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a b s t r a c t 

Developmental cognitive systems can endow robots with the abilities to incrementally learn knowledge 

and autonomously adapt to complex environments. Conventional cognitive methods often acquire knowl- 

edge through passive perception, such as observing and listening. However, this learning way may gener- 

ate incorrect representations inevitably and cannot correct them online without any feedback. To tackle 

this problem, we propose a biologically-inspired hierarchical cognitive system called Self-Organizing De- 

velopmental Cognitive Architecture with Interactive Reinforcement Learning (SODCA-IRL). The architec- 

ture introduces interactive reinforcement learning into hierarchical self-organizing incremental neural 

networks to simultaneously learn object concepts and fine-tune the learned knowledge by interacting 

with humans. In order to realize the integration, we equip individual neural networks with a memory 

model, which is designed as an exponential function controlled by two forgetting factors to simulate 

the consolidation and forgetting processes of humans. Besides, an interactive reinforcement strategy is 

designed to provide appropriate rewards and execute mistake correction. The feedback acts on the for- 

getting factors to reinforce or weaken the memory of neurons. Therefore, correct knowledge is preserved 

while incorrect representations are forgotten. Experimental results show that the proposed method can 

make effective use of the feedback from humans to improve the learning effectiveness significantly and 

reduce the model redundancy. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Cognitive robots have received increasing attention in artifi-

ial intelligence, because they can develop knowledge and skills

utonomously to cope with various learning tasks and dynamic

nvironments in humans’ daily life [1 , 2] . Two major challenges

or current cognitive robots are quickly learning new objects they

ncounter and appropriately communicating with humans during

uman-robot interaction [3–7] . Therefore, the designed cognitive

ystem must have capabilities to acquire knowledge incrementally

nd correct mistakes promptly according to human feedback in an

nline way. 

Typically, researches for developing robots’ cognition mostly

ocus on passive perception, such as observing, listening and action

mitating [8–10] . These learning ways are known as individualistic

earning [11] . It is suitable for learning object concepts online and

ven developing associative relationships cross multi-modalities

12–16] . However, the learned knowledge sometimes includes

ncorrect representations, which may be caused by inappropriate
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lustering strategy [17] , insufficient perception [18] or human mis-

akes [19] . All of them can affect robots’ recognition performance

nd hinder their interaction with humans. Moreover, these meth-

ds often have no ability for robots to spot errors by themselves

nd do not consider getting feedback from humans to correct their

istakes. 

Social learning may be a promising method to address these

roblems since it indeed promotes the cognitive development

f humans [20] . Infants often learn object concepts and develop

ognitive skills under parental scaffolding [21] . However, they have

o ability to assess whether their internal representations are

onsistent with the ground truths. Parents can provide appropriate

ewards for infants and correct their mistakes, which contributes

o consolidating learned knowledge and promoting their cognitive

evelopment remarkably [22] . Parental scaffolding has inspired

obots learning methods for human-robot interaction [23–25] .

owever, the instruction from humans has proved to be an online

abeling process rather than another form of knowledge. Besides,

obots cannot associate their observations with names taught by

umans autonomously [26–28] . Another method leveraging trials

nd errors is Interactive Reinforcement Learning (IRL) [29–31] .

owever, the states in these methods should be pre-defined

https://doi.org/10.1016/j.neucom.2019.07.109
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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before learning and cannot increase when new states occur. Al-

though there have been some methods using function approxima-

tion to store observed states and generalize unseen states [32 , 33] ,

they can perform well in continuous space but are not suitable

for the discrete learning tasks of object concepts. Consequently,

human feedback should be coordinated with an online and in-

cremental learning way. Additionally, two cognitive processes of

learning and feedback should be concurrent and interleaved. 

In our previous research [34] , we have applied self-organizing

incremental neural networks to learn object concepts and build

audio-visual associations in an open-ended manner. Although the

robot is able to assess its learned knowledge autonomously, it

still cannot guarantee that the learned internal representations are

completely correct without human guidance. By considering IRL as

an effective method to utilize human feedback, a cognitive sys-

tem should integrate a self-organizing incremental neural network

with IRL. However, the main challenge is how to formulate the

self-organizing neural network in the framework of Reinforcement

Learning (RL) [35 , 36] . Although different incremental RL or IRL

models based on ART [37] , SOM [38] and GNG [39] have been de-

veloped, the function of self-organizing neural networks only fo-

cuses on solving the storage problem for large state space of RL.

Besides, RL is mainly applied to find the best state-action maps

but it does not involve correcting the knowledge learned by self-

organizing neural networks. 

In this paper, we propose a Self-Organizing Developmental

Cognitive Architecture with Interactive Reinforcement Learning

(SODCA-IRL) to online learn new objects and correct inappropri-

ate representations by interacting with humans. The architecture

integrates IRL with hierarchical self-organizing neural networks as

in our previous work [34] . Taking a biologically-inspired approach

[40–42] , the SODCA-IRL introduces a novel computational memory

model to individual neural networks for the integration. The mem-

ory model is designed as an exponential function and controlled

by two forgetting factors to simulate the forgetting and consolida-

tion processes of humans. Different with other memory models us-

ing constant forgetting factor [37 , 43] , our method with adjustable

forgetting factors can improve the efficiency of memory by adjust-

ing the forgetting speed. We also propose a reinforcement strategy

to formulate the hierarchical self-organizing neural networks for

IRL and update the architecture according to human rewards. IRL

can control the nodes’ memories to reinforce the correct represen-

tations and forget the incorrect representations. The incremental

online learning and the reinforcement process are concurrent and

interleaved, which allows SODCA-IRL to realize knowledge acquisi-

tion and mistake correction simultaneously. The contributions pro-

posed in this paper are as follows: 

(1) An interactive cognitive architecture based on hierarchical

self-organizing neural networks and IRL can learn and cor-

rect object concepts in a concurrent and interleaved fashion,

which significantly improves the recognition accuracy; 

(2) A novel memory model for nodes can dynamically adjust

their forgetting factors through IRL, which provides a new

way to connect self-organizing neural network with IRL; 

(3) An interactive reinforcement strategy based on the proposed

memory model can control knowledge consolidation and

mistake correction by adjusting node’s memory and cope

with human mistakes. 

