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a b s t r a c t 

Reinforcement learning (RL) of optimal policies against an opponent agent also with learning capabil- 

ity is still challenging in Markov games. A variety of algorithms have been proposed for solving this 

problem such as the traditional Q-learning-based RL (QbRL) algorithms as well as the state-of-the-art 

neural-network-based RL (NNbRL) algorithms. However, the QbRL approaches have poor generalization 

capability for complex problems with non-stationary opponents, while the learned policies by NNbRL al- 

gorithms are lack of explainability and transparency. In this paper, we propose an algorithm X-OMQ( λ) 

that integrates eXtended Classifier System (XCS) with opponent modelling for concurrent reinforcement 

learners in zero-sum Markov Games. The algorithm can learn general, accurate, and interpretable action 

selection rules and allow policy optimization using the genetic algorithm (GA). Besides, the X-OMQ( λ) 

agent optimizes the established opponent’s model while simultaneously learning to select actions in a 

goal-directed manner. In addition, we use the eligibility trace mechanism to further speed up the learn- 

ing process. In the reinforcement component, not only the classifiers in the action set are updated, but 

other relevant classifiers are also updated in a certain proportion. We demonstrate the performance of 

the proposed algorithm in the hunter prey problem and two adversarial soccer scenarios where the op- 

ponent is allowed to learn with several benchmark QbRL and NNbRL algorithms. The results show that 

our method has similar learning performance with the NNbRL algorithms while our method requires no 

prior knowledge of the opponent or the environment. Moreover, the learned action selection rules are 

also interpretable while having generalization capability. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

How to represent and store value functions and/or policies is

ne of the greatest challenges in reinforcement learning (RL) appli-

ations [1] . A RL agent learns through trial-and-error interactions

ith its environment which can be typically modeled as Markov

ecision Processes (MDPs). Although the learning results of Q-

earning-based RL (QbRL) algorithms are easy to understand, they

o not have generalization capability and thus difficult to apply

o complex problems. For example, the QbRL algorithms maintain

 record of all state-action pairs in a table, which requires full

xploration of the sate-action spaces. As the complexity of the

roblem increases, the state-action space grows exponentially

ith the number of state and action variables, and the exploration

rocess can be very time-consuming [2] . 

Compared with single-agent RL, multi-agent reinforcement

earning (MARL) is more difficult for non-stationary MDPs. In

n example of robot soccer game, there are several concurrent

earning agents that the policies of the opponents are unavailable
∗ Corresponding author. 
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nd the learning is based on the observation of the opponents’

ehaviors. If the opponents are modeled as part of the envi-

onment, the state transition function and the reward function

re non-stationary and changing over time [3] . In addition, the

nterdependence between the agents makes it even more difficult

o find the optimal policy because an opponent is also evolving

ts own policy concurrently. Furthermore, the state-action space

rows dramatically with the number of agents, which makes the

roblem of the curse of dimensionality more severe in MARL than

n single agent RL [4,5] . 

To address the learning problems in multi-agent scenarios,

ittman has formulated the framework of Markov Games and

roposed the Minimax-Q algorithm [6] for fully competitive tasks.

nlike MDPs, the optimal policy is sometimes non-deterministic

i.e., probabilistic) in Markov Games [6] because of the interdepen-

ence between the agents. For games with alternating turns, the

gent knows the action taken by others in advance, and the non-

eterministic optimal policy becomes deterministic [6,7] . In this

aper, we focus on the alternating fully competitive tasks, in which

he players perform actions alternately and learn concurrently. 

Trying to improve the learning performance in zero-sum

arkov Games (ZSMG), several improved algorithms have been

https://doi.org/10.1016/j.neucom.2020.02.118
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.118&domain=pdf
mailto:nudtjhuang@hotmail.com
https://doi.org/10.1016/j.neucom.2020.02.118


450 H. Chen, C. Wang and J. Huang et al. / Neurocomputing 399 (2020) 449–466 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

h

 

t  

s  

o  

S  

r  

a

2

2

 

m  

G  

p  

t  

I  

p  

p  

f

 

 

 

 

 

p  

a

 

s  

a  

t  

s

a  

u

Q  

w  

t  

[

V  

A  

d  

p

π  
proposed based on the Minimax-Q algorithm through spatial,

temporal, or action generalization, such as Minimax-QS [2] ,

Minimax-Q( λ) [8] , Minimax-SARSA [8] , Heuristically-accelerated

Minimax-Q (HAMMQ) [7,9] , etc. Minimax-QS and HAMMQ speed

up convergence through domain-related prior knowledge, and

their performance mainly depends on the choice of the spreading

function [2,10] or heuristics [7,9] , respectively. However, the prior

knowledge or the heuristic is not always available if the opponent

is learning concurrently. Besides, as QbRL algorithms, they directly

store learned policies as Q-tables, which might be infeasible

when handling complex problems. Furthermore, Minimax-Q like

algorithms use the concept of equilibria by assuming that the

opponent always follows the optimal action selection policy,

while Minimax-Q follows a conservative policy. However, the

opponent may follow a suboptimal policy (not always choosing

the best action) or other kinds of policies rather than the opti-

mal policy. Therefore, the opponent’s behavior model has to be

taken into account for learning a corresponding action selection

policy. 

