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a b s t r a c t 

Combinatorial optimization problems have been widely used in various fields. And many types of com- 

binatorial optimization problems can be generalized into the model of unconstrained binary quadratic 

programming (UBQP). Therefore, designing an effective and efficient algorithm for UBQP problems will 

also contribute to solving other combinatorial optimization problems. Pointer network is an end-to-end 

sequential decision structure and combines with deep learning technology. With the utilization of the 

structural characteristics of combinatorial optimization problems and the ability to extract the rule be- 

hind the data by deep learning, pointer network has been successfully applied to solve several classical 

combinatorial optimization problems. In this paper, a pointer network based algorithm is designed to 

solve UBQP problems. The network model is trained by supervised learning (SL) and deep reinforcement 

learning (DRL) respectively. Trained pointer network models are evaluated by self-generated benchmark 

dataset and ORLIB dataset respectively. Experimental results show that pointer network model trained 

by SL has strong learning ability to specific distributed dataset. Pointer network model trained by DRL 

can learn more general distribution data characteristics. In other words, it can quickly solve problems 

with great generalization ability. As a result, the framework proposed in this paper for UBQP has great 

potential to solve large scale combinatorial optimization problems. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep learning is an emerging field of machine learning re-

earch, aiming to study how to automatically extract multilayer

haracteristics from data. The core idea of deep learning is to ex-

ract characteristics from original data in a data-driven way, from

ow level to high level, from concrete to abstract, from general

o specific, through a series of nonlinear transformations. Up to

ow, deep learning has caused many breakthroughs in the appli-

ations of speech recognition [1] , image recognition [2] , natural

anguage processing, video recommendation and so on. In recent

ears, with the developing of deep neural network and the com-

ination with operations research, solving combinatorial optimiza-

ion problem with deep neural network structure [3] has become

 very important academic research. 

In view of large scale combinatorial optimization problems,

cholars have explored how to use deep neural network in these

elds and have made some achievements in recent years. Rele-

ant researches mainly focus on the algorithm design based on

he pointer network structure for combinatorial optimization prob-
∗ Corresponding author. 
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ems [4] . Vinyals created pointer network by introducing pointer

tructure into the Sequence-to-Sequence model with the attention

echanism [5] . Bello improved the pointer network structure and

dopted the policy gradient in reinforcement learning to train the

ointer network to solve combinatorial optimization problems [6] .

irhoseini modified the pointer network of Vinyals by removing

he coding Recurrent Neural Network (RNN) and embedded the

nput into the high dimension vector space to solve more com-

lex combinatorial optimization problems [7] . Pointer network has

een successfully applied to solve some classical combinatorial op-

imization problems such as travelling salesman problem (TSP) [8] ,

-1 knapsack problem [9] and maximum cut problem [10] etc. 

It is well-known that the unconstrained binary quadratic pro-

ramming (UBQP) problem is equivalent to many important com-

inatorial optimization problems. The applicability of this repre-

entation method has been proved in a variety of designs, such as

tatistical physics, circuit layout design [11] , financial analysis [12] ,

nd epilepsy research [13] . Many graphics-related combinatorial

ptimization problems can be converted from the formula to UBQP

roblems, such as maximum cut, maximum clique, minimum fixed

oint, maximum independent set and maximum weighted inde-

endent set. Therefore, it is of great significance to study the solv-

ng of UBQP problems. 

https://doi.org/10.1016/j.neucom.2019.06.111
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.06.111&domain=pdf
mailto:gushenshen@shu.edu.cn
https://doi.org/10.1016/j.neucom.2019.06.111
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Table 1 

The conversion of BQP problems to UBQP problems. 

The classic constraints Equivalent penalty term 

x + y ≤ 1 P ( xy ) 

x + y ≥ 1 P ( 1 − x − y + xy ) 

x + y = 1 P ( 1 − x − y + 2 xy ) 

x ≤ y P ( x − xy ) 

x 1 + x 2 + x 3 ≤ 1 P ( x 1 x 2 + x 1 x 3 + x 2 x 3 ) 
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Problems of large scale UBQP cannot be solved quickly by exact

solution method because of the NP hard nature [14] . Heuristic al-

gorithms such as simulated annealing and tabu algorithm [15] can

solve large scale problems, but they need to be designed separately

for specific problems. According to these thoughts and mechanism,

different approaches are designed to meet requirements. Existing

heuristic algorithms, such as genetic algorithm and simulated an-

nealing algorithm, are designed for some specific combinatorial op-

timization problems. The performance of designed algorithm will

decrease when the condition changes slightly. Moreover, there is

no general algorithm framework for different types of problems,

and the designed algorithm is not widely applicable. 

The characteristic of pointer network model is the design of in-

put and output, which are both sequence without fixed length and

correspondence relation. The sequence problem can be modelled

directly by pointer network, with the model being trained in the

way of end to end structure. UBQP can be seen as a discrete se-

quence because of its integer variables. Therefore, the pointer net-

work is suitable for solving the integer programming. 

Vinyals successfully solved TSP and convex hull problem with

pointer network [5] . This indicates that pointer network has great

potential in UBQP problems. We first propose supervised learning

(SL) to solve UBQP problems. The symmetric matrix of UBQP prob-

lems acts as the input of the pointer network. The optimal solution

of this problem is the supervision signal, and stochastic gradient

descent is used to train the network model. We solve new UBQP

problems with trained pointer network model. However, it is usu-

ally not easy to generate data samples for supervised learning to

train network model. 