The remainder of the paper is organized as follows: the related

works are discussed in Section 2 ; the overview of the interactive

cognitive architecture is illustrated in Section 3 ; Section 4 demon-

strates the evaluative experiments; Section 5 draws conclusions of

this paper. 
. Related work 

.1. Interactive reinforcement learning 

IRL has been demonstrated to improve the learning efficiency

f RL significantly under human guidance [44] . According to the

eedback strategy of humans, IRL can mainly be divided into two

ranches: action interaction and reward interaction [45] . In ac-

ion interaction, humans give the optimal action selection so that

obots can reduce their exploration. Senft et al. [31] combined

L with Supervised Progressively Autonomous Robot Competencies

SPARC) so that humans could fully control the robot’s actions in

he task of Sophie’s Kitchen. The method allowed the robot to learn

aster and more safely. Cruz et al. [46] proposed an IRL approach

y integrating human vocal commands and hand gestures as ad-

ice to guide the robot’s action. A confidence was used to evalu-

te human advice to make the interactive guidance more robust.

owever, the reward rule should be pre-defined and the environ-

ent should change after an action is executed. In reward inter-

ction, humans can evaluate actions more accurately and provide

ore reasonable rewards. Kim et al. [47] used the internal states of

uman brain measured by error-related potential of human elec-

roencephalogram (EEG) as rewards to guide robots to learn the

eanings of human gestures. Another researches based on ex-

ended Training an Agent Manually via Evaluative Reinforcement

TAMER) also support the learning from human rewards [4 8 , 4 9] .

hey built human rewards as predictive models by TAMER. In a

ord, reward interaction is often simpler to guide and requires less

ask expertise for humans. 

Steels and Kaplan [11] presented a word-meaning learning pro-

ess to develop robot’s language through social learning. The robot

earned object’s color by Expectation-Maximization (EM) cluster al-

orithm and word-meaning through RL. In this case, the trainer not

nly gave reward signals, but also provided the correct name to

uide the “action” selection. As the learning task is similar to ours,

e also adopt this interactive strategy. Cohen and Billard [50] pro-

osed another view for human-robot interaction, in which the hu-

an guessed the robot’s intention and chose an object to reflect

he state after an action was executed. However, the states and ac-

ions are pre-defined and not suitable for online learning. In our

esearch, self-organizing neural networks can online and incremen-

ally learn new objects to provide states and actions for IRL. Be-

ides, IRL is applied to provide human guidance online, which can

valuate and adjust the sample-symbol maps in visual sample lay-

rs and the visual-audio associations in the associative layer. 

.2. Self-organizing neural network with reinforcement learning 

Having in mind the need to support feedback and incremen-

al learning in cognitive process, we investigate the ways that RL

r IRL have been implemented in a self-organizing neural net-

ork. One common approach focuses on using self-organizing neu-

al network to deal with the storage problem of the states or ac-

ions in RL. Teng et al. [37] utilized FALCON architecture to incre-

entally learn domain knowledge as state-action-reward tuples so

hat the optimal state-action maps could be explored by RL. This

odel can incrementally add new states and have generalization

bility. Yaink et. al. [51] applied GNG for the robot to learn human

estures, labels as well as responses defined the Q value as the

ength of the action vector. Humans judged the robot’s response

o a given gesture and gave an appropriate reward to adjust the

esture-response maps of the robot. However, this method is not

uitable for online learning tasks. Self-organizing neural networks

an also help to solve the continuous space problem of RL. Some

esearches [52 , 53] used two SOMs to quantize continuous state

nd action spaces into discrete representations and built state-

ction maps by a Q -table. However, the Q -table may be memory
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onsuming as each row (column) belongs to a node in state (ac-

ion) SOM. 

Another approach is to fine-tune the learning mechanism of

elf-organizing neural network by RL algorithm. Vieira et al.

39] proposed a TD-GNG to map value functions into states,

herein the activation condition of GNG was altered by the value

unction of Q-Learning. Chen et al. [38] applied RL to evaluate

he decision of Bayesian SOM instead of updating Q -value. Fur-

hermore, the weight update of Bayesian SOM was modified by

he evaluative result. However, these models address the maps be-

ween inputs and outputs in a single network, but are not suitable

or hierarchical networks, where the input states are not directly

apped to the output actions. Cruz et al. [54] introduced a con-

dence to evaluate human commands learned by GWR. The robot

ould decide whether to select an action according to human guid-

nce or self-exploration. The limitation of this work lies in that it

annot perform in an open-ended learning way. 

In contrast to these models, the proposed SODCA-IRL formu-

ates our hierarchical architecture into two level state-action pairs.

ne maps a shape (color) sample node to its class symbol. The

ther associates object’s visual symbols with its name. Besides, the

esigned memory model provides a new way to integrate self-

rganizing neural network with IRL so that IRL can consolidate

orrect representations or forget incorrect representations through

ontrolling nodes’ memory strength. 

.3. Computational memory model 

Over the past few decades, several researches have been con-

ucted to establish computational memory models. Ebbinghaus’

esearch [41] indicates that human memory is always forgotten

harply at the beginning and slowly afterwards and eventually

pproaches to a stable value. Therefore, most of the models are

esigned as a power function [40 , 55 , 56] or an exponential func-

ion [57 , 58] to fit the Ebbinghaus’ forgetting curve [41] . However,

hese methods only consider the forgetting process. Human cog-

itive development is also accompanied by the consolidation of

nowledge [59] , which contributes to the formation of long-term

emory. Mayer [42] designed a differential function to simulate

he assimilation and forgetting process, which considered mem-

ry’s review during the learning process. Zhou et al. [60] adopted

n exponential forgetting model according to the result of the

ontrast experiment that the exponential function is more precise

han a power function to describe the Ebbinghaus’ forgetting

urve. Besides, they also proposed a reenergizing algorithm to

onsolidate memory when similar things occurred. These models

ith both forgetting and review are more consistent with the laws

f human memory. There are another two methods similar to a

emory model. Teng et al. [37] proposed a confidence model to

imulate natural decay and reinforcement process. Another con-

dence model presented by Tan [43] consists of three processes

ncluding decay, reinforcement and erosion. They all equal to an

xponential function. However, the decay rate does not reduce but

till stays constant after each reinforcement or erosion. 

Compared with these methods, the proposed memory model

ot only considers memory’s forgetting and review in the learn-

ng process, but also induces positive or negative rewards in the

ractice phase to control the forgetting speed by adapting forget-

ing factors. The model is the medium to integrate self-organizing

eural networks and IRL. 

. Proposed method 

.1. Overview of the SODCA-IRL 

The proposed SODCA-IRL is based on the cognitive architecture

hich was previously exploited to learn object concepts and audio-

isual associations [34] . Fig. 1 shows the overview of the SODCA-
RL. It consists of a series of hierarchical self-organizing incremen-

al neural networks and mainly engages in two processes: learn-

ng and practice. A real trainer interacts with the architecture by

eaching objects, assessing its learning results and correcting its

istakes, which is similar to the way parents educate their infants.

he trainer just needs to know the objects the architecture learns,

nd does not have to possess professional knowledge. The learn-

ng process involves bottom-up learning and top-down response.

rom a computational perspective, the bidirectional structure has

bilities to guide cluster and solve conflicts autonomously, which

mproves the recognition accuracy. However, incorrect representa-

ions may be generated and affect these strategies. Hence the prac-

ice process is proposed to solve this problem. We extend the pre-

ious cognitive architecture by integrating with IRL and equipping

ome neurons with a memory model. Objects and the trainer are

reated as the environment to provide perception and advice. The

ecognized shapes, colors and names of the architecture represent

he interactive actions. Moreover, these two processes can be ex-

cuted in a cross manner, and the trainer’s role can also change

ith the task. 

