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a b s t r a c t 

Online reinforcement learning agents are now able to process an increasing amount of data which makes 

their approximation and compression into value functions a more demanding task. To improve approx- 

imation, thus the learning process itself, it has been proposed to select randomly a mini-batch of the 

past experiences that are stored in the replay memory buffer to be replayed at each learning step. In 

this work, we present an algorithm that classifies and samples the experiences into separate contextual 

memory buffers using an unsupervised learning technique. This allows each new experience to be as- 

sociated to a mini-batch of the past experiences that are not from the same contextual buffer as the 

current one, thus further reducing the correlation between experiences. Experimental results show that 

the correlation minimizing sampling improves over Q-learning algorithms with uniform sampling, and 

that a significant improvement can be observed when coupled with the sampling methods that prioritize 

on the experience temporal difference error. 

© 2020 Elsevier B.V. All rights reserved. 

1

 

s  

f  

o  

W  

o  

t  

s  

c  

a

 

k  

d  

i  

l  

w  

p

 

a  

w  

(

i  

o  

o  

e  

s  

m  

g  

r  

a  

o  

p  

a  

i  

t  

c  

e  

m  

b  

c  

c  

p  

p  

h

0

. Introduction 

Temporal difference (TD) types of reinforcement learning (RL)

uch as Q-learning [1] are model-free learning algorithms that dif-

er from a more basic approach as that of Monte Carlo meth-

ds [2] in the way they update their estimates about the states.

hile Monte Carlo methods update their estimates when the final

utcome is known, TD learning algorithms bootstrap , or build upon

he previous estimates, in order to obtain the current one, while

ampling states from the environment. As the process of learning

ontinues, the previous estimates become increasingly more reli-

ble because the current estimates are continuously updated. 

When dealing with high dimensional spaces it is impractical to

eep a table of the value estimates for each agent’s state, and up-

ate them as they occur. Instead, the value of the state is approx-

mated using an artificial neural network (ANN). In this case, the

earning process becomes a sequential update of the neural net-

ork weights � at each learning step in order to obtain a better

rediction about the value of that state. 

The sequential nature of the TD updates induces correlation

mong the samples used to train a value approximating ANN,

hich in turn leads to instability and even divergence of the learn-
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ng process [3] . In order to reduce the correlation in the sequence

f experiences, some online reinforcement agents use the mem-

ry of past experiences, which can be randomly replayed after

ach learning step in order to make the learning process more

table [3–5] . These learning mechanisms benefit from a replay

emory structure which is efficient in optimizing the stochastic

radient descent (SGD) algorithm used to train the artificial neu-

al network approximator that represents the core of the RL mech-

nism. The approach presented here further improves the ability

f the replay memory to reduce the correlation among the re-

layed experiences. Instead of using a single memory replay buffer

nd treating all experiences evenly, the proposed Correlation Min-

mizing Memory , or COMM , introduces a finite number of contex-

ual replay memory buffers, each of which holds the experiences

orresponding to a specific context. In order to achieve this, each

xperience of an agent is clustered into the same amount of di-

ensions or classes as the number of contextual memory buffers,

ased on their similarity. The more an experience belongs to a spe-

ific class the more are the chances of it being sampled into the

ontextual memory buffer corresponding to that class. The main

rinciple of the correlation minimizing algorithm is found in the re-

lay of clustered memories; each experience is supported by re-

laying the past experiences from memory replay memory buffers

hat are not belonging to its cluster instead of the random, out

f context replay used, e.g., in [3–5] . Experimental results show

hat COMM obtains an improvement in learning performance over

https://doi.org/10.1016/j.neucom.2020.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.004&domain=pdf
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the standard Q-learning with uniform sampling and shows a very

significant improvement when combined with prioritized sampling

based on temporal difference error [6] . 