Reinforcement learning is a kind of label delay learning, which

can solve problem of making data samples in the process of super-

vised learning. Deep reinforcement learning, an algorithm frame-

work proposed by Google DeepMind team, is an algorithm for de-

cision making learning. It shows great potential in solving com-

binatorial optimization problems. Bello uses deep reinforcement

learning (DRL) to solve TSP [6] , Hiroki Nakajima uses reinforce-

ment learning to solve knapsack problem [16] . Khalil solves classi-

cal combinatorial optimization problems like maximum cut prob-

lems and TSP by Q-learning [17] . DRL combines the respective

advantages of deep learning and reinforcement learning. Deep

learning is good at nonlinear fitting, and reinforcement learning is

suitable for decision learning. In this paper, the actor-critic algo-

rithm in deep reinforcement learning is used to solve UBQP prob-

lems. The pointer network is used as the actor network to ex-

plore the optimal solution, and the full-connected neural network

is used to form the critic network to evaluate the solution. The tar-

get function acts as the reward function, and the policy gradient is

used to update the network parameters. 

The paper is organized as follows. Section 2 introduces the

unified model of combinatorial optimization problems. Pointer

networks and UBQP problems dataset generation is introduced

in Section 3 . Section 4 introduces the pointer network of su-

pervised learning. Section 5 illustrates UBQP problems solution

based on deep reinforcement learning. Next, in Section 6 , the nu-

merical experiment is presented and discussed in detail. Finally,

Section 7 concludes this paper. 

2. Unified model of combinatorial optimization problems 

It is usually impossible to solve combinatorial optimization

problem in a reasonable time because of its complexity, although

the solution is guaranteed theoretically. Instead, heuristic meth-

ods are often preferred alternative methods. They provide no guar-

antee of convergence but more flexibility to utilize special at-

tributes of the search space. Heuristic algorithms aim at specific

characteristics of the problem, and use structural characteristics of
roblem to design search program. However, these tailored ap-

roaches in other problems are often limited. Therefore, it is mean-

ngful to select a general modeling framework to represent com-

inatorial optimization problems and then design a solution algo-

ithm for the general modelling framework. This transformation is

elpful to avoid developing new approaches for each new category

f problem. 

It is often assumed that translating a particular problem into a

ore general representation would be meaningless because of the

oss of domain-specific structural knowledge. However, the study

f Kochenberger [18] shows that applying general models to spe-

ific problems can often overcome the limitations attributed to this

odel and achieve quite good results. When a problem of partic-

lar structure is transformed into this general form, it sometimes

ecomes easier to be solved. Therefore, this unified model can be

een as a practical method to solve various important combina-

orial optimization problems. UBQP problem has the capability of

eing a general model for combinatorial optimization problems,

nd it can deal with constraint conditions by introducing penalty

unctions which are quadratic infeasibility [19] . UBQP model can

ot only represents many “special case”, but also combines with

euristic algorithm and evolutionary algorithm to solve problem.

n addition, some constrained models can be converted to UBQP

odel by adding penalty items. Hammer, Rudeanu [20] , Hansen

21] and Hansen et al [22] . show that any quadratic (or linear) ob-

ective and linear equation constraint in bounded integer variables

an be reexpressed as UBQP problems model. 

Many practical combinatorial optimization problems can be

epresented by following constrained model: 

in x T Qx 

s.t. Ax = b, x ∈ { 0 , 1 } n (1)

here Q is an n × n square symmetric matrix of real coefficients,

 ∈ R 

n is a real vector, b is a real constant. The above model con-

ains quadratic term and linear objective function. x 2 
j 
= x j can be

btained because x is a 0–1 variable. Model with inequality con-

traint can also be transformed into the model with equality con-

traint by introducing slack variable. The UBQP problem model

eplaces the constraint by adding quadratic unfeasible penalty

unction to target function. It can be rewritten as follows by in-

roducing a positive penalty coefficient P . 

f (x ) = x T Qx + P ( Ax − b ) 
T 
( Ax − b ) 

= x T Qx + x T Dx + c 

= x T ˜ Q x + c (2)

here c is a constant obtained by matrix multiplication. It can be

iscarded to transform constrained binary quadratic programming

roblem into following unconstrained binary quadratic program-

ing problem model: 

in x T ˜ Q x, x ∈ { 0 , 1 } n (3)

Table 1 shows the translation from constrained binary quadratic

roblems (BQP) to UBQP problems. 
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. Preliminaries 

In this section, principle of pointer network and generation of

BQP problems benchmark proposed in [25] are introduced briefly.

.1. Pointer network 

Pointer network was first proposed by Vinyals et al. It combines

equence to sequence (Seq2seq) learning framework with modified

ttention mechanism. Here, Seq2seq model and attention mecha-

ism are introduced briefly to explain the pointer network model. 

Seq2seq was proposed in 2014 and then used in machine trans-

ation. In Seq2seq model, encoder compresses complete input se-

uence into a vector with fixed dimensions, and then decoder

enerates an output sequence based on this vector. When input

equence is long, the intermediate vector cannot store enough in-

ormation, which becomes a bottleneck of this model. Attention

echanism is designed to solve this problem. In recent years, at-

ention mechanism has been widely used in various types of deep

earning tasks such as natural language processing, image recog-

ition and speech recognition, etc. It plays a significant role in

mproving effect of sequence learning. And it is one of the core

echnologies in deep learning technology that deserves the most

ttention and in-depth understanding. Attention mechanism allows

ecoder to look up the contents of input sequence at any time, so

t no longer needs to store all information in intermediate vector. 

