1} Safety H · (−1− 2− 0.25)

threshold used in our experiments was −1.5). This feature is
related to the comfort objective, as it pushes the agent to avoid
decelerating too harshly. The third feature is the absolute value
of the instantaneous jerk, i.e., the finite-difference derivative of
the acceleration. This feature also encodes the comfort objective
and is normalized by its maximum value. More formally the jerk
feature at decision step t + 1 is:

jerkt+1 =
1

max_jerk
·
|at+1 − at |

∆t
,

where at+1 and at are the acceleration at the two consecutive
steps, ∆t is the decision frequency, 0.1 s and max_jerk is the
maximum possible value of the jerk determined by the range
of possible acceleration. Finally, we used the binary feature of
dangerous_entrance, which activates when the ego vehicle vio-
lates the safety constraints or performs a crash. The weight of this
feature is dependent on the weights given to the other features
as this is considered the main objective of the task. Violating the
safety constraints or crashing into another vehicle is the worst-
case performance, so the corresponding weight is set to a value
for which every other possible behavior dominates performing a
crash. Specifically, the weight of the dangerous_entrance is set to
the sum of the weights of the other features, multiplied by the
horizon H . In this way, performing a dangerous entrance is never
convenient. Table 5 shows the features and the relative weights
for the crossroads scenario.

7. Design of the parametric rule-based controller

In this section, we present the structure of the rule-based
policies, employed in this work. As discussed in Section 4, the
policy is modeled as a parametric set of rules whose parameters
are optimized using RL algorithms. To make the policy general
w.r.t. the type of scenario addressed (especially to the number of
vehicles of interest involved), we model the policy πθ as a module
that takes as input the information about the ego vehicle and a
single vehicle of interest, i.e., any vehicle that is present around
the ego vehicle (which is the only one we control). The rule-based
policy outputs an action that takes into account only the presence
of the currently considered vehicle of interest. By running the
rule-based policy we obtain a set of actions (one for each vehicle
of interest). The action to be executed by the ego vehicle is the
‘‘conservative’’ action, according to the total order of actions ≺
previously defined. In this way, we get a controller that is robust
w.r.t. the choices of the surrounding vehicles.

The general structure of the decision module is given in Fig. 9.
The features of each vehicle of interest xi in the state represen-
tation, together with the features relative to the ego vehicle x0,
are passed through the same parametric policy πθ , producing an
action relative to each vehicle ui. These actions are then filtered
to determine the most conservative action, according to ≺. It is
worth noting that the features in input to the parametric policy
will also be relative to the fictitious vehicles added to the state to
cope with the partial observability of the problem.

Each πθ is built as a decision tree, with a structure that is
problem-dependent, and whose nodes are parametrized with the
parameter vector θ. The goal of the learning agent is to find the
best parameters for the nodes of the decision tree. A straight-
forward approach is to leave the design of the tree structure
to experts of the field and then parametrize it. In this case, the
learning algorithm would just find the best set of parameters for
a specific policy structure, which is also the approach adopted
in this work. Another approach consist in using expert demon-
strations to fit a decision tree to the actions taken, to derive a
structure of the tree. After having this structure, we optimize the
parameters of the node using RL.

To give an example of the approach, Fig. 10 shows a general
structure the rule-based policies used in the crossroads scenario
with the discrete action space. The first level of decision is meant
to discriminate between safe and unsafe situations. For this pur-
pose, the rule-based policy has three parameters θ1, θ2 and θ3,
to be optimized, which represent ranges of the features of the
state. Specifically, this notion of safety is encoded by means of
two conditions on the time to enter (tteego), which represents the
time needed to reach the junction assuming a constant speed,
and on the safety feature (sf ), which is an aggregated feature
used to discriminate whether entering the junction is currently
safe (its precise definition is given in Appendix B.2). The learning
algorithm is tasked to find ‘‘safe’’ regions of the features of the
state, for which the autonomous vehicle should accelerate. In
the case of an unsafe situation, the rule prescribes to brake
and the tree has one or more leaves for each discrete level of
deceleration. The path to these leaves is parametrized. In our
experiments, we used simple thresholds on the time to enter of
the ego vehicle to decide the level of acceleration. The values
of these thresholds are optimized by the learning algorithm. In
the default case the vehicle decides to maintain the same speed.
The threshold are all learned separately, which means that if the
ordering between adjacent thresholds are not kept, the learning
algorithm can effectively ‘‘cut-off’’ some levels of deceleration,
reducing the number of deceleration actually employed. Instead,
the acceleration action is fixed to acc_1, which means give control
to the low level controller, which accelerates if possible, without
braking the speed limits. For details on the policies used for the
highway and crossroads scenarios refer to Appendix B.