2. Related work 

The works by Kretchmar et al. [7] , Mnih et al. [8] , Ong

et al. [9] and Clemente et al. [10] presented asynchronous paral-

lel learning methods which were addressing the correlation prob-

lem in replay memory, which scales nicely in the work by Nair

et al. [11] and Sutton et al. [12] . The approaches are based on the

idea of multitask learning [13] and are able to asynchronously ex-

ecute multiple instances of agents in multiple instances of the en-

vironment and use the data from every instance to perform the

learning itself. Since the agents were exploring different parts of

the environments in parallel, the correlation was removed from

the experience stream. These approaches, summarized well in the

work of Bellemare et al. [14] have a reputation of being compu-

tationally demanding because of its parallelism of agents and en-

vironments. They are also limited in their applicability to real-life

physical learning problems as opposed to simulations. In the ap-

proach presented by Shaul et al. [6] the replay memory mecha-

nism was improved by prioritizing on the experiences with higher

temporal-difference or TD error. These experiences are potentially

more valuable for training the approximator, since they carry more

surprise over the predictions than others. 

An incremental improvement on the proposal of Schaul

et al. [6] was presented by Ramicic and Bonarini [15] , where an

additional sampling criteria based on the Shannon’s entropy or in-

formational potential of the state space was combined with the TD

one in order to induce a more efficient training of the approxi-

mator. Ramicic and Bonarini [16] also integrated dynamics of the

replay memory sampling in order to improve the performance of

the machine learning algorithm. This approach took advantage of

a genetic algorithm to evolve an experience filter ANN in charge

of deciding whether a single experience will be sampled into re-

play memory. Clustering techniques similar to the ones in COMM

have been used to optimize the learning methods of other kind,

such as genetic algorithms in the work by Jin et al. [17] . A more

general approach of reducing correlation in ANN when using mul-

tiple dataset views or modalities is a concept of correlation neural

networks introduced by Chandar et al. [18] that also uses an au-

toencoder technique to form the different views or modalities. This

approach has been also extended to deep neural network architec-

tures in the work by Benton et al. [19] and Cogswell et al. [20] . 

3. Theoretical background 

The aim of the learning process is to create a policy π which

maps the current state of an agent to a preferred action in order

to maximize its reward potential in the long run [2] . A RL agent

interacts with its immediate environment in discrete time steps

that are defined as transitions of a Markov Decision Process or MDP

and represented by a tuple ( s t , a t , r t , s t+1 ) . At each time step the

agent updates its policy π making it closer to the optimal policy

π ∗, which is represented by an optimal action-value function Q 

∗( s,

a ) shown in Eq. (1) and defined as the maximum expected return

while following the policy π . 

Q 

∗(s, a ) = max 
π

E [ R t | s t = s, a t = a, π ] (1)

Bellman’s Eq. (2) provides an expectation of the Q value which

is defined as the immediate reward received plus the discounted

value of the expected next state. 

Q i +1 (s, a ) = E 

[ 
r + γ max 

a ′ 
Q i (s ′ , a ′ ) | s, a 

] 
(2)
s  
The expectation value is crucial to the learning process as it

an tell how wrong the previous estimate of the Q value was. This

ifference between the previous estimation and the expectation is

alled temporal difference or TD error and it is indicative of how

uch the current estimate of the value of the state-action pair is

rong. Knowing this error, it is possible to perform the main learn-

ng loop by updating the prediction for the state-action pair so to

ake it closer to the expectation. 

.1. Approximation 

When faced with high dimensional state spaces it is highly im-

ractical to keep the estimates of the Q value for each combination

f state and action, even more so when we are dealing with con-

inuous state representations. In this case, the best option is to ap-

roximate Q 

∗( s, a ) using a function approximator such as an ANN.

 function approximation makes it possible to predict a Q value

or each of the possible actions available to the agent by providing

he agent’s current state as input of the ANN. After each time step,

he expected Q value can be computed using Eq. (2) and compared

o the estimate that the function approximator provides at its out-

ut Q ( s, a ; �) ≈ Q 

∗( s, a ) by forwarding the state s 0 to its input.

he difference between the previous estimate of the approximator

nd the expectation is the TD error, and it can be backpropagated

hrough the ANN in order to update the current approximation of

 

∗( s, a ). In order to train the ANN to approximate a newly observed

ransition an expectation of Q value is obtained by Bellman equa-

ion Eq. (2) which becomes the target y . In order to make the cur-

ent prediction ˆ y closer to the target y , a parameter update on �

s performed in order to minimize the loss function L ( �) shown in

q. (3) . 