.2. Learning process 

In the learning process, the cognitive architecture is occupied

ith perceiving object’s view as well as name and learning ob-

ect concepts incrementally according to Hebbian learning. Further-

ore, it performs memory’s consolidation and forgetting to delete

ome redundant nodes to make the structure more optimized. 

.2.1. Memory model 

Apart from storing objects or events, human memory also for-

et something not reviewed in time [61] . As the characteristics

f memory curve are closer to the trend of exponential function

41 , 60] , we propose a dynamic memory model as shown in (1) .

nspired by Mayer et al. [42 , 60] , our model simulates both the for-

etting and consolidation processes of memory. 

 i ( t ) = M i (0) − 1 

v i (z) 
· (1 − e − f i (z) ·(t−t z ) ) , (1) 

here t is the learning time, z represents the number of activa-

ion and t z is the latest activation time. f i ( z ) and v i ( z ) are two ad-

ustable forgetting factors of node i. f i ( z ) controls the decay time

f the memory model, which directly affects memory’s forgetting

peed. v i ( z ) adjusts the memory’s amplitude, which affects the for-

etting speed indirectly. As the memory fades over time and even-

ually approaches to ( M i (0) − v i (z) −1 ) , v i ( z ) also controls the mem-

ry retention. 

During the learning process, a new node i has an initial mem-

ry strength M i (0) = 1 . At time t , its memory decays over time

ccording to (1) . If a node is activated by a similar input and

ecomes the winner b , its memory should be consolidated and

ecay more slowly than before. But it is on the condition that the

nput must cause an intro-class operation of b , such as updating

r creating an intra-class node. Then, the memory of node b is

trengthened to 1 again as t = t z and its forgetting speed should

low down. As forgetting speed is in direct proportion to f b ( z )

nd in inverse proportion to v b ( z ), f b ( z ) should decline while v b ( z )

hould increase with the node activation. The following equations

re designed to simulate these tendencies and update f b ( z ) and

 b ( z ) respectively. 

f b (z) = f (z − 1) · δz , (2) 

 b (z) = v b (z − 1) + γ · z, (3)

here δ, γ ∈ (0, 1) are the activation rates of the forgetting factors

espectively. f ( z ) is a monotone decreasing function and its range
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Fig. 1. Overview of SODCA-IRL. 
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is in(0, 1). The range of v ( z ) should be in [1 , + ∞ ) so that the

memory retention is non-negative. If node i is never activated, its

memory would become too weak to be remembered. A forgetting

threshold M min is introduced to represent the minimum memory

strength. Thus, node i is delated as long as M i ( t ) < M min , which

means its knowledge is forgotten. On the contrary, if the memory

retention is higher than M min , the node is preserved and forms

long-term memory. 

Fig. 2 illustrates the memory curves of the proposed memory

model in four different activation situations. The effect of the adap-

tive forgetting factors for our memory model is also validated by

comparing with constant forgetting factors, which are set as f (0)

and v (0). Due to the adaptive forgetting factors, the memory is

strengthened and the forgetting speed becomes slower each time

the node is activated. The node eventually retains a constant mem-

ory and is remembered for a long time. However, the constant one

can only reinforce the memory at the activated point, and does

not change the forgetting trend. No matter how many times it has

been activated, the memory is still forgotten if not activated for a

long time. Therefore, the memory model with adaptive forgetting

factors can adjust the forgetting speed and promote the formation

of long-term memory. 

3.2.2. Modified hierarchical self-organizing neural networks 

As shown in Fig. 1 , SODCA-IRL contains three levels networks,

which are proposed in our previous work [34] . The first level

mainly processes visual and auditory sample representations. In

the visual sample layers, the Dynamic Threshold Self-Organizing

Incremental Neural Network (DT-SOINN) is dedicated to the online

learning of shapes and colors. In the auditory sample layer, the

Levenshtein Distance Self-Organizing Incremental Neural Network

(LD-SOINN) is employed for learning word vectors. The second

level based on the Symbol Self-Organizing Incremental Neural Net-
ork (S-SOINN) not only encodes the cluster numbers from each

ample layer into corresponding symbols, but also decodes visual

r auditory symbols from the associative layer into the original

luster numbers. The associative layer for the last level executes

udio-visual integration and top-down response on the basis of the

elation Self-Organizing Incremental Neural Network (R-SOINN).

he details of each network can refer to our previous work [34] . 

In order to integrate with IRL in practice process, we modify

he hierarchical self-organizing neural networks as self-organizing

evelopmental cognitive architecture (SODCA). In SODCA, the DT-

OINNs and R-SOINN are equipped with the proposed memory

odel. Nevertheless, the associations learned in R-SOINN are af-

ected by DT-SOINNs, hence we only update the memories of DT-

OINNs during the learning process. The memories of R-SOINN

re reinforced in the practice process, which is described in

ection 3.3.2 . 

During the learning process, SODCA learns each object in an

pen-ended learning manner. In the visual pathway, if the received

bject’s shape or color is novel, DT-SOINN would create a new

lass node with an initial memory model to learn the new sam-

le. If the sample feature is familiar and activates a node b , DT-

OINN updates the node or creates a same class node with an

nitial memory model. At the same time, the forgetting factors of

ode b are updated by (2) and (3) to reduce its forgetting speed.

fter learning, the memory of node b is reinforced to 1, while the

ther nodes’ memories in DT-SOINN decay according to (1) . Once

 node’s memory is lower than the forgetting threshold M min , it

ould be forgotten and deleted from DT-SOINN. If a cluster in

T-SOINN disappears due to the forgetting, the related symbol in

-SOINN and associations in R-SOINN are also deleted. Then DT-

OINN outputs the recognized cluster to the visual symbol layer.

n auditory pathway, LD-SOINN learns the objects’ name and out-

uts its cluster to the auditory symbol layer. In each symbol layer,
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Fig. 2. Memory curves with f (0) = 0 . 05 , v (0) = 1 . 05 , M min = 0 . 3 , δ = 0 . 8 and γ = 0 . 2 . (a) The memory is quickly forgotten, as it is never activated. (b) The memory with 

adaptive forgetting factors decays more slowly and lasts longer than the constant one after one activation. (c) The memory retention with adaptive forgetting factors is 

increased after each activation, while the constant one still decays as before and is eventually forgotten. (d) The memory retention with adaptive forgetting factors tends to 

form long-term memory with a stable and high value after 5 activations. 
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-SOINN encodes the cluster as a symbol and transmits to the as-

ociative layer. Finally, R-SOINN integrates the symbols to establish

n audio-visual association. The details of SODCA are illustrated in

lgorithm 3 in Appendix A . 

.3. Practice process 

In the practice process, the trainer tests the robot’s mastery of

earned knowledge, and the cognitive architecture mainly engages

n recognition, recall and reinforcement. 