8. Experiments and results

In this section, we provide an experimental campaign of the
proposed method in the highway (Section 8.1) and urban (Sec-
tion 8.2) scenarios discussed earlier.

8.1. Lane change scenario

We evaluate our method in six different highway networks,
all modeling highways with three lanes, with different levels of
randomized traffic. To validate our method we devise a simple
set of rules with seven parameters, and trained our model us-
ing PGPE, discussed in Section 4. Details about this rule-based
policy are given in Appendix B. We compare our methods with
DQN [22], described in Section 2.3. After tuning, we used a two
layer network, multi-layer perceptron, with 64 hidden units per
layer. This network has around 2000 parameters to be learned,
a significantly larger amount compared to our method. On the
other hand, DQN does not constrain the policy space as much
as our rule-based policy, possibly leading to more performing
controllers. We train each algorithm for 25M steps of experience.
After 500 training episodes, we stop the training process and
evaluate the best policies found so far with each method. Fig. 11
shows the training curves of the algorithm. First, we notice that
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Fig. 9. Graphical representation of the decision module.

Fig. 10. Illustrative representation of the rule-based policy for the crossroad scenario with the discrete action space.

(on average) PGPE was able to perform better than DQN in the
experiments we conducted. Indeed, already at the starting point,
PGPE outperforms DQN. This is also reasonable, since at the
beginning of the training schedule DQN is a completely random
policy, whereas the rule-based policy optimized by PGPE is hand-
coded with a set of hand-picked initial parameters. This is another
advantage of our method, since starting from a good initial pol-
icy is not so straightforward in DQN. Furthermore, DQN, in our
experiments, was unable to catch up with the performance of

PGPE. Secondly, the training process of DQN is more unstable than
the one of PGPE, with sudden oscillations in the performance of
the policy. Also, as expected with a Deep RL method, DQN has a
higher variance of the return during training. Finally, although it
may seem that PGPE has converged early in the training schedule,
this is because the improvement on PGPE is small w.r.t. the
oscillations of DQN. For more information on the training process
of PGPE, Appendix C.1 shows details on different KPIs during
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Fig. 11. Training curves of PGPE and DQN. Average of 5 runs with 95% c.i.

the training process and how they continue being optimized
throughout the whole training process.

Next, we compare the best policies that we were able to derive
from each algorithm. This because, although DQN has a high
variance and unstable training process we were able to derive a
‘‘good enough’’ policy from it (even though early in the training
procedure). Fig. 12 shows the comparison between our method
(PGPE), DQN and the performances of a human controlling the
ego-vehicle by hand (HUMAN). The plots show the average value
of the recorded KPIs during an evaluation of 100 episodes to-
gether with the 95% confidence intervals, represented by the
black lines. Each evaluation episode is 40 s long (400 decision
steps). First we notice that a Deep RL method like DQN is able to
adequately solve this task, maintaining high speed and traveled
distance while having a low number of actions blocked by the
lower level controller. Nonetheless, by applying the rule-based
approach, even though we constrain the policy space to a specific
predefined structure, we are able to further optimize the distance
traveled, average speed and blocked maneuvers KPIs. At the same
time PGPE performs, on average, less lane changes (LC), which
improves on the comfort objective (as can be seen in the Left LC,
Right LC, and Useless LC KPIs). Our method is also able outperform
DQN on the Could Overtake KPI, which denotes the average
number of decision steps in which the vehicle could perform a
safe lane change, but due to a vehicle in front entering its safety
distance, it is decelerating. Effectively, our trained rule-based
policy brings the number of these steps close to zero compared
to an average of 7 steps of DQN, meaning we are better at finding
the right moment at which to perform a lane change, compared to
DQN. We also evaluated the performance of a human controlling
the vehicle through a graphical representation of the simulation
(HUMAN). A human controller can still drive further and with a
higher speed compared to DQN and PGPE, while suffering in other
KPIs, like the steps with the free right and blocked maneuvers.
This is also due to the fact, that it is harder for a human to
judge the safety distances with the surrounding vehicles from
a graphical representation. The policy PGPE-INIT, represents the
performances of the starting point, of the rule-based policy, with
hand-picked parameters. The value of these parameters has been
selected by manual adjustment. A series of preliminary experi-
ments have been conducted to achieve a reasonable behavior that
avoids too extreme maneuvers. This can be seen as an instance of
a handcrafted rule-based controller. We can see, that even though
this policy avoids dangerous maneuvers, it is not able to perform
well in the other KPIs, showing the importance of optimizing the
parameters of a rule-based policies. For completeness, we also