 (�) = 

1 

m 

m ∑ 

i =1 

(y i − ˆ y i ) 
2 (3)

The actual backpropagation is performed using Stochastic Gradi-

nt Descent (SGD) on the loss L i ( �i ) according to Eq. (4) : 

 �i 
L i (�i ) = ( y i − Q(s, a ;�i ) ) ∇ �i 

Q(s, a ;�i ) , (4)

here y i = r + γ max a ′ Q(s ′ , a ′ ;�i −1 ) is in fact our Bellman equa-

ion defining the target value. 

Eq. (4) formally represents the full update using SGD for ap-

roximating Q(s, a, �) = Q 

∗(s, a ) . A SGD is a method for solving a

inimization problem by updating the parameter vector � con-

isting of weights w . In order to find out how will an update on a

pecific weight parameter w i influence the change in the loss func-

ion L , it is possible to consider its derivative with respect to that

arameter as reported in Eq. (5) . 

L ≈ ∂L 

∂w i 

�w i (5)

Since the aim is to minimize the loss function L , the weight w i 

an be modified in the direction that is opposite of the derivative

y a small number α called learning rate . 

 i = w i − α
∂L 

∂w i 

(6)

. Model architecture and learning algorithm 

The main part of the learning mechanism represents the learn-

ng loop outlined in section ( b ) of Fig. 1 . Here, the agent iteratively

erforms an interaction within its environment and uses the newly

btained experience to update its belief about the best action to

ake depending on the perceived state. During the transition stage,

n agent performs an action a t that transitions the agent from the

tarting state s t to the next s t+1 while receiving the immediate
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Lorem ipsum

Fig. 1. General learning model architecture including correlation minimizing block : ( a ) Array of M contextual replay memories, each of which stores the last N experiences 

of its own class in a sliding window buffer for later replay; ( b ) Main learning loop consists of: (1) the transition in which the agent performs an action a t , receives an 

immediate reward r t , and transitions to the next state s t+1 ; (2) performing an update on main function approximator ANN ( d ) by backpropagating the TD error as a gradient 

of the a t output; (3) shifting the states for the next iteration in which the s t becomes s t+1 ; (4) forwarding the current state through a function approximator in order to 

find out the best candidate action a t based on its Q value for ε-greedy policy; ( d ) A block implementing Q-value function approximator taking the starting state s t in input 

and predicting Q-values for each of the available actions on its output; ( c ) Raw stream of the experiences that are perceived, representing unfiltered cognition of an agent; 

( f ) Context augmented block implemented as an autoencoder neural network performing unsupervised clustering of the experiences into M dimensions or classes, each of 

which determines the probability of the selected experience being sampled into the corresponding contextual replay memory buffer. 
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eedback from its environment in the form of a scalar reward r t .

hese parameters form a tuple e t = ( s t , a t , r t , s t+1 ) that fully de-

ermines a transition and contains every information is needed to

erform a learning step. After an agent has transitioned and the

alues of the tuple components are obtained, it is possible to ap-

ly Eq. (2) to calculate the expected value for the state-action pairs

 ( s t , a t ). The update is performed in the module of section ( d ) of

he learning loop shown in Fig. 1 , by adjusting the weights of the

pproximating neural network using SGD in such a way that it is

ossible to minimize the squared error of the difference between

he newly calculated expected Q-value and its current estimate. Af-

er a learning update, the states are updated and a new iteration

f the learning loop is performed. This loop creates a stream of

xperiences ( c ) represented by a sequence of transition tuples e t .

n the basic approach of Q-learning (e.g., [3–5] ), these experiences

re sampled in a sliding window replay memory buffer from which

 number of them are randomly selected to be reused after each
teration in order to perform additional training on approximator

eural network. 

With COMM approach, instead of having only one replay mem-

ry buffer, we have M contextual replay memory buffers as shown in

ection ( a ) of Fig. 1 , each of which is corresponding to one of the

 classes of the experiences coming from the experience stream .

efore being stored, each experience is clustered using an unsuper-

ised learning method to decide in which contextual replay mem-

ry it has to be sampled. To determine the class of the experi-

nce, an autoencoder neural network shown in ( f ) is used to predict

he state s t part of an experience from the same s t on the input.

he autoencoder performs a reduction of the dimension of the per-

eived state space from its original size to M dimensions or classes

sing a bottleneck hidden layer in the middle consisting of M fully

onnected neurons. The process similarly performs SGD in order to

ake the weights of a neural network a better predictor of itself

y minimizing the difference between the predicted and the actual
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Algorithm 1 Q-learning with COMM-A. 