In general, for a given input sequence of n vectors X =
( x 1 , . . . , x n ) and its associated variable length output sequence Y = 

( y 1 , . . . , y m 

) , Seq2seq model calculates conditional probability ac- 

ording to the probabilistic chain rule: 

p ( Y | X ) = 

m ∏ 

i =1 

p ( y i | y 1 , . . . , y i −1 , X ) (4) 

For convenient expression, the hidden state of encoder and de-

oder is defined as { e 1 , . . . , e n } and { d 1 , . . . , d m 

} , then each condi-

ional probability can be expressed as: 

p ( y i | y 1 , . . . , y i −1 , X ) = g ( y i −1 , d i , c ) (5) 

 i = h ( d i −1 , y i −1 , c i ) (6) 

 = q 
(
e 1 , . . . , e j 

)
(7) 

 j = f 
(
x j , e j−1 

)
(8) 

here q 
(
e 1 , . . . , e j 

)
is the attention mechanism, f, g is transforma-

ion function associated with the RNN unit, c is a context vector.

n this paper, Long Short Term Memory (LSTM) [26] unit is chosen

o constitute RNN network. 

Pointer network connects encoder and decoder with a modified

ttention mechanism. Decoder can query entire encoder state se-

uence, not just the state of the last LSTM unit [27] . In this way,

he decoder can focus on different parts of input sequence of en-

oder during decoding process, which can significantly improve the

ffect. In modified attention model, c is no longer equal to the con-

tant obtained in the last LSTM unit of encoder. And calculation of

 i in pointer network model is as follows: 

 i = 

n ∑ 

j=1 

αi 
j e j (9) 

he weight αi 
j 

is defined as follows: 

i 
j = 

exp 
(
u 

i 
j 

)
∑ n 

k =1 exp 
(
u 

i 
k 

) (10) 
 

i 
j = v T tanh ( W 1 e j + W 2 d i ) j ∈ ( 1 , · · · , n ) (11)

here v, W 1 , and W 2 are learnable parameters. 

To solve the problem that the size of encoder output dictio-

ary depends on the length of the input sequence, the pointer net-

ork adjusts the standard attention mechanism to create a pointer

 

j 
i 
. The pointer can point to an input sequence element, so the

ast state of encoder is not applied to transmit additional informa-

ion to decoder. The softmax function can normalize the vector of

ength n to become the output probability distribution on the in-

ut dictionary. Thus, each factor in Formula (4) can be represented

y Formula (12): 

p i = p ( y i | y 1 , . . . , y i −1 , X ) = softmax 
(
u 

i 
)

(12) 

In prediction, the position index with maximum probability is

elected and the process can be described as follows: 

 i = argmax 
(

p i 
)

(13) 

The process of pointer networks is shown in Fig. 1 . The se-

uence is sent to decoder. An element is input at each time step

ntil the end of sequence. The end of the sequence is marked with

 special end flag. The model then switches to decoding mode and

ach time step generates an element in the decoder output se-

uence until the end of the sequence flag appears. Until then, the

hole process is terminated [28] . 

.2. UBQP benchmark generator 

In the training process of pointer network solver, a mass of

amples are essential. It is obviously unrealistic to generate sam-

les by randomly generating 0–1 programming problems with ex-

ct solutions because of the NP hard nature. Michael X. Zhou pre-

ented a benchmark generator method for {-1,1} quadratic pro-

ramming problem [23] . This method can generate random BQP

roblems and solve them in polynomial time. In this paper, the

ataset generated by this method is marked as Zhou dataset. 

For the original problem, min { f (x ) = 

1 
2 x 

T Qx − c T x | x ∈ { −1 , 1 } n } ,
here Q = Q 

T , and c ∈ R 

n is given non-zero vector. The dual prob-

em can be described as follows: 

ind Q, c, x, λ

s.t. ( Q + diag ( λ) ) x = c 

Q + diag ( λ) > 0 

x ∈ { −1 , 1 } n 
The Matlab code to solve dual problem is as follows. In the mat-

ab scripts, the parameter base is set to control the range of ele-

ents in Q . 

atlab scripts for generating a benchmark UBQP problems 

1 function [Q, c, x, lambda] = generate_Qc(n) 

2 base = 10; 

3 Q = base*randn(n); 

4 Q = round((Q+Q’)/2); 

5 lambda = zeros(n, 1); 

6 x = round(rand(n, 1)); 

7 x = 2*x-1; 

8 lambda = sum(abs(Q), 2); 

9 c = (Q + diag(lambda))*x; 

The { −1, 1} quadratic programming problems can be converted

o UBQP problems. We convert the Q matrix and optimal solution

f the obtained UBQP problem pair into the corresponding input

nd output formats above, so as to solve the problem of generating

 mass of UBQP training samples. 
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Fig. 1. The architecture of pointer network. (encoder in gray, decoder in white). 
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4. Supervised learning solution 

In this section, supervised learning is used to train pointer net-

work model. The format of input/output and the training method

are introduced in detail. 

4.1. Input-output mechanism 

The characteristic of UBQP problems is that variable value is ei-

ther 0 or 1, which is a typical selection problem in combinatorial

optimization. The problem is equivalent to selecting a set of vari-

ables from all variables to take the value of 1, so as to minimize

the objective function. Supervised learning algorithm observes the

input-output pair, and its goal is to model the mapping relation-

ship between input and output. The target of supervised learning

is to determine a function f : χ → γ from the relationship between

the input space χ and the output space γ . We need to design

input-output mechanism of pointer network model firstly. In this

paper, the UBQP problem is defined as follows: 

min 

x ∈ { 0 , 1 } n 
x T Qx 

Q = Q 

T = 

(
q i j 

)
n ×n 

(14)

The main features are stored in Q matrix, then we use deep

neural network to extract its data characteristics. The feature of

variable x i ( i = 1 , 2 , . . . , n ) is represented with q i = ( q i 1 , q i 2 , . . . , q in ) ,

which acts as the input of pointer network encoder. Then encoder

network expresses the input through LSTM unit f enc (., .) and ex-

presses it as follows: 

e i = f enc ( e i −1 , q i ) i ∈ ( 1 , · · · , n ) (15)

The following is an example to illustrate the output design of

the pointer network model. 

