
Neurocomputing 408 (2020) 157–168

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Accelerating deep reinforcement learning model for game strategy

Yifan Li a , Yuchun Fang

a , ∗, Zahid Akhtar b

a School of Computer Engineering and Science, Shanghai University, China
b Department of Computer Science, University of Memphis, USA.

a r t i c l e i n f o

Article history:

Received 1 February 2019

Revised 9 May 2019

Accepted 11 June 2019

Available online 14 March 2020

Keywords:

Deep reinforcement learning

Convolutional neural network

Depthwise separable convolution

Binary weight network

a b s t r a c t

In recent years, deep reinforcement learning has achieved impressing accuracies in games compared

with traditional methods. Prior schemes utilized Convolutional Neural Networks (CNNs) or Long Short-

Term Memory networks (LSTMs) to improve the performances of the agents. In this paper, we consider

the issue from a different perspective when the training and inference of deep reinforcement learning

are required to be performed with limited computing resources. Mainly, we propose two efficient neu-

ral network architectures of deep reinforcement learning: Light-Q-Network (LQN) and Binary-Q-Network

(BQN). In LQN, The depth-wise separable CNNs are utilized in memory and computation saving. While, in

BQN, the weights of convolutional layers are binary that help in shortening the training time and reduce

memory consumption. We evaluate our approach on Atari 2600 domain and StarCraft II mini-games.

The results demonstratethe efficiency of the proposed architectures. Though performances of agents in

most games are still super-human, the proposed methods advance the agent from sub to super-human

performance in particular games. Also, we empirically find that non-standard convolution and non-full-

precision networks do not affect agent learning game strategy.

© 2020 Elsevier B.V. All rights reserved.

1

c

p

a

I

d

c

o

a

i

l

s

e

s

t

e

r

t

v

r

t

g

m

f

o

I

t

w

i

a

f

l

s

H

s

i

a

D

f

i

t

h

0

. Introduction

The DeepMind team combined deep learning with perceptual

apabilities and reinforcement learning with decision-making ca-

abilities, and proposed deep reinforcement learning [1] , forming

 new research direction in the field of artificial intelligence.

Deep learning [2] originates from the artificial neural network.

t is inspired by the hierarchical network structure of inferential

ata onto the human brain. Researchers proposed multi-layer per-

eptron and back propagation algorithm [3] , which lays the basis

f learning rules of deep learning. With the development of data

nd computing devices, deep learning has made great progress

n the fields of image analysis [4,5] , video analysis [6] , natural

anguage processing [7,8] , and speech recognition [9,10] . The ba-

ic idea of deep learning is to process data through multilay-

red network structures and nonlinear transformations to form ab-

tract high-level features and expose distributed data representa-

ions [11] . Therefore, deep learning focuses on the perception and

xpression of data.

Reinforcement learning is inspired by the organism’s ability to

espond to environmental stress and effective adaptation. It uses

rial and error mechanisms to interact with the surrounding en-

ironment and uses learning strategies that maximize cumulative
∗ Corresponding author.

E-mail address: ycfang@shu.edu.cn (Y. Fang).

p

p

D

ttps://doi.org/10.1016/j.neucom.2019.06.110

925-2312/© 2020 Elsevier B.V. All rights reserved.
ewards to learn optimal strategies [12] , which is similar to adap-

ive fuzzy control [13,14] . It has been applied for robot control [15] ,

ames [16,17] , simulation [18] , industrial manufacturing [19] , opti-

ization and scheduling [20,21] and other fields. The goal of rein-

orcement learning is to obtain maximum cumulative rewards. In

rder to achieve this goal, on the one hand, it needs to “explore”.

t explores the environment during the learning process, fully grasp

he environmental information, then find a status with higher re-

ard, and on the other hand, it needs to “use”. It uses the histor-

cal experience that has been learned to select the highest-reward

ction and shift the entire system to a better state. Therefore, rein-

orcement learning focuses on strategies for learning to solve prob-

ems.

Traditional reinforcement learning is limited to small action

pace and sample space, and these spaces are generally discrete.

owever, more complex and more realistic tasks often have a large

tate space and continuous action space. When the input data are

mages and sounds, the data samples often have a high dimension,

nd the traditional reinforcement learning is difficult to deal with.

eep learning has a strong ability to perceive expression. Rein-

orcement learning has strong decision-making ability, but its abil-

ty is limited in perception about high dimension data. Therefore,

he combination of the two has complementary advantages and

rovides ideas about solving the cognitive and decision-making

roblems in complex environments. In many challenging areas, the

eepMind team constructed and implemented deep reinforcement

https://doi.org/10.1016/j.neucom.2019.06.110
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.06.110&domain=pdf
mailto:ycfang@shu.edu.cn
https://doi.org/10.1016/j.neucom.2019.06.110

158 Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168

t

p

t

I

V

w

R

i

a

Q

i

[

f

L

�

w

i

o

i

a

2

t

e

i

c

t

a

A

D

a

o

s

e

i

�

w

h

G

s

r

s

[

T

t

t

d

learning models at the human expert level [1,22–24] . These mod-

els constructed the knowledge system and learned the environ-

ment directly from the original input signal, without any related

domain knowledge. Deep reinforcement learning is a very versatile

end-to-end sensing and control system. At present, deep reinforce-

ment learning has been applied in games [1,22,25] , machine vision

[26,27] , robot control [28–30] , parameter optimization [31,32] and

other fields.

Although the previous models of deep reinforcement learning

perform well on expensive GPU-based machines, they are usually

not suitable for small devices such as embedded electronic de-

vices, which limit the application of reinforcement learning in the

real world. For example, the most famous agents of reinforcement

learning: AlphaGo Zero and AlphaGo Master played with 4 TPUs;

AlphaGo Fan and AlphaGo Lee were played over 176 GPUs and 48

TPUs [24] . These agents overtax the limited storage and compute

capabilities of smaller devices.