Initialize M instances of replay memory D of capacity N

Initialize autoencoder neural network A with M neurons in the 

middle layer 

Initialize action-value function Q with random weights 

for episode = 1, E do 

for t = 1, T do 

With probability ε select a random action a t 
otherwise select a t = arg max a Q 

∗(s t , a ;�) 

Execute action a t , observe reward r t and state s t+1 

Train A by backpropagating s t with same s t on the input 

Forward s t through A and obtain a M-dimensional vector 

of activation values from neurons on the middle layer ( C 1 , 

C 2 ,…, C M 

) 

for C n = 1 , M do 

I n = abs (clamp[0 , 1](C n ) − 1) 

end for 

for i = 1, M do 

Store transition ( s t , a t , r t , s t+1 ) in i th repla y memory D i 

according to the probability of the i th activation P (C i ) 

end for 

Sample random batch of transitions ( s t , a t , r t , s t+1 ) from i th 

replay memory D i according to the probability of the i th 

activation P (I i ) 

set y i = 

{
r i , terminal s i +1 

r i + γ max a ′ Q(s i +1 , a 
′ ;�) , nonterminal 

Perform a gradient descent step on (y i − Q(s i , a i ;�)) 2 ac- 

cording to Eq. (4) 

end for 

end for 
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state given by the experience. The M dimensions or classes are ef-

fectively encoded in the M neuron layers and, in order to find the

class of a single experience, the state s t is forwarded through the

network, and a vector of the M activation values of the bottleneck

layer V C = (C 1 , C 2 , . . . , C M 

) is obtained. Since the vector V C contains

the clusters which the current experience belongs to, we define

the probability of the experience being sampled into i th contextual

replay memory or CRM i as the activation value of the i th element

of the vector V c as defined in Eq. (7) . 

P (store (CRM i )) = C i (7)

The more the experience belongs to a specific class the higher

the probability it will be sampled into the CRM of that specific

class. In order to create a memory replay that would support the

minimization of correlation, we sample the required mini-batch

according to the different probabilities. Depending on the applica-

tions we introduce two modes of sampling that differ in their com-

plexity. COMM-A represents a more complex method that reduces

the correlation in a twofold way: between current experience and

the experiences stored in replay memory, and, additionally, among

the replay memory experiences themselves. This method is suited

for the Q-learning applications that use a simpler Q function ap-

proximator and thus rely on smaller batches during the training

phase. The second method, COMM-B , allows the proposed approach

to scale up to more demanding problems such as Atari games [3,5] ,

which are characterized by much larger state spaces approximated

using a more complex class of deep neural network architectures

based on convolutional layers. Because of the increased dimension-

ality, this type of approximator requires much more training data

than the simpler approaches and can additionally benefit from a

pre-training procedure that is performed on randomly generated

state space samples computed before the RL process as shown

in Algorithm 2 . In order to address this issue the agent’s expe-

riences in [3,5] are collected in a replay buffer of larger capacity

over millions of learning steps and also sampled in larger batches.

The shear size of the replay buffer batch in complex Atari games

problems makes learning from the current experience at each step

relatively trivial. COMM-B simplifies the sampling in these type of

problems by only reducing correlation between the experiences in

the replay memory regardless of the current one. 

4.1. COMM-A 

Finding out which contextual replay memory contains experi-

ences that are not in the context of the current memory is easy

as creating an inverted vector V I = (I 1 , I 2 , . . . , I M 

) by clamping each

value of the V C between 0 and 1 and subtracting 1 from it as

shown in Eq. (8) 

I i = clamp[0 , 1](C i ) − 1 (8)

Now the COMM-A is able to replay a mini-batch from the con-

textual replay memories that are least correlated with the cur-

rent memory using inverted probabilities in vector V I as defined

in Eq. (9) 

P (replay (CRM i )) = I i (9)

Algorithm 1 showcases the details about the process of context

inhibition in a way that each experience is supported by the expe-

riences that are the least correlated to replaying experiences from

the contextual buffers that are determined by the inverted classes

vector V I . 