Example 4.1. 

min f (x ) = x 2 1 − 5 x 2 2 + 8 x 2 3 − 10 x 2 4 + 4 x 1 x 2 − 6 x 1 x 3 + 8 x 1 x 4 

+ 12 x 2 x 3 − 14 x 2 x 4 + 18 x 3 x 4 

x i ∈ { 0 , 1 } , i = 1 , 2 , 3 , 4 (16)

Hence the symmetric matrix Q for this problem can be de-

scribed as follows: 

Q = 

⎛ 

⎜ ⎜ ⎝ 

1 2 −3 4 

2 −5 6 −7 

−3 6 8 9 

4 −7 9 −10 

⎞ 

⎟ ⎟ ⎠ 
The vectors q 1 = ( 1 , 2 , −3 , 4 ) T , q 2 = ( 2 , −5 , 6 , −7 ) T ,

 3 = ( −3 , 6 , 8 , 9 ) T and q 4 = ( 4 , −7 , 9 , −10 ) T respectively rep-

esent the characteristics of the variables x 1 , x 2 , x 3 and x 4 . And

 q 1 , q 2 , q 3 , q 4 ) is input sequence of pointer network. 

The optimal solution of above example is x 1 = 0 , x 2 = 1 , x 3 = 0 ,

nd x 4 = 1 . We input the sequence ( q 1 , q 2 , q 3 , q 4 ) into pointer net-

ork, and utilize the optimal solution to guide network to select

 2 and q 4 . The input vector selected by the decoder represents the

alue of the corresponding variable as 1, and the unselected vector

epresents the value of the corresponding variable as 0. The pro-

ess is shown in Fig. 2 . 

In the output part of pointer network model, rules are designed

s follows: The pointer network inputs variable characteristics, and

he output is variable index location information. One-hot code is

sed to characterize the output results. For an n dimension UBQP

roblem, matrix ( n + 1 ) × ( n + 1 ) represents the network output.

n the above example, the label result can be represented by ma-

rix O true . 

 true = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 1 0 0 

0 0 0 0 1 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

Rules are as follows: 

 j = 

⎧ ⎨ 

⎩ 

1 , if o ij = 1 , j � = 0 ;
EOS, if o ij = 1 , j = 0 ;
0 , others. 

(17)

During the pointer network training, EOS = (1 , 0 , · · · , 0) T repre-

ents the end of solving process. When we finish training model,

e utilize the model to solve problem and infer solution, the soft-

ax probability distribution can be obtained. And the correspond-

ng solution may be represented as matrix O predict . The variable

hose position with maximum probability will be set as 1, and

he others are 0. According to the above output matrix, x 2 and x 4 
re 1 and the other variables are 0. 

 predict = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 . 2 0 . 1 0 . 7 0 0 

0 . 03 0 . 05 0 . 02 0 . 1 0 . 8 

0 . 9 0 . 03 0 . 03 0 . 01 0 

1 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 
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Fig. 2. A pointer network architecture trained by SL. (encoder in gray, decoder in white). 
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.2. Algorithm details 

Cross entropy is a common loss function in classification prob-

ems. It describes the distance between two probability distribu-

ions. We choose cross entropy as the loss function of supervised

earning pointer network model. The label matrix O label and pointer

etwork output prediction matrix Q predict are converted into one

imension array t and y respectively. The objective of neural net-

ork training is to learn parameters to minimize the cross entropy.

uring the training, we select a batch of data from the training

ataset and call it mini-batch. Then we study each mini-batch. As-

uming the sample number of each min-batch is N , the loss func-

ion is expressed as follows: 

 = − 1 

N 

∑ 

n 

∑ 

k 

t nk log y nk (18) 

Stochastic gradient descent (SGD) algorithm is used to train the

ointer network. The algorithm can be described in the following

ay. 

lgorithm 1 SGD of pointer network. 

equire: α, the learning rate. m , the mini-batch size. T , number of

raining steps. 

equire: θ0 , initial pointer network parameters. L ( θ ) , the loss func-

ion of pointer network. 

1: while L ( θ ) has not converged do 

2: for t = 1 , . . . , T do 

3: sample m UBQP problems samples from the training set

randomly 

4: � θ L ( θ ) ← � θ

[
− 1 

m 

∑ 

m 

∑ 

k t mk log y mk 

]
5: θ ← θ − α · � θ L ( θ ) 
6: end for 

7: end while 

Regarding the selection of batch size, within a reasonable range,

ncreasing batch size can improve the utilization rate of memory

nd improve the parallelization efficiency of large matrix multipli-

ation. It also reduces the number of iterations to complete one

poch, which accelerates the process of the same amount of data.

hat is to say, within a certain range, the larger the batch size

s and the more accurate the determined descending direction is,

he smaller the training shock is caused. However, increasing batch

ize blindly may cause the collapse of memory capacity and the re-

uction of the number of iterations needed to complete one epoch

full data set). To achieve the same precision, the time is greatly

ncreased, so the parameter correction is slower. 
. Deep reinforcement learning solution 

The difference between DRL and traditional RL is that the deep

eural network is used to parameterize the corresponding vari-

bles in Markov process, and the nonlinear performance of the

eural network and its gradient solution are used to solve the rein-

orcement learning. Once relevant variables in reinforcement learn-

ng are parameterized, the problem of reinforcement learning can

e transformed into deep learning for solving. 

There is one difference between DRL and traditional machine

earning in data. For DRL method, at the beginning of the study

e even do not have to prepare the data. Data is accessed through

imulation sampling step by step. The data obtained are unlabeled

ata or unsupervised learning data. RL data is a kind of label delay

raining data. In order to get a good training result, a lot of itera-

ive sampling is usually needed, which can also effectively prevent

verfitting. 