.3.1. Reinforcement learning formulation 

The fundamental goal of RL is to find the optimum associa-

ions between states and actions. SODCA-IRL is also dedicated to

ssociating names with objects’ views to maximize the probability

f obtaining rewards. Therefore, SODCA can be formulated in the

ramework of RL on the computational level. However, traditional
L algorithms often acquire a series of fixed states and actions,

nd the Q-table for all state-action pairs is memory consuming. It

s not suitable for our scenario. SODCA-IRL utilizes self-organizing

eural network to realize the incremental learning of states, ac-

ions and their associations in the learning process. Moreover, we

pply IRL to evaluate the associations and provide rewards so that

orrect knowledge is consolidated and incorrect representations

an be forgotten. 

During the practice process, the trainer shows the robot an ob-

ect. The robot recognizes the object’s shape and color categories

nd activates the matching associative node to recall its name as

he answer. Then, the trainer judges whether the result is correct

r not. At time t , we treat the shape-color symbol pair as a state

ector S ( t ), the recognized name as the selected action A ( t ), and

he trainer’s reward as R ( t ), which are illustrated in Fig. 1 . R ( t ) has

wo values: 1 and −1. If the answer is correct, the trainer confirms

t with a positive reward R (t) = 1 and the memory of this audio-
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visual association is reinforced. Otherwise, the trainer gives a neg-

ative reward R (t) = −1 and tells its real name to correct the mis-

take. Then the incorrect relationship is gradually forgotten. How-

ever, as the state space is determined by the cluster results of the

visual sample layers, the rewards for the associative layer are not

sufficient to simultaneously guide two levels. Fortunately, each vi-

sual sample can be mapped into a cluster, and we can add extra

IRL between visual sample layers and the visual symbol layer to

further understand the source of errors. Therefore, both shape and

color features can be treated as state vectors s s ( t ) and s c ( t ), and the

recognized symbols equal to action vectors a s ( t ) and a c ( t ). Thus,

S(t) = { a s (t ) , a c (t ) } . The trainer can point out whether the visual

symbols recognized from visual sample layers are correct or not

and give appropriate rewards r s ( t ) and r c ( t ). If the recognized name

A ( t ) is correct while the recognized shape a s ( t ) (or color a c ( t )) is in-

correct, namely, R (t) = 1 and r s (t) = −1 (or r c (t) = −1 ), the robot

can correct the inappropriate visual feature and build a new audio-

visual association by itself. The recognized association may repre-

sent another object and its memory would not be affected by IRL.

As long as the recognized name is incorrect ( R (t) = −1 ), the audio-

visual association should be forgotten. Besides, the robot also con-

siders assessing sample-symbol maps to find all mistakes. A new

association would be created after the trainer gives its real name.

Only when all rewards are positive can the robot confirm the as-

sociation is correct and consolidate the knowledge. 

3.3.2. The integration of self-organizing neural network and IRL 

The key to the integration lies in how to introduce reinforce-

ment signals into SODCA. In our method, the memory of each

node in two DT-SOINNs and R-SOINN can be treated as a Q -value

to evaluate the confidence of the state-action pair. When one of

these nodes is activated and demonstrates its representation, the

trainer gives an appropriate reward to the node. A positive reward

means that the representation is correct and should be consoli-

dated. Therefore, the node’s memory should be strengthened to

1. On the contrary, a negative reward implies that the incorrect

representation should be forgotten from the network. The memory

should decline from the time receiving negative rewards. There-

fore, the memory model with IRL is designed, as shown in the fol-

lowing equation: 

M(t) = 

{
1 , r = 1 

M( t z p ) − 1 
v (z) 

(1 − e − f (z) ·(t−t z p ) ) , r = −1 

, (4)

where t z p represents the time receiving a negative reward. z r and

z p record the number of positive reward and negative reward re-

spectively. 

The reinforcement also affects memory’s forgetting speed and

retention. The update strategies of two factors in practice are de-

signed, as shown in the following equations: 

f (z) = 

{
f (z − 1) · δr 

2 z r , 

f (z − 1) · δp 
2 z p , 

r = 1 

r = −1 

, (5)

v (z) = 

{
v (z − 1) + γr · z r , 

1 , 

r = 1 

r = −1 

, (6)

where δr and δp represent the positive reward rate and negative

reward rate of f ( z ) respectively. γ r is the positive reward rate of

v ( z ). If r(t) = 1 , the forgetting speed should become slower than

the situation in which the node is just activated in the learning

process. f ( z ) should decline more sharply than (2) and v ( z ) should

also increase more than (3) . Thus, we decrease the reward rate of

f ( z ) as δr < δ and accelerate its change rate as 2 z r . At the same

time, we assign a higher reinforcement rate for v ( z ) by γ r > γ to

reduce the forgetting speed and increase the memory retention.

Inversely, the forgetting speed should be accelerated if r(t) = −1 .
hus, f ( z ) must be a monotonic increasing function. We assign the

egative reward rate as δp > 1 and its change rate as 2 z p to speed

p the forgetting of incorrect representations. In order to force the

ncorrect memories to the minimum, we set v (z) = 1 so that the

emory retention eventually approaches to 0. As for other nodes

hat are not activated, their forgetting factors are not changed and

heir memories still decay as (1) . Algorithm 1 illustrates the details

f the memory model with IRL. 

Four memory curves under IRL are depicted in Fig. 3 to

emonstrate the reinforcement process. Apart from reducing the

orgetting speed significantly, our memory model with IR can also

nhances the memory retention greatly after receiving a positive

eward compared with that without IRL. Besides, the memory

ith IRL decays more sharply after being weakened. This suggests

hat IRL can promote the formation of long-term memory and

orget incorrect representations quickly. 

In the practice process, SODCA-IRL utilizes the learning results

f SODCA and interacts with the trainer to evaluate the learned

nowledge. We design the reinforcement action strategy shown in

lgorithm 2 , which assists in adjusting the structure of SODCA-

RL. When an object learned before is shown to the architecture,

T-SOINNs find the best matching nodes for the shape and color

tates s s ( t ) and s c ( t ). The visual S-SOINN receives their cluster num-

ers and outputs the recognized shape and color symbols (actions)

 s ( t ) and a c ( t ). Then the combination state S(t) = { a s (t ) , a c (t ) } is

ransmitted to R-SOINN and activates the best matching associa-

ive node to recall the object’s name A ( t ). The trainer evaluates the

ecognized shape a s ( t ), color a c ( t ) and name A ( t ). 

If the recognized name is right, SODCA-IRL receives a posi-

ive reward R (t) = 1 . Then, the shape and color should be con-

idered to evaluate the audio-visual association. If they are both

ight, namely, r s (t) = 1 and r c (t) = 1 , the association is completely

orrect. Its memory would be reinforced and its forgetting speed

s reduced as described by step 5 of Algorithm 1 . At the same

ime, DT-SOINN executes a Update Action in Algorithm 2 to up-

ate the best matching node b . If the shape or color is incorrect,

amely r s (t) = −1 or r c (t) = −1 , the associative node’s memory

hould still be weakened as described by step 7 of Algorithm 1 .