4.2. COMM-B 

The goal of the simpler version of the sampling, COMM-B , is

only to minimize the correlation between experiences in memory.
ecause the experiences in different memory replay buffers belong

o different uncorrelated classes, in this variation the experiences

re sampled uniformly from each of the M buffers as reported in

lgorithm 2 . 

. Experimental setup 

The evaluation was performed in a variety of environments

ith different characteristics which also implemented different

ypes of function approximation. The first set of experiments ap-

lied COMM-A algorithm , and have used a simpler Q function

pproximator with linear network layers only. This set includes

he Waterworld environment ( Section 5.1 ) as implemented in a

einforceJS framework [21] , and the Lunar Lander environment

ection 5.2 which is a part of OpenAI Gym [22] . The set of learning

roblems that require a more complex function approximator im-

lemented using convolutional network layers include a selection

f Atari games as reported in Section 5.3 . 

.1. Waterworld environment - COMM-A 

Waterworld environment [21] as showcased in Fig. 2 consists

f moving food pieces, instantiated at random positions with ran-

om speed and direction, and capable of bouncing on the walls

raming the environment. The food pieces come in two disposi-

ions: “good”, which provides a positive reinforcement of +1 when

atched by the agent, and “bad”, which results in a negative re-

nforcement value of −1 upon contact with the agent. The envi-

onment contains an equal amount of good and bad food. Once

 piece of food has been consumed, a new piece of food of the

ame type is generated in a random position, with random speed,
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Algorithm 2 Q-learning with COMM-B. 

Initialize M instances of replay memory D of capacity N

Initialize and pre-train autoencoder neural network A with M 

neurons in the middle layer 

Initialize action-value function Q with random weights 

for episode = 1, E do 

for t = 1, T do 

With probability ε select a random action a t 
otherwise select a t = arg max a Q 

∗(s t , a ;�) 

Execute action a t , observe reward r t and state s t+1 

Train A by backpropagating s t with same s t on the input 

Forward s t through A and obtain a M-dimensional vector 

of activation values from neurons on the middle layer ( C 1 , 

C 2 ,…, C M 

) 

for M n = 1 , M do 

Sample random transition ( s t , a t , r t , s t+1 ) from M n th re- 

play memory buffer 

end for 

Sample random batch of transitions ( s t , a t , r t , s t+1 ) from i th 

replay memory D i according to the probability of the i th 

activation P (I i ) 

set y i = 

{
r i , terminal s i +1 

r i + γ max a ′ Q(s i +1 , a 
′ ;�) , nonterminal 

Perform a gradient descent step on (y i − Q(s i , a i ;�)) 2 ac- 

cording to Eq. (4) 

end for 

end for 

Fig. 2. A single rendered frame from the Water world environment depicting an 

agent together with its sensor array learning to consume good (red) and avoid bad 

(green) food sources. 
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Fig. 3. A single rendered frame from Lunar Lander environment depicting a craft 

firing its thrusters in order to land on the designated area marked by two yellow 

flags. 
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n order to keep the distribution constant. The agent’s goal is to

aximize its expected reward in the long run by learning to con-

ume good food pieces, while avoiding the bad ones. The agent can

ake at each step one out of five possible actions: left, right, up,

own, and stay. Its perception of environment is implemented as

0 equally distributed directional sensors, each capable of perceiv-

ng five continuous variables: distances and velocities components

n x and y to good food and bad food, as well as distances to the

alls. These, along with the perception of two additional variables

or agents own speed give a high dimensional state space of 152

ontinuous variables. 

Approximation of Q ( s, a ; �) ≈ Q 

∗( s, a ) is done using an ANN

ith one hidden fully connected layer of 100 neurons that are pro-

ucing as output the Q values of all five actions available to the
gent: up, down, left, right, stay, given the state space of 152 di-

ensions as input. The learning rate of an approximator α is set

o a low 0.05 and the capacity of the each of the 6 contextual re-

lay memory buffers N was 10 0 0, while the non-COMM configura-

ions were implemented with a single buffer of 60 0 0 experiences.

he value of ε was set to 0.2 at the beginning and adjusted to

.1 at the mid-point of the set learning period to exploit more the

earned behavior. The discount factor γ was set to 0.9. 