show the performances of a random policy uniform over the three
available actions, which is also the starting point of the DQN
algorithm. While in our approach it is straightforward to initialize
the learning process from an adequate policy, in the DQN case,
given the complexity of the policy model, it is very difficult. For
details on the hyperparameters of the learning algorithms refer
to Appendix C.

8.2. Urban scenarios

We use four different road networks to evaluate our method,
an intersection with three roads like in Fig. 8, two intersections
with five roads with different traffic levels, and one roundabout
network. We perform the same tests as in the lane change sce-
nario, comparing our rule based policies, with DQN and a human
driver. The same training schedule and network architecture has
been used for DQN as in the lane change scenario.

We employed PGPE with two different rule-based policies, one
for a discrete action case and one for the continuous version,
as described in Section 6.2. Fig. 13 shows the learning curve of
PGPE with both action spaces and DQN. Here the advantage of
using PGPE with a rule-based policy is evident. DQN completely
fails to optimize this task and shows highly unstable behavior
during training. This is mainly due to the nature of the task.
First, it is a difficult exploration problem. The task has 8 discrete
actions, of which 6 are decelerations, so it is easy to end in
a sub-optimal policy that stops before reaching the junction.
Furthermore, the reward function itself is hard to optimize since
extremely high punishments are received whenever the agent
performs dangerous maneuvers. The exploration problem is less
problematic in the case in which PGPE is employed since the
policy is constrained in a specific form, defined by the structure
of the rules. In fact we can see that since the beginning we
have a better performance than DQN (better than the random
initial policy) and we continue to optimize it. Appendix C.1 shows
details of the training curves of PGPE for some KPIs of interest in
this scenario.

Next, we compare the results of the best policies in terms
percentage of intersection they are able to successfully complete,
how fast they complete them and the comfort of the resulting
policies, by recording the average jerk of an episode and the
number of comfortable or harsh slow downs (SD) performed.
Recall that we label as harsh slow downs the slow downs with
deceleration greater than 1.5m

s2
. An episode is interrupted after

60 s (600 timesteps), if the agent was not able to complete the
intersection. Fig. 14 shows the average values for some KPIs of
interest, over an evaluation of 100 episodes. We compare the
best policies achieved after a training period of 20M samples of
experience, with DQN and PGPE. First we notice a further con-
firmations, that in this scenario, an end to end method like DQN
fails to learn the task. Learning a good policy in the crossroads
scenario is harder than in the lane change, as the agent needs
to perform more effective exploration to find well-performing
policies able to complete the intersection. Exploration is still an
open problem in RL literature, and is especially problematic in
this scenario when performed in the action space, as it is done in
the DQN algorithm. Since most of the actions are decelerations,
the learning process has a bias towards policies that do not
complete the intersection, but simply stop. Instead, by moving
exploration to the parameter level, like in PGPE, we partially
mitigate this problem. Next, we compare the results of the start-
ing point of the policy trained with PGPE (denoted PGPE-INIT in
the plots) with the resulting policy from the learning process of
DQN and PGPE. We can see that, differently from DQN, with the
rule-based approach proposed, we are able to start the learning
process from a policy that has quite a good performance, and
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Fig. 12. Experimental evaluation in the Highway Scenarios. Average over 100 episodes together with 95% c.i.