T-SOINN also executes the Correct Action in Algorithm 2 for the

ode b . If the node never receives any positive reward, the network

ould repeal its class and break all connections with its neigh-

ors. Its memory is weakened and the forgetting speed increases

harply. Besides, a new class node is created for correcting the

istake. Otherwise, this node may represent another object and

hould not be weakened to avoid affect the recognition of its real

bject. 

If the recognized name is wrong, SODCA-IRL get a negative re-

ard R (t) = −1 . The association should be weakened no matter

hether the shape or color is correct. Then, the trainer should

orrect the name. In order to find all mistakes, visual recognitions

hould also be assessed. If the shape or color is correct, DT-SOINN

ot only executes the Update Action, but also considers whether

o execute the Reactivated Action. If the node’s class has been re-

ealed due to former advice, the network would assign a new class

or the node and increase its v ( z ) to guarantee that the correct

emory is never forgotten. If the shape or color is incorrect, DT-

OINN executes the Correct Action and judges the class of b . If b

as been repealed class, its memory should decay more sharply

o that the incorrect representation can be quickly forgotten. Oth-

rwise, a Weakened Action is executed. The detailed algorithm of

ODCA-IRL is outlined in Algorithm 4 in Appendix B . 

We also consider that humans may give wrong advice by

istakes. There are three types of mistakes that maybe occur

n this paper. One is the trainer teaches wrong names or gives

nappropriate rewards for names. Another mistake is that an

ncorrectly recognized shape (color) is treated as right. SODCA-IRL
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Fig. 3. Memory curves under IRL with f (0) = 0 . 05 , v (0) = 1 . 05 , M min = 0 . 3 , δr = 0 . 5 , δp = 1 . 5 and γr = 0 . 4 . (a) Compared with other two cases, the memory with IRL decays 

more slowly and reserves higher retention after once positive reward. (b) After 3 positive rewards, the memory with IRL can finally reserve as many retention as that 

without IRL after activated 5 times. (c) The memory with IRL can reserve 0.87 retention after 5 positive rewards. (d) The memory is quickly forgotten after receiving a 

negative reward. 
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rovides the trainer chances to correct these two mistakes above

y giving appropriate advice when the robot meets the object

gain. The last one is that a correctly recognized shape (color)

s misjudged as wrong. That may lead to three results. Firstly, a

ew node would be created for the correct representation by the

orrect Action. Thus, the robot can still recognize this object by

he new knowledge. Secondly, if the misjudged node has received

ositive rewards before, it would not be affected according to

he Weakened Action. Hence the object can still be recognized

orrectly. Finally, if the node has not received any positive rewards

o far, its class would be repealed by the Weakened Action. The

obot may forget the object’s name as the recognized shape

color) class is unknown. This result can also be solved through

RL. In conclusion, the robot mainly relies on humans to correct

istakes for lacking experience in the early stages of cognition.

ith the accumulation of knowledge and positive rewards, the

obot gradually has a capacity of coping with human mistakes by
tself. a  
. Experimental results 

Two types of experiments are performed to evaluate the pro-

osed architecture. The first type analyzes the influence of the de-

igned memory model on our cognitive structure (SODCA) in the

earning phase. Moreover, the second type illustrates the evalu-

tion of the complete interactive cognitive architecture (SODCA-

RL) during practice process. Both experiments are conducted on

 dataset with 20 common fruits and foods (see Fig. 4 ), which has

een previously used in PCN [14] . 

.1. Evaluation criteria 

Some researches on self-organizing network integrated with

L mainly assess the number of nodes, success rate and reward

37 , 38] . As our cognitive architecture adopts an open-ended learn-

ng way, the learning performance over time should also be evalu-

ted. Therefore, we combine the above metrics with an effective
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Fig. 4. The dataset of 20 common fruits and foods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Average number of nodes in each layer under different f (0). 

f (0) Theoretical 

forgetting 

time 

Average number of nodes 

Shape 

sample 

node 

Shape 

symbol 

node 

Color 

sample 

node 

Color 

symbol 

node 

Associative 

node 

0 N 92 39 80 27 60 

0.02 146 91 36 78 26 64 

0.025 117 85 37 73 22 60 

0.03 97 79 36 70 22 56 

0.035 83 76 37 64 23 59 

0.04 73 65 32 62 22 50 

Table 2 

Average number of forgotten nodes in each layer under different f (0). 

f (0) Average number of forgotten nodes 

Shape 

sample 

node 

Shape 

symbol 

node 

Color 

sample 

node 

Color 

symbol 

node 

Associative 

node 

0.02 5 3 3 1 3 

0.025 12 4 8 1 5 

0.03 21 5 12 2 7 

0.035 28 10 17 4 14 

0.04 32 14 30 7 21 

t  

n  

b  

t  

f  

e  

t

 

S  

t  

u  
evaluation protocol for open-ended category learning algorithm

applied in [26 , 62 , 63] . Moreover, there are three aspects of evalu-

ation criteria proposed as follows. 

(1) How much does it learn? We note the average number of

nodes in each network after each experiment to demon-

strate the learning results. 

(2) How fast does it learn? We record the number of nodes

in each layer and the number of categories over the on-

line learning and practice processes to indicate the learning

speed. 

(3) How well does it learn? Recognition accuracy is used to

evaluate the learning effectiveness. To assess the effective-

ness of reinforcement learning, we analyze the memory re-

tention, forgetting factors, and similarity thresholds of each

node after learning and practice. 

4.2. Results and evaluation 

4.2.1. Learning evaluation 

The cognitive algorithm is run in a computer and interacts with

a real trainer through a user interface, as shown in Fig. 5 . The Dis-

play area is used to show the input image, voice, extracted fea-

tures and name. The Process area shows the execution steps of the

cognitive algorithm. The Operation area provides operating buttons

for the trainer. During the learning phase, the trainer gives an im-

age and teaches the corresponding name. SODCA learns the visual

features as well as the name and then builds an audio-visual asso-

ciation as demonstrated in Process area. All objects in the dataset

are inputted one by one, and the order of instances is scrambled

each time. The methods of feature extraction and automatic speech

recognition have been introduced in our previous work [34] . 

The parameters of each self-organizing neural network are set

as in our previous work [34] . Partial parameters of the memory

model are set as M min = 0 . 1 , δ = 0 . 8 , γ = 0 . 2 , which are empiri-

cally found with respect to the best learning performance. Mem-

ory’s forgetting speed controlled by two forgetting factors must be
uned to provide a good balance between recognition accuracy and

umbers of nodes. Factor v not only affects the forgetting speed,

ut also determines memory retention. We set v (0) = 1 . 05 so that

he final memory retention tends to be a small value 0.0476. Factor

 only affects the forgetting speed, hence we conduct the learning

xperiment under different f (0). Every experiment is repeated 30

imes and the learning results are shown in Tables 1 and 2 . 