.1. Actor-critic algorithm 

Deep reinforcement learning has made remarkable achieve-

ents in combinatorial optimization. Inspired by Bello et al., we

ombine the structural characteristics of UBQP problems with the

ctor-critic algorithm of DRL to train pointer network model. 

Actor-critic method is mainly divided into actor network and

ritic network. Both parts use the same encoder of the pointer net-

ork. After actor network encodes input sequence, the variables of

alue 1 are selected according to the probability in the decoder

art. Critic network encodes the input sequence and uses the neu-

al network to create a value function to predict optimal solutions

o UBQP. 

For a given input matrix Q , it is expressed as input sequences

 . The value of objective function is specified as L ( π | s ) . π is the

cheme to select which variables to value as 1. Our training objec-

ive is to minimize the value of the objective function. Parameters

f pointer network are expressed by θ . 

The training objectives of actor network can be expressed as

ollows: 

 ( θ | s ) = E π∼p θ ( ·| s ) L ( π | s ) (19) 

According to the reinforcement learning algorithm proposed by

illiams [24] , the gradient in Formula (19) is as follows: 

 θ J ( θ | s ) = E π∼p θ ( ·| s ) [ ( L ( π | s − b ( s ) ) ∇ θ log p θ ( π | s ) ) ] (20) 

here b ( s ) represents the baseline function, which does not rely

n the evaluation scheme π to estimate the desired value of the

arget function. The value of b ( s ) is actually computed with critic

etwork. Variance of the policy gradient can be reduced by intro-

ucing baseline value b ( s ). 
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A  
B samples are generated from the training set, and a single

sample is sampled once according to the value scheme. For ex-

ample, π i ~ p θ ( · | s i ), Formula (20) can be approximated by Monte

Carlo sampling as follows: 

∇ θ J ( θ | s ) ≈ 1 

B 

B ∑ 

i =1 

( L ( πi | s i ) − b ( s i ) ) ∇ θ log p θ ( π | s ) (21)

The mean square deviation of the prediction value and the ac-

tual UBQP objective function value obtained by policy sampling is

acted as the loss function in critic network, with the stochastic gra-

dient training the network parameters. 

L ( θν ) = 

1 

B 

B ∑ 

i =1 

∥∥b θv ( s i ) − L ( πi | s i ) 
∥∥2 

2 
(22)

For UBQP problems, the actor-critic algorithm is used to update

Algorithm 2 Actor-critic training. 

1: Input: UBQP problems training set S, number of training steps

T , batch size B , 

Initialize pointer network parameters θ , 

Initialize critic network parameters θv . 

2: for t = 1 to T do 

3: s i ∼ SAMPLE from training set S for i ∈ { 1 , . . . , B } 
4: πi ∼ SAMPLESOLUTION ( p θ ( ·| s i ) ) for i ∈ { 1 , . . . , B } 
5: b i ← b θv ( s i ) for i ∈ { 1 , . . . , B } 
6: g θ ← 

1 
B 

∑ B 
i =1 ( L ( πi | s i ) − b i ) � θ log p θ ( πi | s i ) 

7: L v ← 

1 
B 

∑ B 
i =1 

∥∥b θv ( s i ) − L ( πi | s i ) 
∥∥2 

2 
8: θ ← ADAM ( θ, g θ ) 
9: θv ← ADAM 

(
θv , � θv L v 

)
10: end for 

the network parameters. 

5.2. Modified attention mechanism 

Encoder and decoder form the pointer network, and these two

parts are both composed of LSTM units. The encoder reads in-

put sequence of UBQP problems. At each time step the encoder

reads one characteristic sequence and then converts them into a

high dimension hidden state { en c i } n i =1 through linear transforma-

tion. enc i ∈ R d and d usually takes 128 or 256. The n dimension

input sequence q i of pointer network is converted to d dimension

vector enc i at time step i . The embedding representation of input

variable features is realized. 

Decoder also contains hidden states { dec i } n i =1 , dec i ∈ R d . At each

time step i , pointer pointing mechanism generates a probability

distribution of which variable is selected with a value of 1. Once

the next variable is selected, it serves as the input for the next

time step of the decoder. 

Compared with supervised learning, reinforcement learning

lacks supervisory signal. In order to prevent the pointer network

from selecting the selected variables again, we make the following

adjustments to the attention mechanism in the deep reinforcement

learning model. 

u i = 

{
v T · tanh 

(
W re f · r i + W q · q 

)
, if i � = π( j ) for all j < i ;

−∞ , otherwise. 

(23)

A 

(
re f, T ;W re f , W q , v 

)
= softmax ( C · tanh (u/T ) ) (24)

Assigning −∞ to a selected variable makes sure that each variable

is selected only once. 
In decoding process, query vector q = de c i ∈ R d and the set of

eference vectors re f = { en c 1 , . . . , en c k } are needed to obtain prob-

bility distribution A ( ref, q ). This distribution represents the prob-

bility that the model points to the reference vector r i when the

uery vector q appears. 

Moreover, in decoding process, we introduce the temperature

arameter T , which is set as 1 during the training. The distribution

f A ( ref, q ) will be much smoother when T > 1, preventing overfit-

ing of the model. Activation function tanh ( ·) and hyperparameter

 are used to control the logarithm range of cross entropy. 

Critic network includes three neural network modules: LSTM

ncoder, LSTM processing module, and two-layer fully connected

eural network decoder. The encoder of critic network has the

ame structure as the actor network encoder. LSTM processing

odule works like to pointer network. At each processing step,

idden state will be updated based on Glimpse function. We take

he output of the Glimpse function as input to the next process-

ng step. At the end of the LSTM processing module, the obtained

idden state is converted into the baseline prediction through the

wo-layer fully connected neural network. 