we are able to refine this hand picked parameters. Initializing
the neural network to a good, predictable policy, on the other
hand, is not that straightforward. We see that PGPE is able to
optimize the parameters of the rule based policy until reaching a
near-optimal policy while reducing to a minimum the dangerous
entrances and the harsh slow down actions. We still have 1% of
dangerous entrances, but it is worth noting that the definition of
the dangerous entrances used is highly conservative, as described
in Section 5. This can be seen also from the KPIs of the human
demonstrations, in which a human controlled the vehicle from
the graphical interface of the simulation. We see that it is hard,
even for a human, to judge the dangerous entrances, being very
conservative, so as to remove the chance of crashes happening.
Finally, from a comparison of PGPE and a human driver, we see
that a human is still better at controlling the jerk of the vehicle
(comfort objective). For this purpose, we employed also a policy

with a continuous action space as described in Section 5, to
investigate the effect of the action space on the comfort objective.
As we can see, using PGPE with a policy that outputs directly the
desired level of acceleration, we are able to further optimize the
jerk objective to nearly the same of a human, while losing little
to nothing with respect to the other objectives.

9. Conclusions and future work

In this work, we showed how reinforcement learning and rule-
based approaches can be combined, to design a decision-making
controller for an autonomous vehicle. The resulting parametric
rule-based policy is able to achieve both transparency (thanks
to the usage of interpretable rule) and robustness (thanks to
the generalization capabilities of RL). The experimental cam-
paign highlights two main points. First, we empirically demon-
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Fig. 13. Training curves of PGPE and DQN. Average of 5 runs with 95% c.i.

strate that RL, especially parameter-based policy optimization
(PGPE) turns out to be an effective learning tool to improve the
performance of hand-crafted policies. Second, we illustrate how
black-box approaches based on RL, like DQN, not only produce
controllers that are hard to interpret, but given the complexity of
their policy space, often fail to learn effectively the task.

We are convinced that the combination of RL with rule-based
controllers represents a promising path in the development of a
real-world autonomous vehicle. On the one hand, we are able to
achieve transparency and, thus, have precise control over what
happens within the policy, possibly avoiding undesirable corner
cases. On the other hand, thanks to the parametric nature of
the considered rules, we have access to a larger policy space
compared to handcrafted rule-based approaches. This enforces
robustness since the interactive learning process at the basis of
RL allows generalizing over previously unseen situations.

Nevertheless, the generality of the learned controller is tightly
connected to the structure of the parametric rules. Indeed, we re-
strict the class of rule-based controllers to those that consider the
ego vehicle together with a single vehicle of interest at a time. In
this way, among the actions suggested for each vehicle of interest,
we pick the most conservative one. In principle we could consider
a structure for the rule-based controller that takes as input the
ego vehicle and a set of vehicles of interest. In this way, we could

Fig. 14. Experimental evaluation in the urban scenarios. Average over 100 episodes together with 95% c.i.
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make a decision based on relative information (e.g., relative speed
or relative distance) between a pair of vehicles of interest. Clearly,
this approach would increase the generality, at the price of a more
complex controller, with possibly a larger number of parameters
and an increase in the cost of execution. More generally, the
choice of suitable complexity for the controller is a trade-off
between sample complexity and representation power, which is
worth investigating.

Several future extensions of this work are possible; we discuss
two of them in the following. First, we mainly focused on robust-
ness and transparency, partially neglecting comfort. Although we
believe that our reward functions implicitly prescribe a ‘‘comfort-
able’’ behavior (e.g., continuously switching between acceleration
and brake is for sure suboptimal), we could include in the learning
process some explicit terms encoding the comfort requirements.
Second, our evaluation is restricted to simulation environment.
This is essential to employ an RL-based approach in which ex-
ploration, possibly leading to dangerous behaviors, is necessary.
However, once the policy is learned it can be implemented in
the real vehicle and evaluated there, opening new challenges
concerning transfer learning and domain adaptation.
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