.2. Lunar lander environment - COMM-A 

The second of the simpler environments, Lunar Lander, repre-

ents a more realistic example of rocket trajectory optimization,

hich is a common problem in the optimal control area. 

It consists of a craft attempting to land on a designated plat-

orm marked by two flags and set on an uneven terrain under the

imulated weak moon gravity as depicted in Fig. 3 . The craft is

quipped by one main thruster pointing downwards and two stabi-

ization thrusters on each side. The craft should be able to manipu-

ate the three thrusters in order to safely land and counterbalance

he gravitational pull. This accounts for an agent with four discrete

ctions: do nothing, fire main thruster, fire left thruster, and fire

ight thruster. The craft senses the environment using 6 continu-

us and 2 boolean variables respectively indicating: the x position

f the craft relative to the platform, its y position, the crafts an-

le, x and y components of velocity, angular velocity together with

 variable for each landing leg valued 1 if the specific leg of the

raft is in contact with the ground. This creates a 8-dimensional

tate space. 

Reinforcement function provides a reward from 100 to 140 if

he lander moves from top of the screen to the landing pad and

chieves 0 speed at the landing. The function creates the reward

y taking into the account the proximity of the craft to the landing

latform, whether the legs are in contact with the ground and how

any fuel the craft have consumed so far. 

Lunar Lander is an episodic task and a single episode ends if

he lander crashes or rests on the ground receiving additional re-

nforcement of -100 or +100. 

The experiments were performed on 1200 episodes which

roved to be more than enough for an agent to reach the score

f +200 which indicates that the environment is considered solved

y the framework. The exploration-exploitation parameter ε was

ecayed from the starting value of 1.0 during the simulations by

ultiplying it by 0.998 after each episode reaching a low value of

.06 at the end of the final episode and γ was set at 0.99. The Q-
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Fig. 4. Rendered frames from variety of tested Atari games also representing the agent’s state space used in function approximation during learning. 
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value approximating ANN was initialized with two hidden layers

which consisted of 128 and 64 nodes respectively with the learn-

ing rate parameter set at a low 0.0 0 01. 

Memory buffer was set to 12,0 0 0 for the non-COMM and 20 0 0

x 6 for the COMM implementations making the two configurations

identical in memory capacity. 

5.3. Atari games - COMM-B 

Atari 2600 games [3,5] represent a radically different challenge

to RL as their state space consists of the rendered pixels of the

actual game: in this case the machine learning algorithm is pre-

sented with an input that is created or “optimized” for a human

player senses. Under the Gym framework [22] the Atari games

state space is defined as a RGB image of the screen as shown in

Fig. 4 and represented by an array of dimension (210,160,3), while

the action space is game dependent. 

The learning problems of this type are usually solved within

several million learning steps. For this reason the memory capac-

ity of a single replay buffer in the baseline was set to a rather high

72,0 0 0 experiences while the COMM approaches used a capacity of

8 × 90 0 0. The epsilon parameter ε was decayed using a simple
xponential function from 0.7 to 0.05 thorough the training steps

hile γ was 0.9. 

The main difference compared to the previous environments is

hat Atari games rely on a more complex convolutional neural net-

ork architecture (CNN, or ConvNet) in order to approximate the

 value function. The raw image input was pre-processed into a

1,84,84) array by cropping and converting the RBG channels into

rayscale. The approximator itself was implemented with a con-

olutional input layer with kernel size of 8 followed by two hid-

en convolutional layers implementing gradually decreasing ker-

el sizes. The output from the convolutional layers was channeled

hrough a hidden intermediate linear layer to an output layer,

hose outputs were an approximation of Q values, one output for

ach of the actions available to the agent. Because of the larger

vailability of learning data and considering the CNN architecture

he meta-parameter learning rate α was set to the rather low value

f 0.0 0 0 015. 