The Glimpse function is parameterized by W 

g 

re f 
, W 

g 
q ∈ R d×d ,

 

g ∈ R d and shown below: 

p = A (re f, q ;W 

g 

re f 
, W 

g 
q , v g ) (25)

 

(
re f, q ;W 

g 

re f 
, W 

g 
q , v g 

)
= 

k ∑ 

i =1 

r i p i (26)

.3. Input-output mechanism 

According to Example 4.1 , we introduce the special variable

plit in order to solve this type of problem with the pointer net-

ork model. Split is the splitter that takes either 1 or 0 as the vari-

ble. We make the following provision: all variables before Split

re 1s, all variables after Split are 0s. Therefore, when we solve

roblem with reinforcement learning, we only need to pay atten-

ion to the variables selected before Split, so as to obtain solution.

n order to solve this problem with pointer network, we need to

ake some changes to the above Q matrix. We use zero vector

o represent Split, then the corresponding Q matrix can be trans-

ormed into a symmetric matrix P . 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 2 −3 4 0 

2 −5 6 −7 0 

−3 6 8 9 0 

4 −7 9 −10 0 

0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

The solving process is shown in Fig. 3 . The output result of

ointer network in this mode is the variable index value, indicat-

ng that the variable x 2 and x 4 are selected as the value of 1s and

ther variables are 0s. 

. Experimental results and analysis 

In this paper, the pointer networks of SL and DRL are imple-

ented respectively based on TensorFlow deep learning framework

29] . Our models are trained and tested on deep learning platform

quipped with NVIDIA GeForce 1080Ti and Intel Core i7-7700 CPU,

hen the UBQP problem of different dimensions is solved on this

odel. To verify the validity of this method, we define the accu-

acy as follows: 

ccuracy = 

v ( Ptr-Net ) 

v ( Opt ) 
× 100% (27)
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Fig. 3. A pointer network architecture trained by RL. (encoder in gray, decoder in white). 
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Z  
here v (Ptr-Net) is obtained by pointer network and v (Opt) is the

ptimal value. 

We make dataset according to a benchmark generator in

ection 3.2 named Zhou dataset. What’s more, the most popular

ataset currently is J.E. Beasleys OR-library (ORLIB). We perform

xperiments respectively on Zhou dataset and ORLIB dataset. In the

ointer network model for deep reinforcement learning, L2 norm

s introduced to conduct gradient clipping at the loss function to

revent overfitting. Batch-normalization (BN) layer is also used in

ttention mechanism. The BN layer is added directly into the net-

ork to make it learn data distribution better. The initial param-

ters of the pointer network are generated randomly by the uni-

orm distribution set in [-0.08, 0.08]. The initial learning rate is set

o 0.001. During training process, batch size is set to 10. Each layer

f LSTM contains 256 hidden units. In the pointer networks based

n DRL framework, temperature hyperparameter T is set to 3 dur-

ng inference phase. The initial reward baseline b ( s ) is set to 100.

o parameters will change with the dimension of UBQP problems

xcept the input sequence length. 

In this paper, we use validation set to adjust learning rate, batch

ize and other parameters. Moreover, this paper only presents an

dea and preliminary implementation of using pointer network to

olve UBQP problem, and there may be some room for optimiza-

ion in parameter setting to be studied in the future, so as to im-

rove it. In this paper, we select batch size data such as 100, 50

nd 20, etc. After the validation set test, the accuracy when the

alue is 100 and 50 has little difference. After comprehensive con-

ideration of time and accuracy, the current value is selected. 

.1. Experiments on Zhou dataset 

For different dimensions problems, 10 0 0 samples are used as

he training set, and 100 samples are used as the testing set. The

aximum training number of iteration is 10 0,0 0 0. Both the train-

ng set and the testing set are generated by the same probability

istribution. The density of Q matrix in the UBQP sample is 94.6%. 

The parameters of the pointer network trained by SL is opti-

ized by SGD algorithm. Pointer networks are applied to solve

BQP50, UBQP100, UBQP150 and UBQP200 successfully in our ex-

eriments. Fig. 4 shows the average accuracy and the proportion of

he optimal solution of UBQP problems with different dimensions.

or different dimensions of UBQP problems, the time of solving

00 UBQP problems samples depend on trained pointer network

odel is curved in Fig. 5 . 

It can be seen from Fig. 5 that the time of solving UBQP prob-

ems with the pointer network model increases nearly linearly

ith the increase of dimension. We generate four testing datasets,

BQP50, UBQP100, UBQP150 and UBQP200, each dataset includes
0 instances. The optimal solution of UBQP problems with differ-

nt dimensions, the solution value obtained by the pointer net-

orks trained by SL and the accuracy of the solution are shown in

able 2 . It can be seen that the pointer network model trained by

upervised learning method can learn the characteristics of UBQP

roblems of a certain kind of specific data distribution and quickly

olve the problems with the same data distribution. 

The pointer networks based on DRL are also trained with

hou dataset. For different dimensions of UBQP problems, actor-
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Table 2 

Solution and accuracy of different dimensional UBQP by SL. 