From Table 1 , the theoretical forgetting times indicate that

ODCA forgets more and more quickly as f (0) increases. Besides,

he SODCA with f (0) = 0 cannot forget any knowledge and is

sed as a reference standard for evaluating the effectiveness of the
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Fig. 5. An example that the trainer teaches SODCA in learning process. Firstly, the trainer clicks ‘Capture image’ to let SODCA see an apple and extract its contour and color 

histogram. Then, the trainer clicks ‘Capture voice’ and teaches the apple’s name. SODCA translates the sound into a string. Finally, the trainer clicks ‘Autonomic learning’ to 

let SODCA learn these representations and establish an audio-visual association. 

Table 3 

Average accuracy under different f (0). 

f (0) 0 0.02 0.025 0.03 0.035 0.04 

Average accuracy 90.79% 89.65% 89.55% 89.56% 87.73% 86.93% 
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emory model. The average number of nodes in Table 1 and the

verage number of forgotten nodes in Table 2 demonstrate that

igher f (0) contributes to forgetting more nodes. That suggests the

ODCA with the designed memory model has the ability to reduce

ach network’s redundancy. 

To validate the learning effectiveness, we test the average

ecognition accuracies under different f (0). The trainer shows

ODCA objects and assesses its recognized shapes, colors and

ames. The experimental observation manifests that SODCA can

uccessfully distinguish all colors while all mistakes stem from
Fig. 6. The performance of SODCA with f (0) =
ncorrect shapes and names. Table 3 indicates that the SODCA

ith f (0) from 0.02 to 0.03 can achieve comparable performance

ith the case of f (0) = 0 . But the accuracies of other two cases

ith higher f (0) are significantly poor for fast forgetting. Nodes

ay have been deleted before their memories are consolidated.

hereas, SODCA with low f (0) can strengthen memory promptly

o that the deleted nodes are mostly incorrect or redundant. Com-

ared with other cases, f (0) = 0 . 03 obtains the optimal cogni-

ive structure and competitive recognition accuracy simultaneously.

herefore, we select it as the default system parameter. A learning

xample of f (0) = 0 . 03 is illustrated in Figs. 6 and 7 . 

Fig. 6 shows the performance of SODCA over the online learning

rocess. Fig. 6 (a) reflects that SODCA can learn new knowledge as

ell as forget incorrect nodes. In Fig. 6 (b), both shape and color

ategories increase sharply at the beginning but gradually slow
 0 . 03 over the online learning process. 
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Fig. 7. The values of memory model with f (0) = 0 . 03 for each node in DT-SOINNs after learning. 

Algorithm 1 The memory model with IRL. 

Input: reward from the trainer r ( t ). 

1: for each node in DT-SOINNs or R-SOINN do 

2: if the node i is activated as the best matching node 

b then 

3: Update the activation number of node b : z = z + 1 . 

4: if r ( t ) > 0 then 

5: Strengthen: z r = z r + 1 , f i (z) = f i (z − 1) · δ2 z r 
r , 

v i (z) = v i (z − 1) + γr · z r , M i (t) = 1 . 

6: else 

7: Weaken: z p = z p + 1 , f i (z) = f i (z − 1) · δ2 z p 
p , 

v i (z) = 1 , M i (t) = 

exp (− f i (z)) · M i (t − 1) + ( exp (− f i (z)) − 1) · (1 / v i (z) − 1) . 

8: end if 

9: else 

10: Decay: M i (t) = 

exp (− f i (z)) · M i (t − 1) + ( exp (− f i (z)) − 1) · (1 / v i (z) − 1) . 

11: end if 

12: if M i ( t ) < M min then delete the node i . 

13: end if 

14: end for 

 

 

 

Algorithm 2 The action strategy of SODCA-IRL. 

Update Action: 

1: Update node b and its similarity thresholds TL and TH . 

Correct Action: 

1: Create a new sample node with an initial memory model. 

2: Reinforce its forgetting factor: v (1) = v (0) + γr and update its reward 

time z r = 1 . 

3: Encode new symbol s c s for shape or c c c for color, and create a new 

symbol node in the visual S-SOINN. 

Weakened Action : 

1: if z r = 0 for node b then 

2: Repeal its class: c b = 0 . 

3: Break up all connections between b and its neighbors. 

4: Reset its similarity thresholds: T H b = T L b = ε L · ‖ w b ‖ . 
5: Update the memory of each node using Algorithm 1 . 

6: if a cluster disappears as nodes are forgotten then 

7: Delete corresponding symbol node and associative nodes. 

8: end if 

9: end if 

Reactivated Action : 

4: if c b = 0 then 

5: Assign a new class to node b in DT-SOINNs: c b = max (C) + 1 . 

6: Reinforce its forgetting factor: v (z) = v (z − 1) + γr . 

7: Encode new symbol s c s for shape or c c c for color and create a new 

symbol node in the visual S-SOINN. 

8: end if 

down. That suggests SODCA can quickly learn new categories and

the variation of categories tends to be stable after SODCA masters

enough knowledge. What is more, SODCA can learn different cate-
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Fig. 8. Four situations in which the trainer interacts with SODCA-IRL in the practice process. (a) All recognized results are correct. The trainer chooses ‘Right’ which represents 

a positive reward for each result. (b) The shape of the pear is mistaken as that of a strawberry. The trainer chooses ‘Wrong’ which represents a negative reward for it. (c) 

SODCA-IRL forgets the peanut’s name. The trainer chooses ‘Wrong’ for name and gives the correct name. (d) The pepper is mistaken as an orange. The trainer chooses 

‘Wrong’ for shape and name, and provides its correct name. 

Fig. 9. The performance of SODCA-IRL with f (0) = 0 . 03 over the online learning and practice processes. 
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ories online and recognize the learned classes at the same time,

ather than separate these two processes. 

Fig. 7 demonstrates the learning results of memory models in

hape and color DT-SOINNs. The memory retention and forgetting

actors for most of the old nodes (whose numbers are small) are

ll obviously reinforced after learning. That suggests these nodes

ave formed long-term memory. However, some old nodes with

ow memory and high forgetting speed may be deleted if their

emories decay to lower than the forgetting threshold M min . Many
ew nodes (whose numbers are large) still keep initial forgetting

actors, which indicates they have not been activated yet. Whereas,

ome new nodes can maintain high memory, small f and large v ,

ecause they have received positive rewards. Therefore, the de-

igned memory model has abilities to remember the important

emory and forget redundant nodes. 

In each subfigure of Fig. 7 , there is an obvious threshold at

umber 30 where the curve’s tendency is different on its two

ides. Especially, the shape nodes curve’s tendency from number
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Fig. 10. The values of memory model with f (0) = 0 . 03 for each node in DT-SOINNs and R-SOINN after practice. 
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76 to number 30 is quite similar with the forgetting curve with-

out activation in Fig. 2 (c). The reason is that the memories of new

nodes without activation would gradually decay over time, while

the memory of number 30 is close to M min . Any other nodes with

smaller numbers have been either forgotten for lower memory or

formed long-term memory through activations. That is why the

threshold appears at this point. On top of that, the threshold is

not at a fixed position. It depends on the forgetting time of the

memory model, learning iterations and how many similar objects

the architecture meets. According to Table 1 , the theoretical forget-

ting time of SODCA-IRL with f (0) = 0 . 03 is 97. If there are enough

objects and all of them are different, the threshold would appear

at the 97th node from the bottom. Once nodes are activated by

similar objects, the position would be changed but not exceed the

limitation of 97. 