In order to solve the inference problem of agents on small

devices, we propose two simple approaches in this paper, called

Light-Q-Network (LQN) and Binary-Q-Network (BQN), which are

respectively inspired by the MobileNets [33] and Binary-Weight-

Networks [34] . In our previous work [35] , we discover the depth-

wise separable CNN can shorten the training time of the agent on

Starcraft II Reinforcement Learning Environment [36] . It is very at-

tractive to explore the possibility of running agents on small de-

vices. As an extension to our previous work [35] , the main contri-

butions of this paper are as follows:

• We discover that the depthwise separable convolution has

no degradation effect in game performance and can be gen-

erally applicable to the deep reinforcement learning environ-

ment.

• We propose a neural network architecture of deep reinforce-

ment learning with binary weights. The weights of con-

volutional and fully connected layers are binary values in

the network, which can enable agents to maintain super-

human level game performance while generating different

game strategies.

• We analyze the contributions of the models. We find that

the proposed accelerating methods can keep the effective

learning of game strategies and result in several different

but equally effective and feasible game strategies.

• By experiments on the Atari 2600 domain, we demonstrate

our methods can obtain similar game performances com-

pared to standard methods.

1.1. Background

For convenient description, we first summarize the mathemat-

ical background of deep reinforcement learning, such as Markov

Decision Processes and deep Q-learning.

Reinforcement Learning and Markov Decision Processes A Markov

Process or Markov Chain is a tuple 〈 S, P 〉 , where S is a finite set

of states of the environment sensed by the agent and P is a state

transition probability matrix from s to s ′ . Assuming that the expec-

tation of reward from state s to s ′ is R and a Markov reward pro-

cess can be defined by a tuple 〈 S, P, R , γ 〉 , where γ ∈ [0, 1] is a

discount factor, and R denotes rewards that the environment feeds

a reward back to the agent at the time of state transition. After

adding action set A taken by the agent, Markov reward process be-

comes Markov decision process, denoted as a tuple 〈 S, A , P, R , γ 〉 .
A policy π is the probability of an agent taking action in a given

state.

Given an Markov decision process 〈 S, A , P, R , γ 〉 and a policy

π , the state sequence s , s , . . . is a Markov process 〈 S, P

π 〉 and
1 2
he state-reward sequence (s 1 , r 2) , (s 2 , r 3) , . . . is a Markov reward

rocess 〈 S, P

π , R

π , γ 〉 .
The state-value function V π (s) of Markov decision processes is

he expectation of return starting from state s , following policy π .

t is defined as:

 π (s) = E π [G t |S t = s] (1)

here the G t is the total discounted reward from step t: G t =
 t+1 + γ R t+2 + · · · = �∞

i =0
γ i R t+ i +1 .

The action-value function Q π (s, a) of Markov decision processes

s the expectation of return starting from state s , taking action a

nd following policy π . It is defined as:

 π (s, a) = E π [G t |S t = s, A t = a] (2)

Deep Q-learning The deep neural networks are used in Deep Re-

nforcement Learning as function approximators. Deep Q-Network

37] is a typical example. The Deep Q-Network optimizes the loss

unction Eq. (3) with the gradient in Eq. (4) .

Q (θ) = (R + γ max
a ′

Q(s ′ , a ′ ; θ ′) − Q(s, a ; θ)) 2 (3)

 L Q (θ) = 2(R + γ max
a ′

Q(s ′ , a ′ ; θ ′) − Q(s, a ; θ)) (4)

here (s, a, r, s ′) is sampled from the replay buffer randomly, θ
s optimized by the on-line agent, and θ ′ is the fixed parameters

f the off-line network. The DQN agent acts with a ε-greedy pol-

cy that is used to select the action preferentially according to the

ction-value function Q, or take random action with probability ε.

. Related work

The efficiency of sampling in deep reinforcement learning is ex-

remely low, which leads to the long training time of agents. Sev-

ral methods have been proposed to solve efficient training and

nference in deep reinforcement learning by designing improved

ontrol and algorithm.

Asynchronous advantage actor-critic The Asynchronous Advan-

age Actor-Critic (A3C) is proposed in [23] . It can run multiple

gents in parallel. Each agent has its own copy of the environment.

ll the agents use their own samples when updating the policy.

ifferent agents may encounter different states and transitions to

void data correlation. A3C has greatly shortened the learning time

f deep reinforcement learning by making full use of hardware re-

ources. It is a policy-based online learning algorithm. The gradi-

nt of the loss of the A3C policy which learns with n-step frames

s shown in Eq. (5)

 θ L π (θ) = − E

π
[
�n

i =0 � θ log (π(a t+ i | s t+ i ; θ))(G t (i) − V (s t+ i ; θ))

+ β�n
i =0 � θ H(π(·| s t+ i ; θ))

− η�n
i =0 (G t (i) − V (s t+ i ; θ)) � θ V (s t+ i ; θ)

]
(5)

here H(π(·| s t+ i ; θ)) is the entropy of the policy π and β is a

yperparameter, which controls the strength of the entropy term.

 t (i) means the rewards obtained by executing the policy π in

tate s t+ i : G t (i) = �n
j= i γ

j−i r t+ j + γ n −i V (s t+ n ; θ) , where r t + j is the

eward at step t + j and V (s ; θ) is the value of agent’s estimate by

tate s .

Proximal policy optimization Proximal Policy Optimization (PPO)

38] is based on the Trust Region Policy Optimization (TRPO) [39] .

he TRPO modified the policy gradient methods. When maximizing

he objective function, a constraint is needed to limit the update of

he policy so that the KL distance between the old and new policy

oes not exceed a certain threshold. As shown in Eq. (6)

Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168 159

m

w

a

t

s

r

L

w

r

g

t

t

n

W

o

r

t

r

A

t

m

i

a

n

r

n

m

w

r

w

h

s

L

w

L

L

a

e

p

m

e

i

e

g

a

i

t

A

Table 1

The architecture of Light-Q-Network.