.4. Unsupervised learning 

In order to decide in which mini-batch the sampled experience

as to be inserted, an autoencoder neural network was used. The

utoencoder used for the lower complexity environments such as
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Fig. 6. Average total reinforcement received over 30 trials with agents with different sampling dynamics during first 1500 episodes in Lunar Lander environment. 
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as a simple linear neural network able to cluster up to 152 di-

ensional state into M = 6 dimensional array using an architec-

ure with three hidden layers. The input and output layers were

mplemented using 152 neurons capable of handling the high-

imensional state array on both sides. The hidden part consisted

f a bottleneck middle layer containing M = 6 neurons surrounded

y two additional fully connected layers implemented with 100

eurons each, able to smooth out the transition from high to low

imensional space. The learning rate of the autoencoder was set

o α = 0 . 1 , much higher than the Q-value approximator very low

= 0 . 0 0 0 015 . The drastic change in the learning rate was imple-

ented because of the architecure of the autoencoder itself: it con-

ained a greater number of neurons which in turn made its train-

ng process significantly slower. For classification of the states of

tari games images under the COMM-B variation a more complex

onvolutional autoencoder was used to cluster the images such
s the ones shown in Fig. 4 . The reason for selecting a convolu-

ional autoencoder was the same as for choosing a convolutional

rchitecture for the main Q-value approximator network: the vi-

ual nature and increased dimensionality of the Atari game in-

ut source. Using regular, fully connected, dense layers to approxi-

ate a high-dimensional input matrix of (210,160,3) would be very

mpractical as it would produce an enormous amount of connec-

ions and weights, significantly increasing the training time. On the

ther hand, convolutional neural network architectures can have

he same effect with significantly less inter-neuron connections

han fully connected ones: this makes them as perfect candidates

or high dimensional inputs. Furthermore, convolutions can take

he advantage of the spatial relationship among data, which is par-

icularly useful when detecting common feature shapes in visual

ata, as needed in applications such as Atari games. The bottleneck

n the convolutional architecture case also featured a hidden linear
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Fig. 7. Average cumulative score received by agents in a total of 5 trials during millions of learning steps in various Atari games and sampling methods. COMM represents 

the proposed method, while US is the baseline uniform sampling. 
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ayer, this time with M = 16 nodes surrounded by a collection of

onvolutional layers on both the input and output side. Each of the

utput activation values of the bottleneck layer was paired with M

RM buffers. 

. Experimental results 

Experiments compared the average performance of the agents

sing four different types of memory replay sampling in multiple

nvironments with different dynamics that are solved using differ-

nt function approximation techniques. The first of the more sim-

ler environments, Waterworld, was evaluated in 50 learning trials

onsisting of 180 learning steps each, while the second one Lunar

ander being an episodic task was run for 1200 episodes in 30 tri-

ls. The more advanced environments of Atari games were evalu-

ted in a range from 4 to 10 million learning steps depending on

heir complexity while taking an average of the agent’s reward. 

.1. Evaluations of COMM-A 

The results reported in Fig. 5 and 6 show how the novel ap-

roach of the proposed COMM − A performed in two different en-

ironments, compared with the baseline Q-learning with uniform

emory sampling and replay US . Along the baseline further com-

arisons were done combining the baseline and the COMM config-

rations with the common method for replay improvement: prior-

tization based on temporal difference or TD error [6] . 

In the Waterworld environment we can see that the COMM-A

ampling method shows slightly better performance over the base-

ine uniform sampling. We can also notice a very significant bet-

er performance of COMM algorithm combined with the prioritized

ampling based on TD error labeled TD+COMM over all sampling

ethods. 

Lunar Lander results shown in Fig. 6 , although having a

ore modest improvement of the best performing configuration,

D+COMM shows a behavior consistent with the Waterworld one

epicted in Fig. 5 . From Fig. 6 we can also notice that the vanilla

pproach of COMM-A , even slightly outperforms the vanilla TD in

he second portion of the plot which is characterized by a lower

value. The curves for COMM ONLY and TD ONLY have similar

endencies which are linearly inclined while TD COMM , and US

eem to experience over-fitting and saturation since their gradients

ower towards the end of learning period. 