4.2.2. Practice evaluation 

In this section, the performance of SODCA-IRL is evaluated.

Four interactive situations are shown in Fig. 8 . In each practice

time, the trainer firstly clicks ‘Capture image’ to give SODCA-IRL an

object. Secondly, SODCA-IRL displays the recognized shape, color

and name in the user interface, and speaks the name through an

audio player. Thirdly, the trainer assesses the results and gives

appropriate rewards respectively. If the name is incorrect, the

trainer should also provide its real name to correct the mistake.
hen, the trainer clicks ‘Reinforcement’ to let SODCA-IRL receive

hese rewards. Finally, SODCA-IRL executes appropriate actions in

lgorithm 2 to adapt its representations of this object and shows

he reinforcement results in the Display area. 

The experiments for practice are based on the results of the

earning phase with f (0) = 0 . 03 , which can provide initial val-

es for each state, action and their associations of IRL. All ob-

ects learned before are tested one by one. Other parameters

re set as δr = 0 . 5 , δp = 2 , γr = 0 . 4 . We also compare SODCA-IRL

ith two other cognitive architectures: PCN [14] and our previous

ork [34] to validate its learning effectiveness. During the practice

hase, the SODCA-IRL averagely deletes 41 shape sample nodes,

4 shape symbol nodes, 25 color sample nodes, 4 color symbol

odes and 16 associative nodes. At the same time, it also adds 23

hape sample nodes, 24 shape symbol nodes, 1 color sample node,

 color symbol node and 30 associative nodes for correcting its

istakes. From 176 tests for all objects, the trainer averagely con-

ucts 146 positive rewards and 30 negative rewards. The practice

esults and comparisons with two other cognitive architectures are

eported in Table 4 . 

From Table 4 , SODCA-IRL produces a higher average accuracy

han PCN and our previous work. Specially, the value of average

ccuracy is enhanced to 99.24% by SODCA-IRL. That indicates our

ethod can achieve an excellent performance of learning object

oncepts online. Besides, the accuracy is also higher than all results
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Fig. 11. The similarity thresholds of each node in shape and color DT-SOINNs after learning and practice. 

Table 4 

Average number of nodes in each layer after the whole cognitive process. 

Cognitive 

architecture 

Average number of nodes Average 

accuracy 
Shape 

sample 

node 

Shape 

symbol 

node 

Color 

sample 

node 

Color 

symbol 

node 

Associative 

node 

PCN [14] 67 22 44 18 61 83.98% 

Our previous 

work [34] 

94 34 73 22 57 90.02% 

SODCA-IRL 80 52 55 23 85 99.24% 
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f the learning process in Table 3 . This implies IRL can signifi-

antly improve the learning effectiveness of self-organizing neural

etworks. The reason is that IRL can make up the disadvantage of

elf-organizing neural network that it cannot get feedback to cor-

ect mistakes autonomously. In addition, the numbers of two sam-

le nodes are sharply reduced compared with our previous work,

ecause both of the incorrect and redundant nodes are deleted.

lthough the numbers of two symbol nodes and the associative

odes are more than our previous work, these increased nodes are

reated for correcting its mistakes. A practice case is illustrated in

igs. 9 and 10 . 

In Fig. 9 , the first 176 iterations are the learning process and

he remaining are the practice process. The number of shape nodes

ecreases significantly but the number of shape categories still

ncreases during the practice period. The reason is that SODCA-

RL not only removes redundant nodes but also quickly forgets

ome incorrect representations after receiving negative rewards,

nd the new nodes are created for correcting inappropriate shapes.

olor categories are more stable despite the decline of color nodes,
hich indicates that all forgotten color nodes are redundant. The

umber of associative nodes increases as new associations are gen-

rated after each error correction. But the incorrect associations

re also quickly forgotten. Therefore, SODCA-IRL can effectively

elete redundant nodes as well as incorrect representations and

upplement new nodes to correct its mistakes promptly. 

Fig. 10 presents the values of memory model for each node

fter practice. Compared with the learning results in Fig. 7 , the

ld shape and color nodes are reinforced more heavily. They have

igher memory retention and their forgetting speeds approach to

. Such observation demonstrates that SODCA-IRL can promote the

ormation of long-term memory. The new nodes of shape and

olor, which are generated in practice process for error correction,

re still going through the forgetting process. As associative nodes’

emories are just adapted in the practice process, they are not

s stable as shape’s memories. Some associative nodes with high

emories, f < 0.03 and v > 1.05 have received positive rewards and

ormed long-term memories. Whereas, some old associative nodes

ave not been activated yet as their forgetting factors still keep

nitial values. They would be forgotten in the next iteration be-

ause their memories have been lower than the forgetting thresh-

ld M min . Whereas, these new associative nodes with initial for-

etting factors but high memories would not be deleted in short

erm. There are two nodes with extremely high f in Fig. 10 (b). Cor-

espondingly, their memories and v are also very small. The reason

s that they have received a negative reward and would be quickly

orgotten in the next iteration. Therefore, SODCA-IRL has abilities

o remember correct knowledge and forget incorrect representa-

ions. 

We compare the similarity thresholds of shape sample nodes

nd color sample nodes after learning and after practice separately.
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Fig. 12. An example that the trainer gives an incorrect reward to the correct shape. 

Fig. 13. An example that the trainer gives a positive reward to the incorrect shape. 
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Appendix A 

Algorithm 3 SODCA. 

Input: receive the input object and extract its shape feature s s ( t ) and color 

feature s c ( t ); receive name n ( t ). 

DT-SOINN : 

1: Find the best marching node b ∗ ( ∗ represents s or c ). 

2: if b ∗ dose not exist or ‖ s ∗(t) − w b ∗ ‖ / ‖ w b ∗ ‖ > ε H then 

3: Create a new class node r ∗ , and the learned class c ∗ = max ( C ∗) + 1 ( C ∗

is a set of cluster). 

4: Initialize its memory model: M r ∗ (0) = 1 , f r ∗ (0) = f (0) , v r ∗ (0) = v (0) . 

5: else if ‖ s ∗(t) − w b ∗ ‖ / ‖ w b ∗ ‖ < ε L or ‖ s ∗(t) − w b ∗ ‖ < T L b ∗ then 

6: Update node b ∗ and its forgetting factors of using (2) and (3). 

Meanwhile, c ∗ = c b ∗ . 

7: else if 2 · T L b ′ ∗ > T L b ∗ + T L x then go to Step 6. 

8: else if ‖ s ∗(t) − w b ∗ ‖ > T H b ∗ then go to Step 3 and 4. 