Type / Stride Kernel shape Input shape

Conv dw / s4 8 ∗ 8 ∗ input channel dw 84 ∗ 84 ∗ input channel

Conv / s4 1 ∗ 1 ∗ input channel ∗ 32 20 ∗ 20 ∗ input channel

Conv dw / s2 4 ∗ 4 ∗ 32 dw 20 ∗ 20 ∗ 32

Conv / s1 1 ∗ 1 ∗ 32 ∗ 64 9 ∗ 9 ∗ 64

Conv dw / s1 3 ∗ 3 ∗ 64 dw 9 ∗ 9 ∗ 64

Conv / s1 1 ∗ 1 ∗ 64 ∗ 64 7 ∗ 7 ∗ 64

3

r

I

l

b

3

n

A

m

l

a

v

p

c

I

w

T

H

I

o

H

I

o

N

T

v

w

N

v

f

T

l

t

t

3

w

u

b
aximize
θ

ˆ E t

[
πθ (a t | s t)
πθold

(a t | s t)
ˆ A t

]
sub ject to

ˆ E t [KL [πθold
(·| s) , πθ (·| s)]] ≤ δ (6)

here ˆ A t represents the advantage of an action, s means the state,

 means the action and πθold
means the policy with old parame-

ers.

The PPO achieves a balance among ease of implementation,

ampling complexity, and effort required for debugging. PPO uses

 t (θ) to represent the ratio of probability distribution r t (θ) =
πθ (a t | s t)

πθold
(a t | s t) . So the objective function of PPO is as in Eq. (7) .

CLIP (θ) =

ˆ E t [min (r t (θ) ̂ A t , clip(r t (θ) , 1 − ε, 1 + ε) ̂ A t)] (7)

here ε is a hyperparameter.

When

ˆ A t > 0 , the choice of the current action is better, but the

ange of the policy’s update should not be too large. If the ratio is

reater than 1 + ε, there is an upper bound value for the value of

he objective function. When

ˆ A t < 0 , it means that the current ac-

ion is not well chosen. Similarly, the policy of choosing this action

eeds to be reduced, but the reduction should not be too large.

hen the ratio is less than 1 − ε, it is clipped to make the value

f objective function great than or equal the lower bound value. It

educes training time from the optimization method of the objec-

ive function.

Unsupervised reinforcement and auxiliary learning Unsupervised

einforcement and auxiliary learning (UNREAL) [40] based on the

3C is another way to train deep reinforcement learning tasks. It

rains multiple auxiliary tasks while training the A3C model. The

ultiple tasks complement each other to accomplish the goals. It

ncludes two kinds of auxiliary tasks, auxiliary control tasks and

uxiliary reward tasks.

The auxiliary control of UNREAL includes pixel change tasks and

etwork feature tasks. In pixel change tasks, agents learn a sepa-

ate policy to maximize the changes of pixels in each cell of n

∗n

on-overlapping grids. And agents learn a separate policy to maxi-

ize the activation of each unit in a particular hidden layer in net-

ork features task. In auxiliary reward tasks, UNREAL introduces a

eward prediction task to learn values that focus on immediate re-

ards. The task predicts the beginning of immediate rewards with

istorical frames. This task involves processing a sequence of ob-

ervations and requiring agents to predict subsequent rewards.

The loss of UNREAL policy is:

 (θ) = L A 3 C + αL V R + βL Q + ηL RP (8)

here the L A 3 C is the loss function proposed in [23] , and

 Q is the same as in Eq. (3) . L V R = (G t − V (s t ; θ)) 2 , and L RP =
(R t − V (s t ; θ)) 2 . α, β and η are the scale factors.

The L A 3 C is optimized by on-policy, while the value function loss

 VR , the auxiliary control loss L Q and the auxiliary reward loss L RP

re optimized by off-policy using replayed data. The UNREAL accel-

rates learning speed and improves performance by setting multi-

le auxiliary tasks. Auxiliary tasks and target tasks are trained si-

ultaneously by sharing weights.

Hierarchical critics Hierarchical Critics method is proposed in Hi-

rarchical Critic Assignment for Multi-agent Reinforcement Learn-

ng [41] . It introduces multiple cooperative critics in two-level hi-

rarchies. Agents not only receive low-level details but also obtain

lobal information from high-level, which improves performance

nd speeds up the learning process. Hierarchical Critics method

ncreases the perception of each agent in the global environment

hrough a global critic. It shows outstanding performance in Multi-

gent Reinforcement Learning field.
. The network architecture

Considering the structure of the convolution kernel, we rep-

esent two neural network architectures with fewer parameters.

n LQN, the convolutional layers are depthwise separable convo-

utional layers, whereas in BQN, the weights of the network are

inary.

.1. Light-Q-Network

Depthwise separable convolutions in MobileNets [33] can sig-

ificantly reduce the computational cost of convolution operations.

 CNN serves to observe the environment in the deep reinforce-

ent learning model. We introduce depthwise separable convo-

utions into deep reinforcement learning, and test the speed of

gents of the LQN model.

Depthwise separable convolution decomposes the standard con-

olution operation into a depthwise convolution operation and a

ointwise convolution operation. Depthwise convolution executes

onvolution operations on each channel of the features separately.

t does not involve convolution operations among channels. Point-

ise convolution is used to combine the features among channels.

The standard convolution is directly performed to all input data.

he computational complexity can be calculated as in Eq. (9) .

 k ∗ W k ∗ N c ∗ N k ∗ H f ∗ W f . (9)

n depthwise separable convolution, the computational complexity

f depthwise convolution is as in Eq. (10)

 k ∗ W k ∗ N c ∗ H f ∗ W f . (10)

n depthwise separable convolution, the computational complexity

f pointwise convolution is as in Eq. (11)

 c ∗ N k ∗ H f ∗ W f . (11)

he ratio of the depth separable convolution to the standard con-

olution is calculated in Eq. (12)

H k ∗ W k ∗ N c ∗ H f ∗ W f + N c ∗ N k ∗ H f ∗ W f

H k ∗ W k ∗ N c ∗ N k ∗ H f ∗ W f

=

1

N k

+

1

H k ∗ W k

(12)

here H k and W k are the height and width of convolution kernels,

 c is the number of input channels, and N k is the number of con-

olution kernels. H f and W f are the height and width of the input

eature maps.