Sample Optimal Value Solution Accuracy Sample Optimal value Solution Accuracy 

P50.1 −18398 −18398 100.00% P150.1 −121384 −110764 91.25% 

P50.2 −13522 −13522 100.00% P150.2 −138064 −76638 55.51% 

P50.3 −14408 −14408 100.00% P150.3 −142708 −142708 100.00% 

P50.4 −15250 −15250 100.00% P150.4 −155802 −119888 76.95% 

P50.5 −13684 −13154 96.13% P150.5 −113260 −82272 72.64% 

P50.6 −11244 −11244 100.00% P150.6 −130866 −130866 100.00% 

P50.7 −15624 −15624 100.00% P150.7 −153156 −153156 100.00% 

P50.8 −11364 −11364 100.00% P150.8 −129598 −129598 100.00% 

P50.9 −14976 −14976 100.00% P150.9 −115102 −96620 83.94% 

P50.10 −18536 −18536 100.00% P150.10 −114250 −112674 98.62% 

P100.1 −55970 −55970 100.00% P200.1 −226606 −224342 99.00% 

P100.2 −56404 −56404 100.00% P200.2 −210696 −147300 69.91% 

P100.3 −59352 −59352 100.00% P200.3 −230052 −230052 100.00% 

P100.4 −51688 −51688 100.00% P200.4 −188448 −148216 78.65% 

P100.5 −53340 −53340 100.00% P200.5 −226160 −210496 93.07% 

P100.6 −58626 −58626 100.00% P200.6 −242646 −238034 98.10% 

P100.7 −51462 −51462 100.00% P200.7 −200146 −175044 87.46% 

P100.8 −55148 −55148 100.00% P200.8 −242456 −143414 59.15% 

P100.9 −59632 −58590 98.25% P200.9 −205172 −100194 48.83% 

P100.10 −48722 −45370 93.12% P200.10 −247700 −247700 100.00% 

Table 3 

Solution and accuracy of different dimensional UBQP by RL. 

Sample Optimal value Solution Accuracy Sample Optimal value Solution Accuracy 

R120.1 −70896 −69492 98.02% R160.6 −151100 −149242 98.77% 

R120.2 −76238 −74858 98.19% R160.7 −145518 −128016 87.97% 

R120.3 −81462 −80134 98.37% R160.8 −130334 −128336 98.47% 

R120.4 −74404 −72838 97.90% R160.9 −145576 −143546 98.61% 

R120.5 −68048 −66702 98.02% R160.10 −141168 −139410 98.75% 

R120.6 −96586 −95354 98.72% R180.1 −179192 −175116 97.73% 

R120.7 −72502 −71204 98.21% R180.2 −187938 −186060 99.00% 

R120.8 −94694 −93380 98.61% R180.3 −188806 −186762 98.92% 

R120.9 −99882 −98546 98.66% R180.4 −182760 −176900 96.79% 

R120.10 −77784 −76536 98.40% R180.5 −177962 −148530 83.46% 

R140.1 −98246 −92846 94.50% R180.6 −170942 −168818 98.76% 

R140.2 −123546 −123546 100.00% R180.7 −182860 −180792 98.87% 

R140.3 −109628 −108090 98.60% R180.8 −165860 −161610 97.44% 

R140.4 −107428 −105870 98.55% R180.9 −176778 −174700 98.82% 

R140.5 −120006 −120006 100.00% R180.10 −180026 −178042 98.90% 

R140.6 −127476 −127476 100.00% R200.1 −217384 −215194 98.99% 

R140.7 −120716 −120716 100.00% R200.2 −196458 −194106 98.80% 

R140.8 −113458 −113458 100.00% R200.3 −232756 −230680 99.11% 

R140.9 −123828 −123828 100.00% R200.4 −231426 −229182 99.03% 

R140.10 −110848 −110848 100.00% R200.5 −217716 −215852 99.14% 

R160.1 −126394 −124476 98.48% R200.6 −264684 −262278 99.09% 

R160.2 −145322 −143530 98.77% R200.7 −227734 −225398 98.97% 

R160.3 −154538 −152742 98.84% R200.8 −241256 −239102 99.11% 

R160.4 −142276 −135042 94.92% R200.9 −218842 −216698 99.02% 

R160.5 −133608 −131878 98.71% R200.10 −212178 −209772 98.87% 
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Fig. 6. Accuracy standard deviation of SL and DRL. 
critic algorithm is applied to train the corresponding pointer net-

work models. Table 3 shows the experimental results of UBQP120,

UBQP140, UBQP160, UBQP180 and UBQP200. 

It can be seen that the pointer network model trained by DRL

can also successfully learn the method of solving UBQP problems.

Fig. 6 curves the accuracy standard deviation of UBQP samples so-

lution from pointer networks trained by SL and DRL method. Com-

pared with pointer network models trained by SL, pointer network

models trained by DRL can get smaller accuracy standard devia-

tion of UBQP samples solution. This means that pointer network

model trained by DRL is more versatile. Therefore, DRL method is

more suitable as a unified method for combinatorial optimization

problem. 

6.2. Experiments on ORLIB dataset 

50 dimension and 100 dimension UBQP samples are se-

lected from the OR-library ( http://people.brunel.ac.uk/ ∼mastjjb/jeb/

orlib/bqpinfo.html ) and converted to the problems that minimize

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
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Table 4 

50-dimensional UBQP solution on ORLIB dataset. 

Sample Optimal value 50a 50b 50c 50d 50e 

Solution Accuracy Solution Accuracy Solution Accuracy Solution Accuracy Solution Accuracy 

1 −2098 −120 5.72% −1263 60.20% −1673 79.74% −1761 83.94% −1781 84.89% 

2 −3702 −618 16.69% −1028 27.77% −3460 93.46% −3524 95.19% −3552 95.95% 

3 −4626 −1098 23.74% −3400 73.50% −3910 84.52% −4290 92.74% −3994 86.34% 

4 −3544 −23 0.65% −2686 75.79% −3284 92.66% −3490 98.48% −3544 100.00% 

5 −4012 −881 21.96% −2404 59.92% −3862 96.26% −3846 95.86% −3934 98.06% 

6 −3693 206 −5.58% −901 24.40% −2973 80.50% −3516 95.21% −3678 99.59% 

7 −4520 −210 4.65% −3842 85.00% −4246 93.94% −4350 96.24% −4410 97.57% 

8 −4216 −602 14.28% −3576 84.82% −3544 84.06% −3610 85.63% −4160 98.67% 

9 −3780 −461 12.20% −2719 71.93% −3462 91.59% −3708 98.10% −3702 97.94% 

10 −3507 −896 25.55% −2081 59.34% −2833 80.78% −3303 94.18% −3443 98.18% 

Average —— —— 12.48% —— 63.40% —— 88.19% —— 93.90% —— 96.02% 
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he value of UBQP problems equivalently, named UBQP50 and

BQP100. 