9: else create a same class node r ∗ and c ∗ = c b ∗ . Initialize its memory 

model as step 4. 

10: Update the forgetting factors of b ∗ using (2) and (3), and update 

t z of b ∗ . 

11: end if 

12: end if 

13: end if 

14: end if 

15: Update the memory of each node using (1), and delete nodes whose 

memories are lower than M min . 

16: if a cluster disappears as nodes are forgotten then 

17: Delete corresponding symbol node and associative nodes. 

18: end if 

19: Output the cluster c ∗ to the visual symbol layer. 

LD-SOINN : 

1: Find the best marching node b n . 

2: if the Levenshtein Distance L (n (t) , w b n ) = 0 then update the node b n and 

c n = c b n . 

3: else create a new name node r n , and c r n = max ( C n ) + 1 . 

4: end if 

5: Output the cluster c n to the auditory symbol layer. 

S-SOINN: 

1: Receive the clusters c s , c c and c n , and encode them as symbols 

a s (t) = s c s , a c (t) = c c c and A (t) = n c n . 

2: if the nodes representing the symbols exist then update these nodes. 

3: else create new symbol nodes for new symbols. 

4: end if 

5: Output S(t) = { a s (t ) , a c (t ) } and A ( t ) to the associative layer. 

R-SOINN : 

1: Receive S ( t ) and A ( t ) from the symbol layers. 

2: if a node b a can be activated by the state-action pair { S ( t ), A ( t )} then 

update the node b a . 

3: else if S ( t ) exists but A ( t ) is not line with the node’s auditory part then 

4: R-SOINN returns a conflicting signal to solve the problem. 

5: else if A ( t ) exists but S ( t ) is not line with the node’s visual part then 

6: R-SOINN returns a guidance signal to adjust the learned knowledge 

in DT-SOINN and S-SOINN. 

7: else create a new associative node with an initial memory model. 

8: end if 

9: end if 

10: end if 
s shown in Fig. 11 , the numbers of shape nodes and color nodes

oth decrease and the values of these similarity thresholds are all

djusted obviously through the practice process. In particular, the

ntra-class similarity threshold TL is extended and the between-

lass similarity threshold TH shrinks. This means the architecture

ends to be mature, because it chooses to update the network

ather than create a new node for the same class features. There-

ore, IRL can promote the development of the cognitive architec-

ure by introducing human guidance. 

Furthermore, we validate the ability of SODCA-IRL to cope with

he trainer’s mistakes. A case that the trainer misjudges the cor-

ect shape of onion is shown in Fig. 12 (a). SODCA-IRL creates a

ew class shape node and a new association to learn the correct

epresentations. When meeting an onion again, SODCA-IRL may

till recognize it correctly by the new association (see Fig. 12 (b))

r the old association as shown in Fig. 12 (c). But SODCA-IRL

ay also forget the onion’s name due to the incorrect advice in

ig. 12 (d). The architecture can assign a new class to the shape

nd build a new association after the trainer gives correct rewards

nd name. Fig. 12 (d) can also be used to prove that SODCA-IRL is

ble to solve the mistakes that the trainer gives incorrect advice to

ame. 

Another case that the trainer misjudges the incorrect shape of

he radish is also conducted. In Fig. 13 (a), SODCA-IRL recognizes

he shape of the radish as that of a peanut. However, the trainer

ives a positive reward to the shape, which allows SODCA-IRL

emember this incorrect concept. When the architecture meets

 radish again, it makes the same mistake (see Fig. 13 (b)). Then,

he trainer gives a negative reward to the shape so that the

rchitecture creates a new class shape sample node and a new

ssociation. Finally, SODCA-IRL can recognize the radish correctly,

s shown in Fig. 13 (c). These experiments demonstrate that our

rchitecture can use the proposed action strategy and interaction

ith the trainer to solve human mistakes. 

. Conclusion 

In this paper, a self-organizing developmental cognitive ar-

hitecture with interactive reinforcement learning (SODCA-IRL)

s proposed for online object concepts learning and error cor-

ection through human-robot interaction. In the proposed algo-

ithm, a memory model is designed to integrate the hierarchical

elf-organizing neural networks with interactive reinforcement

earning. The feedback signals from IRL adjust two forgetting fac-

ors to control the forgetting speed and memory strength, which

auses nodes with high memory retention to be remembered and

hose with low memory retention to be forgotten. Another unique

roperty of the proposed scheme is the reinforcement strategy

or the practice phase, which can help to remember the correct

nowledge and quickly forget the incorrect representations. More-

ver, it also contributes to coping with human mistakes. Extensive

xperiments carried on a common dataset elect an appropriate

nitialization of the forgetting factor f by the comparison with

ifferent values. Furthermore, the comparisons with two other

ognitive architectures, i.e., PCN and our previous work, are im-

lemented to evaluate the learning effectiveness of SODCA-IRL.

he results show that SODCA-IRL could improve the recognition

ccuracy significantly and reduce the redundancy of network. 
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Appendix B 

Algorithm 4 SODCA-IRL. 

Input: the shape feature s s ( t ) and color feature s c ( t ) of the new arriving 

object; human reward r s ( t ), r c ( t ), R ( t ); correct name n correct . 

Output: recognized shape a s ( t ), color a c ( t ), and name A ( t ). 

1: Receive input sample s s ( t ) and s c ( t ) to DT-SOINNs. 

2: Find the best matching node b s and b c , and transmit their cluster 

numbers to the visual S-SOINN. 

3: Activate symbol nodes to output the shape and color actions a s ( t ) and 

a c ( t ). 

4: Assemble the state S(t) = { a s (t ) , a c (t ) } and transmit it to R-SOINN. 

5: Find the activated associative node b a and recall the name to output 

action A ( t ). 

6: if R (t) = 1 then 

7: if r s (t) = 1 (or r c (t) = 1 ) then 

8: Update the memory of each node in DT-SOINN using Algorithm 1. 

9: Execute the Update Action for node b s (or b c ). 

10: else 

11: Execute the Correct Action for node b s (or b c ). 

12: Execute the Weakening Action for node b s (or b c ). 

13: end if 

14: if S-SOINN has created a new symbol then 

15: Create a new associative node and initialize its memory model. 

16: end if 

17: else 

18: LD-SOINN learns the correct name n correct . 

19: if r s (t) = 1 (or r c (t) = 1 ) then 

20: Update the memory of each node in DT-SOINN using Algorithm 1. 

21: Execute the Reactivated Action for node b s (or b c ). 

22: Execute the Update Action for node b s (or b c ). 

23: else 

24: Execute the Correct Action for node b s (or b c ). 

25: if c b = 0 then 

26: Update the memory of each node in DT-SOINN using Algorithm 1. 

27: else 

28: Execute the Weakening Action for node b s (or b c ). 

29: end if 

30: end if 

31: Create a new associative node and initialize its memory model. 

32: end if 

33: Update the memory of each node in R-SOINN using Algorithm 1. 
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