The network architecture of the convolution part is shown in

able 1 and the architecture of LQN is shown in Fig. 1 . Each convo-

ution layer is followed by a ReLU activation function. We remove

he batch normalization between the convolution layer and the ac-

ivation function.

.2. Binary-Q-Network

Another efficient method of the neural network is binary-

eight-network [34] . In the binary-weight-network, all the val-

es of networks weights are replaced by binary values. CNNs with

inary weights are much smaller than equivalent networks with

160 Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168

Fig. 1. The architecture of Light-Q-Network.

Fig. 2. The architecture of Binary-Q-Network.

Table 2

The architecture of Binary-Q-Network.

Type / Stride Kernel shape Input shape

Binary Conv / s4 8 ∗ 8 ∗ input channel ∗ 32 84 ∗ 84 ∗ input channel

Binary Conv / s2 4 ∗ 4 ∗ 32 ∗ 64 20 ∗ 20 ∗ 32

Binary Conv / s1 3 ∗ 3 ∗ 64 ∗ 64 9 ∗ 9 ∗ 64

4

g

m

t

w

W

0

e

a

o

d

a

d

c

o

0

t

g

n

1

w

p
single-precision weights (about 32 times). In addition, when the

weight value is binary, convolution can be calculated only by addi-

tion and subtraction (without multiplication), which can increase

the operation speed by about two times. We introduce binary

weight convolutions into deep reinforcement learning and test the

speed of the agents in BQN. The convolution operation can be ap-

proximated by Eq. (13) .

X ∗ W ≈ α(X � B) (13)

where � represents a convolutional operation without multiplica-

tion. X is input. B is binary weights. B ∈ {−1 , +1 } and α is a scaling

factor. The optimal B is B ∗ = sign (W) and optimal α is 1
n ‖ W ‖ � 1

The BQN contains binary convolutional layers, as shown in

Table 2 . The architecture of BQN is shown in Fig. 2 . Each convo-

lution layer is followed by a ReLU activation function. The binary

operation of the fully connected layer is only used at the inference

stage.
. Experiments

We evaluate the performance of LQN and BQN agents on Atari

ames [42] and StarCraft II mini games [36] . We compare our

ethods with state-of-the-art DQN baselines: Rainbow [43] . We

rain our models on 10 Atari games and 3 StarCraft II mini games

ith 15M frames. In each case, we use the same hyper-parameters.

e use Adam [44] optimizer with an initial learning rate of

.0 0 0 0625, and the epsilon of the optimizer is 0.0 0 015. For each

nvironment, the number of consecutive states processed is 4. We

lso use a multi-step return parameter of 3, and a discount factor

f the reward of 0.99. In our model, the discretized size of value

istribution is 51. The minimum value distribution support is -10,

nd the maximum value distribution support is 10. The initial stan-

ard deviation of noisy linear layers is 0.1. For the replay buffer, the

apacity is 1,0 0 0,0 0 0, and the frequency of sampling from mem-

ry is 4. We also use a prioritized experience replay exponent of

.5, and we set the initial importance sampling weight 0.4. In the

raining phase, the number of steps after which to update the tar-

et network is 32,0 0 0 and the batch size is 32.

We compare the performance of agents using the human-

ormalized score function in Eq. (14) .

00% ∗ Score Agent − Score Random

Score Human − Score Random

(14)

here human and random scores are the same as in [45] . We com-

are the performance of our agents with the performance of base-

Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168 161

Table 3

Human-normalized performance in Atari game.

Games Rainbow [43] Rainbow our implementation A3C [23] PPO [38] LQN BQN

Assault 2689.78% 2432.26% 1010.87% 914.07% 1765.82% 796.44%

Bank Heist 181.86% 95.52% 129.37% 171.39% 106.35% 107.70%

Breakout 1443.75% 1398.96% 2361.81% 948.26% 1390.97% 1336.81%

Chopper Command 240.89% 176.06% 94.42% 41.13% 155.23% 95.47%

Defender 330.27% 5125.88% 339.30% - 5347.20% 5442.04%

Demon Attack 6104.41% 5265.54% 6221.14% 617.20% 4655.23% 1141.32%

Free Way 132.94% 132.94% 0.00% 127.06% 132.94% 127.84%

Kangaroo 488.95% 501.11% 1.41% 331.10% 497.75% 471.61%

Pong 117.85% 118.13% 74.50% 117.28% 118.13% 118.13%

Space Invaders 1572.84% 1889.90% 1024.69% 52.25% 150.06% 84.63%

Mean 1295.65% 1542.82% 1125.75% 368.86% 1431.97% 972.20%

Median 409.61% 341.45% 234.33% 251.24% 326.49% 299.72%

Fig. 3. Median human-normalized performance across Atari games. We compare

our agents (green and blue) to Rainbow DQN (red) baseline. Note that the LQN

nearly matches the rainbow at 8M frames. The curves are smoothed with a moving

average over 6 points. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

l

1

W

i

1

4

1

w

c

I

c

m

g

n

t

T

p

t

L

w

f

F

Table 4

Baseline-normalized performance in Atari game.

Games A3C [23] PPO [38] LQN BQN

Assault 41.56% 37.58% 72.60% 32.74%

Bank Heist 135.43% 179.43% 111.33% 112.75%

Breakout 168.83% 67.78% 99.43% 95.56%

Chopper Command 53.63% 23.36% 88.17% 54.23%

Defender 6.62% - 104.32% 106.17%

Demon Attack 118.15% 11.72% 88.41% 21.68%

Free Way 0.00% 95.58% 100.00% 96.17%

Kangaroo 0.28% 66.07% 99.33% 94.11%

Pong 63.07% 99.28% 100.00% 100.00%

Space Invaders 563.66% 28.74% 82.55% 46.55%

Mean 115.12% 67.73% 94.61% 76.00%

Median 58.35% 66.90% 99.38% 94.84%

g

m

b

a

g

e

4

t

l

T

w

1

t

3

a

a

c

l

t

e

l

c

t

f

A

A

i

s

t

ine by the baseline-normalized function in Eq. (15) .