For UBQP50, we first used Zhou dataset to train pointer net-

ork by SL and DRL and obtained model 50a and 50b respec-

ively. Then based on 50b, UBQP50 samples from OR-library acts as

he input of the pointer networks based on DRL and then we ob-

ained model 50c, 50d and 50e by increasing 10,0 0 0, 50,0 0 0 and

0 0,0 0 0 iterations respectively. From the results in the Table 4 ,

he result of model 50a was poor. The result of model 50b was

lightly better. It can be found that the model trained by deep re-

nforcement learning can learn the general rules of UBQP prob-

ems and the generalization ability is good. Based on the 50b

odel, put the UBQP samples and let them learn continuously

n the framework of the actor-critic framework, the quality of

he solution increases with the number of iterations as shown in

ig. 7 . 

Similarly, for UBQP100, the model 100a and model 100b are

btained respectively. And then based on 100b, UBQP100 samples

rom OR-library acts as the input of the pointer networks based

n DRL and then we obtain model 100c, 100d, 100e by increas-

ng 10,0 0 0, 50,0 0 0 and 10 0,0 0 0 iterations, respectively. The results
-20%
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A
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Fig. 7. Results of UBQP50 
f UBQP100 via different models are shown in Fig. 8 . The sim-

lar results can be found in Table 5 . Compared with the model

rained by DRL, the result of model 100a trained by SL is even

orse. 

.3. Summary of experimental results 

In these experiments, SL and DRL are used to train the pointer

etwork model to solve different dimensions UBQP problems. It

s found that the pointer network model of supervised learning

raining has a strong learning ability for UBQP datasets with low

imension and specific probability distribution, but the effect of

igh dimension problems is not very good. The UBQP problem is

olved by deep reinforcement learning method, and the accuracy

tandard deviation of the solution is smaller. It shows that deep re-

nforcement learning model can find the essential characteristics of

BQP problems and obtain the better solution of combinatorial op-

imization problem from data. Comparatively speaking, the frame-

ork of deep reinforcement learning is more suitable for solving

arge scale combinatorial problems. On the one hand, it does not

eed to know the exact solution of the training set, on the other
-2000
-2500
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Optimal Value
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-4000

-4500
0
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via different model. 
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Fig. 8. Results of UBQP100 via different model. 

Table 5 

100-dimensional UBQP solution on ORLIB dataset. 

Sample Optimal value 100a 100b 100c 100d 100e 

Solution Accuracy Solution Accuracy Solution Accuracy Solution Accuracy Solution Accuracy 

1 −11109 177 −1.59% −6790 61.12% −8075 72.69% −8492 76.44% −10141 91.29% 

2 −7225 −198 2.74% −1420 19.65% −4844 67.04% −5731 79.32% −6243 86.41% 

3 −6333 −244 3.85% −2382 37.61% −4866 76.84% −3969 62.67% −5718 90.29% 

4 −6467 −694 10.73% −1922 29.72% −3589 55.50% −4175 64.56% −5593 86.49% 

5 −9205 −300 3.26% −5790 62.90% −4864 52.84% −7605 82.62% −8812 95.73% 

6 −10705 578 −5.40% −4547 42.48% −8647 80.78% −7124 66.55% −9773 91.29% 

7 −11589 639 −5.51% −3036 26.20% −9180 79.21% −9021 77.84% −9394 81.06% 

8 −14017 −945 6.74% −5788 41.29% −9116 65.04% −9066 64.68% −11696 83.44% 

9 −13999 −975 6.96% −8142 58.16% −10957 78.27% −10575 75.54% −12566 89.76% 

10 −18930 −846 4.47% −15555 82.17% −13986 73.88% −14958 79.02% −17744 93.73% 

Average —— —— 2.56% —— 50.53% —— 71.29% —— 73.66% —— 89.14% 
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hand, the reward mechanism of deep reinforcement learning is

more in line with the combinatorial problems. 

In our experiments, Zhou dataset is generated by the same

probability distribution and ORLIB dataset is generated by the dif-

ferent probability distribution. It is easy for deep neural network

to learn the characteristic and rule of specific probability distribu-

tion data. Therefore, the effect in Zhou dataset is better than that

in ORLIB dataset. 

Although the process of training pointer network takes a lot

of time, the speed of solving UBQP problems using the trained

pointer network model is quite fast and its solution time increases

almost linearly with dimension increase. Moreover, it can solve

many UBQP problems in batches at the same time. 

7. Conclusions 

This paper proposes a new method for large scale combinato-

rial optimization problems, converting different types of combina-

torial optimization problems to UBQP. And then pointer networks

based on deep learning are applied to solve UBQP problems. We

describe the architecture of pointer network to solve UBQP prob-

lems based on SL and DRL respectively. The generation of the UBQP

problem dataset and the training method of the model are intro-
uced in detail. According to the experimental results, the effec-

iveness of the pointer network for UBQP problems is verified. The

onclusions can be obtained without considering dimension reduc-

ion. For the low dimension UBQP, the solution accuracy of point

etwork trained by SL is better than DRL. For the high dimension

BQP, the accuracy standard deviation of the solution obtained by

ointer network trained by DRL is smaller. In short, pointer net-

orks based on deep learning have great potential to solve UBQP

roblems and other combinatorial optimization problems. 
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