The evaluated environments differed to a high degree in the

ature of the learning problem to be solved, which, in turn, de-

anded different agent configurations, yet, the COMM algorithm

erformance was consistent along them. Waterworld agent was

haracterized by a very high state dimension space of 152 vari-

bles interfaced as an omnidirectional array including 30 direc-

ional sensors, which allowed it to detect the food pieces in all

irections. Lunar Lander agent, on the contrary, required much less

nformation from the environment in order to learn how success-

ully land the craft. For this learning problem the craft needed

o be equipped with only 8 sensors, which were all propriocep-

ors measuring the craft positional and velocity data. Furthermore,

hey differed in implementation of reinforcement functions: Wa-

erworld environment had a simple, crisp function which provided

n agent with a reward only when the food was eaten while the

unar Lander’s reinforcement function provided a constant reward

hich was constantly re-calculated based on the craft’s current be-

avior. 

.2. Evaluations of COMM-B 

The results presented in Fig. 7 show that the proposed COMM-B

pproach enabled the agents to continuously improve their learn-
ng performance throughout the learning process in simpler games

uch as Pong shown in Fig. 7 a as well as the more complex ones

uch as Enduro and Freeway presented in Fig. 7 b, f. In these cases

he COMM 

′ s learning curve steepness is indicative of a signifi-

ant improvement in agent’s performance compared to the base-

ine uniform sampling method US . 

Some of the more complex Atari games such as Chopper Com-

and, River Raid and Seaquest yielded more interesting learning

urves as shown from Fig. 7 e, c and d, respectively. From Fig. 7 e we

an see that COMM falls below the uniform sampling at the very

eginning in Chopper Command environment but quickly outper-

orms the baseline significantly and keeps its consistency towards

he end. In River Raid, COMM gains an advantage in the second half

f the learning process and then increases its performance contin-

ously over the baseline as evident from Fig. 7 c. 

Out of all of the evaluated Atari environments the Seaquest

ame haven’t seemed to support the full benefits of COMM algo-

ithm relative to the baseline: It is noticeable from Fig. 7 d that an

mplementation of COMM made a learning process a more consis-

ent one, but eventually the baseline performed much better to-

ards the convergence at the last third of the learning steps. 

From all of the results showcased in Fig. 7 we can see that for

ost of the environments, the COMM approach offers an improve-

ent in the convergence of the reinforcement learning algorithm.

e can also observe that the increase of performance depends on

he specific game; COMM achieves the most significant and sta-

le performance increase throughout the learning process in highly

ynamical environments with elements moving mostly indepen-

ently from the action taken, such as Freeway, which is character-

zed by a high number of moving elements (cars), and Enduro, a

acing game where the dynamics of changing track along with the

assing cars make the variance of the perceived state observations

igh. 

. Conclusion 

The presented approach is aimed at further improving the dy-

amics of sampling in RL exploiting experience replay, by storing

nd replaying the correlated memories separately in order to in-

rease the learning potential of the sequential experience stream.

ith the proposed correlation minimizing contextual memory re-

rieval an artificial learning agent is able to support and am-

lify the effect that experience replay brings to the learning pro-

ess by selecting memories that are least correlated. As shown in

ection 6 , the proposed COMM algorithm shows a better perfor-

ance than that of different learning settings in both vanilla and

D prioritization configurations. 

While prioritization methods based on the TD -error [6,23] are

 very efficient way to improve the speed of convergence of TD

ased algorithms they also induce additional correlation of the ex-

eriences stored in the replay memory. In this case, contrary to the

niform sampling, the buffer is filled with experiences that are cor-

elated with the value of TD error, and since this error is a function

f the agent’s sensed state, we infer that this correlation is propa-

ated for the experiences overall. This could justify the high perfor-

ance gains of the TD-COMM configuration because the potential

orrelation increase by the TD approach was further minimized by

he COMM algorithm. Experimental results outlined in Fig. 7 sup-

ort the hypothesis that COMM 

′ s advantage is highest in the envi-

onments that are highly stochastic in nature such as Enduro and

reeway games. 

COMM ability to reduce the correlation between experience

amples is not limited just to RL applications. It can also be applied

o different types of general unsupervised and supervised learning

hat use a fixed dataset in order to train a ANN. This gives COMM

pproach a more general scope as an optimized sampling tech-
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nique that can be applied to any given dataset, not only the one

that is created dynamically by the reinforcement examples pre-

sented in this work. 
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