00% ∗ Score Agent − Score Random

Score Baseline − Score Random

(15)

e compare the inference speed of agents using the score function

n Eq. (16) .

00% ∗ T ime Agent

T ime Baseline

(16)

.1. Atari games

The Atari 2600 was a popular American game console in the

980s. The Arcade Learning Environment [42] is a software frame-

ork designed to make it easier to develop game agents. It in-

ludes a total of 49 independent games, such as Breakout, Galaxy

nvaders and more.

In Fig. 3 , we compare the performance of LQN and BQN to the

orresponding performance of Rainbow baseline. The results are

easured in terms of the median human normalized score across

ames.

The game score is the average performance of each game. The

ormalized scores of human in Atari are shown in Table 3 , and

he base-normalized scores are shown in Table 4 (Please refer to

able 8 in the Appendix for concrete scores). .As can be seen, the

erformance of most of our agents is still a super-human level for

he majority of games on Atari. Particularly, in some games, the

QN gets similar game performance (e.g., see the results for Free-

ay in Fig. 4 (b) and Pong in Fig. 4 (a)). But our BQN does not per-

orm well in some games (e.g., see the results for Demon Attack in

ig. 4 (c) and Chopper Command in Fig. 4 (d)). LQN and BQN have
ood performance in some games. These games have some com-

on characteristics. In these games, the values of the rewards are

ounded and the rewards are easy to obtain. We also discover that

ll of the games in which our model underperformed are shooting

ames, with more negative feedback than positive.

Please refer to Fig. 8 in the Appendix for additional games. We

valuate LQN, BQN and Rainbow for 100K frames on 10 games.

.2. StarCraft II

StarCraft II is a real-time strategy (RTS) game from Blizzard En-

ertainment. StarCraft II has millions of players and has a regu-

ar professional league. The environment has a huge search space.

he double match of StarCraft II has a maximum of 400 units. If

e use a 128px ∗128px map, the size of the search space is about

0 1685 regardless of other details. In the mini game environment,

here are 523 non-spatial actions. When the environment is set to

2 ∗32 pixels, there are 1024 spatial actions and the size of the total

ction space is 535,552. The environment is complicated in several

spects. Because the game has fog of war, it is a game with in-

omplete information state. Besides, the rewards are severely de-

ayed in the environment, but the environment requires the model

o make an immediate decision.

In the minigame under the Starcraft II reinforcement learning

nvironment, we select three maps to train deep reinforcement

earning model. The human-normalized performance is shown for

omparison in Table 5 (Please refer to Table 9 in the Appendix for

he concrete scores). We evaluate Light-A3C, Binary-A3C and A3C

or 10K frames on 3 games. The deep neural network structures of

3C and DQN are different. In order to make our method adapt to

3C, we make some modifications. The Q-value part of our model

s divided into the advantage part and the value part, which corre-

pond to the actor part and the critic part in A3C and PPO respec-

ively.

162 Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168

(a) Pong (b) Freeway

(c) Demon Attack (d) Chopper Command

Fig. 4. Human-normalized performance of example Atari games. We compare our agents (green and blue) to Rainbow DQN (red) baseline. The curves are smoothed with a

moving average over 6 points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5

Human-normalized performance in StarCraft II minigame.

Games A3C [36] Our Light-A3C Our Binary-A3C

DefeatRoaches 438% 403% 361%

FindAndDefeatZerglings 114% 110% 104%

DefeatZerglingsAndBanelings 33% 31% 28%

R

m

F

t

m

i

i

w

i

F

4

w

s

F

n

t

p

t

A

o

l

o

o

t

4

e
4.3. Game strategy

In addition to game performance, we also consider the game

strategy adopted by the agent in the game. We believe that the

strategy learned by the agent is more important than the simple

game score, because agents can get very high scores by cheating in

some games. For instance, two rewards are set in game CoastRun-

ners. One is for completing the game, and the other is for collect-

ing the scoring goals in the environment. Finally, the agent finds

an isolated lagoon and collects the target score repeatedly. In such

a case, the game is not over, but the agent can score more [46] .

In the Atari games, our agents have learned the game strategies.

In game Breakout in Fig. 5 , Rainbow 5 (a), LQN 5 (b) and BQN 5 (c)

can learn to break somewhere to get higher scores. In game Free-

way, Rainbow 5 (d), LQN 5 (e) and BQN 5 (f) can learn to cross the

road and avoid car crashes to get high scores even when there are

many cars on the road. In game Kangaroo, Rainbow 5 (g), LQN 5 (h)

and BQN 5 (i) can learn some skills to get high scores. Rainbow and

LQN can learn to get high scores by killing enemies at the lower

right corner of the game, while BQN can learn to get high scores

at the lower left corner of the game by avoiding enemy attacks and

picking up props.

In StarCraft mini game, all of the agents can learn the game

strategies to achieve better performance. In the game “Defeat
oaches”, the agent can learn the strategy of “siege”, in which the

arines first kill an enemy unit and kill one by one, as shown in

ig. 6 (a) and Fig. 6 (b). In the game “Find And Defeat Zerglings”,

he agent can learn the strategy of “searching”, in which the

arines explore unknown positions in clockwise order, as shown

n Fig. 6 (c) and Fig. 6 (d). In the game “Defeat Zerglings And Banel-

ngs”, the agent can learn the strategy of “attacking by order”, in

hich the marines first kill enemy units with higher damage abil-

ty, and then kill other enemy units, as shown in Fig. 6 (e) and

ig. 6 (f).

.4. Efficiency analysis

In the convolution operation, the memory usage of the model

eight parameter is calculated as K

2 ∗C in
∗C out , where K is the kernel

ize of the convolutional layer and C is the number of channels.

ig. 7 shows the required memory for three architectures which is

ormalized by the baseline. In Table 6 , we compare the scores and

raining time with several other methods.

For our method, there are four fully-connected layers with huge

arameter quantities behind the convolutional layers. The advan-

age of our methods is limited on GPU platforms (such as 1080Ti).

ccording to the theory of the roofline model [47] , the calculation

f standard convolution operation is difficult on the platform with

ow computational intensity, and our model can also perform well

n these platforms. Especially, if the computing platform has an

ptimization mechanism in bit operations, BQN can perform bet-

er.

.5. Ablation studies

There are some key differences between our convolutional lay-

rs and the previous convolutional layers used in classification. For

Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168 163

Fig. 5. Atari game strategy.

164 Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168

Fig. 6. StarCraft II mini game strategy.

Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168 165

Table 6

Training time on Atari games.

Methods Mean performance Median performance Average training time

Baseline(15M Frames) 1542.82% 341.45% 3d 13h 28m

A3C(40M Frames) [36] 1125.75% 234.33% 4d

PPO(40M Frames) 368.86% 251.24% -

LQN(15M Frames) 1431.97% 326.49% 2d 15h 57m

BQN(15M Frames) 972.20% 299.72% 2d 34m

Table 7

Ablation studies on Atari with baseline-normalized performance.

(a) LQN

Convolution

block structure

Mean Median Average training time

(15M Frames)

With BN 93.32% 96.17% 4d 1h 5m

Without BN 94.61% 99.38% 4d 57m

(b) BQN

Active Function Mean Median Average Training Time

(15M Frames)

Binary-Active 74.27% 93.49% 3d 22h 56m

ReLU 76.00% 94.84% 3d 23h 2m

Fig. 7. Required memory of three different CNN architectures.

L

c

R

T

t

T

f

4

m

o

f

o

r

f

w

F

d

e

b

5

f

c

a

C

t

d

s

f

d

o

b

p

U

i

o

A

t

t

1

C

C

p

A

QN, we do not use the batch normalization layer between the

onvolution layer and the activation function. For BQN, we use the

eLU active function instead of Binary-Active proposed in [34] . In

able 7 (a), we compare the performance of a separable convolu-

ion network with or without batch normalization operation. In

able 7 (b), we compare the performance of two different active

unctions.

.6. Discussion

LQN and BQN show their respective advantages in the experi-

ents. The game performance of both is above 100% human-level

r close to 100% human level. However, BQN shows surprising per-

ormance in game strategy, which is different from game strategy

f LQN, but has similar game scores. The LQN compresses the neu-

al network from the structure, and its calculation method is still

ull precision. The BQN compresses the weights of the neural net-

ork without changing the structure of the convolutional network.
or low computational intensity devices, the two models have

ifferent applications. LQN is more suitable for devices with gen-

ral architecture. BQN has a good effect on special devices whose

it operations are optimized.

. Conclusions

We introduce simple, efficient, and accurate neural networks

or reinforcement learning. The proposed methods show signifi-

ant performance and quick inference across many Atari games

nd StarCraft II mini games. In particular, compared with several

NN models used in deep reinforcement learning, we observe that

he inference times of LQN and BQN are shortened. The LQN has no

egradation effect on game strategy, except slightly reducing the

core of game. Although the performances of the BQN are unsatis-

actory, agents can still learn game strategy and can even result in

ifferent strategies with similar performances. The proposed meth-

ds can be easily extended to reinforcement learning algorithms

eyond the baselines considered in this paper. They can also be ap-

lied to any deep reinforcement learning algorithms, such as PPO,

NREAL etc. The proposed methods prove the possibility of train-

ng or running the inference of deep reinforcement learning agents

n small devices in real-time.

cknowledgments

The work is supported by the National Natural Science Founda-

ion of China under Grant No.: 61976132 , 61170155 and the Na-

ional Natural Science Foundation of Shanghai under Grant No.:

9ZR1419200. We appreciate the High Performance Computing

enter of Shanghai University, and Shanghai Engineering Research

enter of Intelligent Computing System (No. 19DZ2252600) for

roviding the computing resources.

ppendix

https://doi.org/10.13039/501100001809

166 Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168

(a) Assault (b) Breakout

(c) Bank Heist (d) Chopper Command

(e) Defender (f) Demon Attack

(g) Freeway (h) Kangaroo

(i) Pong (j) Space Invaders

Fig. 8. Human-normalized performance for 10 Atari games. We compare our agents (green and blue) with those of Rainbow (red) baseline. All curves are smoothed with a

moving average over 6 points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168 167

Table 8

Performance in Atari game.

Games Random Human Rainbow [43] Rainbow our implementation A3C [23] PPO [38] Our LQN Our BQN

Assault 222.4 742 14,198.5 12,860.4 5,474.9 4,971.9 9, 397.6 4,360.7

Bank Heist 14.2 753.1 1,358.0 720.0 970.1 1, 280.6 800.0 810.0

Breakout 1.7 30.5 417.5 404.6 681.9 274.8 402.3 386.7

Chopper Command 811.0 7,387.8 16,654.0 12,390.0 7,021.0 3,516.3 11, 020.0 7,090.0

Defender 2,874.5 18,688.9 55,105.0 813,501.0 56,533.0 - 848,502.0 863, 501.0

Demon Attack 152.1 1,971.0 111,185.2 95,927.0 113, 308.4 11,378.4 84,826.0 20,911.5

Free Way 0.1 25.6 34.0 34.0 0.1 32.5 34.0 32.7

Kangaroo 52.0 3,035.0 14,637.5 15,000.0 94.0 9,928.7 14, 900 14,120

Pong -20.7 14.6 20.9 21.0 5.6 20.7 21 21

Space Invaders 148 1,668.7 18,789 2,912.5 15, 730.5 942.5 2,430.0 1,435.0

Table 9

Performance in StarCraft II minigame.

Games Human Grandmaster A3C [36] Our Light-A3C Our Binary-A3C

DefeatRoaches 81 363 355 323 293

FindAndDefeatZerglings 49 61 56 54 51

DefeatZerglingsAndBanelings 757 848 251 236 217

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

eferences

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.
Riedmiller, Playing Atari with deep reinforcement learning, arXiv: /1312.5602

(2013).
[2] K. Yu , L. Jia , Y. Chen , W. Xu , Deep learning: yesterday, today, and tomorrow, J.

Comput. Res. Dev. 50 (9) (2013) 1799–1804 .
[3] Rumelhart , E. David , Hinton , E. Geoffrey , Williams , J. Ronald , Learning repre-

sentations by back-propagating errors, 1986 .

[4] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-
volutional neural networks, in: Advances in Neural Information Processing Sys-

tems, 2012, pp. 1097–1105 .
[5] O. Russakovsky , J. Deng , H. Su , J. Krause , S. Satheesh , S. Ma , Z. Huang , A. Karpa-

thy , A. Khosla , M. Bernstein , et al. , Imagenet large scale visual recognition chal-
lenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252 .

[6] A. Karpathy , G. Toderici , S. Shetty , T. Leung , R. Sukthankar , L. Fei-Fei , Large-s-

cale video classification with convolutional neural networks, in: Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, 2014,

pp. 1725–1732 .
[7] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

Y. Bengio, Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation, arXiv: /1406.1078 (2014).

[8] Z. Yang , D.-p. Tao , S.-y. Zhang , L.-w. Jin , Similar handwritten chinese character

recognition based on deep neural networks with big data, J. Commun. 35 (9)
(2014) 184–189 .

[9] A . Graves , A .-r. Mohamed , G. Hinton , Speech recognition with deep recurrent
neural networks, in: Acoustics Speech Signal Processing (ICASSP), 2013 IEEE

International Conference on, IEEE, 2013, pp. 6645–6649 .
[10] Y. Li , J. Zhang , D. Pan , D. Hu , A study of speech recognition based on RNN-RBM

language model, J. Comput. Res. Dev. 51 (9) (2014) 1936–1944 .

[11] Z.-J. Sun , L. Xue , Y.-m. Xu , Z. Wang , Overview of deep learning, Jisuanji Yingy-
ong Yanjiu 29 (8) (2012) 2806–2810 .

[12] R.S. Suton, A.G. Barto, Reinforcement learning: An introduction. A bradford
book, 2002.

[13] K. Sun, S. Mou, J. Qiu, T. Wang, H. Gao, Adaptive fuzzy control for non-
triangular structural stochastic switched nonlinear systems with full state con-

straints, IEEE Transactions on Fuzzy Systems (2018), doi: 10.1109/TFUZZ.2018.
2883374 . 1–1

[14] J. Qiu, K. Sun, T. Wang, H. Gao, Observer-based fuzzy adaptive event-triggered

control for pure-feedback nonlinear systems with prescribed performance,
IEEE Transactions on Fuzzy Systems (2019), doi: 10.1109/TFUZZ.2019.2895560 .

1–1
[15] J. Kober , J.A. Bagnell , J. Peters , Reinforcement learning in robotics: a survey, Int.

J. Rob. Res. 32 (11) (2013) 1238–1274 .
[16] G. Tesauro , Td-gammon: A self-teaching Backgammon program, in: Applica-

tions of Neural Networks, Springer, 1995, pp. 267–285 .

[17] L. Kocsis , C. Szepesvári , Bandit based Monte-Carlo planning, in: European Con-
ference on Machine Learning, Springer, 2006, pp. 282–293 .

[18] F. Qi-Ming , L. Quan , W. Hui , X. Fei , Y. Jun , L. Jiao , A novel off policy q (λ) algo-
rithm based on linear function approximation, Chin. J. Comput. 37 (3) (2014)

677–686 .
[19] Y. Gao , R.-Y. Zhou , H. Wang , Z.-X. Cao , Study on an average reward reinforce-

ment learning algorithm, Chin. J. Comput. 30 (8) (2007) 1372 .

20] Y. Wei , M. Zhao , A reinforcement learning-based approach to dynamic
job-shop scheduling, Acta Autom. Sin. 31 (5) (2005) 765 .

[21] E. Ipek , O. Mutlu , J.F. Martínez , R. Caruana , Self-optimizing memory con-
trollers: A reinforcement learning approach, in: ACM SIGARCH Computer Ar-

chitecture News, 36, IEEE Computer Society, 2008, pp. 39–50 .
22] V. Mnih , K. Kavukcuoglu , D. Silver , A .A . Rusu , J. Veness , M.G. Bellemare ,
A. Graves , M. Riedmiller , A.K. Fidjeland , G. Ostrovski , et al. , Human-level con-

trol through deep reinforcement learning, Nature 518 (7540) (2015) 529 .
23] V. Mnih , A.P. Badia , M. Mirza , A. Graves , T. Lillicrap , T. Harley , D. Sil-

ver , K. Kavukcuoglu , Asynchronous methods for deep reinforcement learn-

ing, in: International Conference on Machine Learning, 2016, pp. 1928–
1937 .

[24] D. Silver , J. Schrittwieser , K. Simonyan , I. Antonoglou , A. Huang , A. Guez , T. Hu-
bert , L. Baker , M. Lai , A. Bolton , et al. , Mastering the game of go without hu-

man knowledge, Nature 550 (7676) (2017) 354 .
25] D. Silver , A. Huang , C.J. Maddison , A. Guez , L. Sifre , G. Van Den Driessche ,

J. Schrittwieser , I. Antonoglou , V. Panneershelvam , M. Lanctot , et al. , Master-

ing the game of go with deep neural networks and tree search, Nature 529
(7587) (2016) 484 .

26] J. Oh , X. Guo , H. Lee , R.L. Lewis , S. Singh , Action-conditional video prediction
using deep networks in Atari games, in: Advances in Neural Information Pro-

cessing Systems, 2015, pp. 2863–2871 .
[27] J.C. Caicedo , S. Lazebnik , Active object localization with deep reinforcement

learning, in: Proceedings of the IEEE International Conference on Computer Vi-

sion, 2015, pp. 2488–2496 .
28] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wier-

stra, Continuous control with deep reinforcement learning, arXiv: /1509.02971
(2015).

29] Y. Duan , X. Chen , R. Houthooft , J. Schulman , P. Abbeel , Benchmarking deep re-
inforcement learning for continuous control, in: International Conference on

Machine Learning, 2016, pp. 1329–1338 .

30] S. Gu , T. Lillicrap , I. Sutskever , S. Levine , Continuous deep q-learning with mod-
el-based acceleration, in: International Conference on Machine Learning, 2016,

pp. 2829–2838 .
[31] S. Hansen, Using deep q-learning to control optimization hyperparameters,

arXiv: /1602.04062 (2016).
32] M. Andrychowicz , M. Denil , S. Gomez , M.W. Hoffman , D. Pfau , T. Schaul ,

B. Shillingford , N. De Freitas , Learning to learn by gradient descent by gra-
dient descent, in: Advances in Neural Information Processing Systems, 2016,

pp. 3981–3989 .

[33] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mo-

bile vision applications, arXiv: /1704.04861 (2017).
34] M. Rastegari , V. Ordonez , J. Redmon , A. Farhadi , XNOR-net: Imagenet classifica-

tion using binary convolutional neural networks, in: European Conference on
Computer Vision, Springer, 2016, pp. 525–542 .

[35] Y. Li , Y. Fang , Accelerating spatio-temporal deep reinforcement learning model

for game strategy, in: International Conference on Neural Information Process-
ing, Springer, 2018, pp. 303–312 .

36] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A.S. Vezhnevets, M. Yeo, A.
Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al., Starcraft ii: a new chal-

lenge for reinforcement learning, arXiv: /1708.04782 (2017).
[37] M. Volodymyr , K. Koray , S. David , R. Andrei A , V. Joel , B. Marc G , G. Alex ,

R. Martin , F. Andreas K , O. Georg , Human-level control through deep reinforce-

ment learning, Nature 518 (7540) (2015) 529 .
38] J. Schulman , F. Wolski , P. Dhariwal , A. Radford , O. Klimov , Proximal policy op-

timization algorithms, 2017 .
39] J. Schulman , S. Levine , P. Moritz , M.I. Jordan , P. Abbeel , Trust region policy op-

timization, Comput. Sci. (2015) 1889–1897 .
40] M. Jaderberg , V. Mnih , W.M. Czarnecki , T. Schaul , J.Z. Leibo , D. Silver ,

K. Kavukcuoglu , Reinforcement learning with unsupervised auxiliary tasks,

2016 .
[41] Z. Cao, C. Lin, Hierarchical critics assignment for multi-agent reinforcement

learning, CoRR (2019) abs/1902.03079 .

http://arxiv.org/abs//1312.5602
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0005
http://arxiv.org/abs//1406.1078
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0009
https://doi.org/10.1109/TFUZZ.2018.2883374
https://doi.org/10.1109/TFUZZ.2019.2895560
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0024
http://arxiv.org/abs//1509.02971
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0026
http://arxiv.org/abs//1602.04062
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0027
http://arxiv.org/abs//1704.04861
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0029
http://arxiv.org/abs//1708.04782
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0033
http://arxiv.org/abs//1902.03079

168 Y. Li, Y. Fang and Z. Akhtar / Neurocomputing 408 (2020) 157–168

c

[42] M.G. Bellemare , Y. Naddaf , J. Veness , M. Bowling , The arcade learning envi-
ronment: an evaluation platform for general agents, J. Artif. Intell. Res. 47 (1)

(2013) 253–279 .
[43] M. Hessel , J. Modayil , H.V. Hasselt , T. Schaul , G. Ostrovski , W. Dabney , H. Dan ,

B. Piot , M. Azar , D. Silver , Rainbow: Combining improvements in deep rein-
forcement learning, 2017 .

[44] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: /1412.
6980 (2014).

[45] Z. Wang , N.D. Freitas , M. Lanctot , Dueling network architectures for deep rein-

forcement learning, 2015, pp. 1995–2003 .
[46] Dario, Jack, Faulty reward functions in the wild, (https://blog.openai.com/

faulty-reward-functions).
[47] G. Ofenbeck, R. Steinmann, V. Caparros, D.G. Spampinato, M. Püschel, Ap-

plying the roofline model, in: 2014 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2014, pp. 76–85, doi: 10.

1109/ISPASS.2014.684 4 463 .

Yifan Li , received B.S. degree in Shanghai University,

Shanghai, China, in 2018. He is now a graduate student
at Shanghai University, Shanghai, China. His research in-

terests include machine learning, reinforcement learning
and pattern recognition.
Yuchun Fang , Associate Professor. She gained her Ph.D.

from the Institute of Automation, Chinese Academy of
Sciences in 2003. From 2003 to 2004, she worked as a

post-doctoral researcher at the France National Research

Institute on Information and Automation (INRIA). Since
2005, she has worked at the School of Computer Engi-

neering and Sciences, Shanghai University. She is a mem-
ber of IEEE, ACM, and CCF (Chinese Computer Federation).

Her current research interests include multimedia, pat-
tern recognition, machine learning and image processing.

Zahid Akhtar , Research assistant professor in the Depart-
ment of Computer Science at the University of Mem-

phis, USA. Prior to joining the University of Memphis,

he was a Postdoctoral Fellow at INRS-EMT, University of
Quebec (Canada), University of Udine (Italy), Bahcesehir

University (Turkey), and University of Cagliari (Italy), re-
spectively. His research interests include computer vision,

pattern recognition, and machine/deep learning with ap-
plications in various fields, including biometrics, affec-

tive computing, security systems, and multimedia qual-

ity assessment. Dr. Akhtar received a Ph.D. in electronic
and computer engineering from the University of Cagliari

(Italy). He is a member of the IEEE Signal Processing So-
iety and Association for Computing Machinery.

http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0036
http://arxiv.org/abs//1412.6980
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30333-7/sbref0037
https://blog.openai.com/faulty-reward-functions
https://doi.org/10.1109/ISPASS.2014.6844463

	Accelerating deep reinforcement learning model for game strategy
	1 Introduction
	1.1 Background

	2 Related work
	3 The network architecture
	3.1 Light-Q-Network
	3.2 Binary-Q-Network

	4 Experiments
	4.1 Atari games
	4.2 StarCraft II
	4.3 Game strategy
	4.4 Efficiency analysis
	4.5 Ablation studies
	4.6 Discussion

	5 Conclusions
	Acknowledgments
	Appendix
	References