Models of other players can be obtained by analyzing the his-

tory data of the observed behaviors and the consequent rewards.

US-L ∗ [11] formulates the interactions among the players as a

repeated game where the agent adapts its strategy according to

the history of the game, while the opponent is represented by

a deterministic finite automaton. Hyper-Q [12] learns the values

of strategies and actions by taking other agents’ model into the

state-action value representation. Besides, Uther et al. [13] and

Weinberg et al. [14] have introduced other players’ model into

dynamic tasks by calculating the frequencies of actions taken by

other agents in every state. However, due to the introduction of

other players’ model, the state-action space of the learning agent

are further expanded and this may lead to a difficult optimal

strategy search process. Similar ideas can also be found in neural-

network-based RL (NNbRL) algorithms, such as multi-agent deep

deterministic policy gradient (MADDPG) [15] and deep Bayesian

policy reuse (deep BPR+) [16] , which update other players’ models

with sampled observations. 

One efficient way of handling large state-action space is to

leverage the idea of generalization, by which we can find a good

approximate solution using limited computational resources. This

is achieved by trying to generalize from the examples of the

desired function (e.g., a state-action value function) to form an

approximation of the whole problem. The neural network has

been used as a function approximator to get generalized learning

results by updating the connection weights in all the layers. Be-

sides, a serial of NNbRL algorithms [15,17–21] has been proposed.

However, such generalization makes the learning results more

difficult to interpret and understand [1] . 

The eXtended Classifier System (XCS) [22,23] is an accuracy

based Learning Classifier System (LCS) [24,25] . In XCS, the RL part

is responsible for payoff prediction and the genetic algorithms

(GA) [26] part is responsible for evolving the population of action

selection rules. XCS can evolve accurate, maximally general, and

interpretable action selection rules with reasonable time. In the

literature, XCS has been used in both cooperative RL tasks [27–29]

and competitive RL tasks [30,31] . However, these algorithms treat

the XCS agents independently without integrating other players’

model into the representation of the XCS agents. In this paper,

we take advantage of the mechanism of XCS to learn the action

selection policy with opponent modelling. 

The main contributions of the paper are as follows: 

• We propose a concurrent policy learning algorithm X-OMQ( λ)

for ZSMG which can not only search for the optimal policy by

evolving a fixed-size population of action selection rules, but

the learned generalized action selection policy is interpretable. 
• We construct the opponent’s model from scratch based on the

observations of the opponent’s states and actions while the

model is simultaneously used to select actions and improve

the action selection policy. 

• We design a new mechanism to update the relevant classifiers

in the population by matching the situation and agent’s action

with the historical data stored in the trace set, thus speeding

up the policy learning. 

We have evaluated the performance of the proposed algorithm

n three environments, i.e., the Littman’s soccer domain [6] , the

unter prey problem [32] , and the Hexcer environment [13] . 

The rest of the paper is organized as follows. Section 2 reviews

he related work of RL in Markov Games and XCS in multi-agent

ystem (MAS). Section 3 briefly introduces the main mechanisms

f XCS, followed by the details of the proposed algorithm in

ection 4 . Section 5 describes the experiments and discusses the

esults of the experiments. Finally, Section 6 concludes the paper

nd outlines our plans for future work. 

. Related work 

.1. Reinforcement learning in Markov Games 

Markov Games [6] are extension of single-agent MDPs to

ulti-agent scenarios including ZSMG and general-sum Markov

ames. In ZSMG, there are two players (the agent and the op-

onent) with opposed goals, where one player tries to maximize

he target function while the other player tries to minimize it.

n contrast, general-sum Markov Games support more than two

layers, without the need for opposed target functions. In this

aper, we focus on the problem of ZSMG. Markov Games can be

ormulated as a tuple 〈 n, S, A 1 , . . . , A n , P, r 1 , . . . , r n 〉 , where: 

� n is the number of agents; 

� S is a set of finite states of the agents; 

� A i is the action set of the player i ; 

� P is a state transition function, P : S × A 1 . . . × A n �→ �( S ),

which describes the probability of changing from the current

state s to the next state s ′ when the players execute a 1 , . . . , a n ,

respectively; 

� r i is the reward function of the player i, r i : S × A 1 . . . × A n �→
R . 

In this paper, we discuss the zero-sum games between two

layers, i.e., n = 2 . Denote by A 1 the action set of the RL agent,

nd A 2 the action set of the opponent. 

Littman proposed the Minimax-Q learning algorithm [6] to

olve ZSMG, which combines the Minimax algorithm in games

nd Q-learning [33] in RL. It is similar to Q-learning except that

he max operator is replaced by the minimax operator. The next

tate and the reward are determined by the agent’s action a in A 1 

nd the opponent’s action o in A 2 . The Q-values of Minimax-Q are

pdated as follows: 

 ( s, a, o ) ← Q ( s, a, o ) + α
[
r ( s, a, o ) + γV 

(
s ′ 
)

− Q ( s, a, o ) 
]

(1)

here α is the learning rate, V ( s ) is the state function, and s ′ is

he state of the next time step. For deterministic action policies

6] , V ( s ) is calculated as follows: 

 ( s ) = max 
a ∈ A 1 

min 

o∈ A 2 
Q ( s, a, o ) (2)

ction selection strategies such as ε − greedy and Boltzmann

istribution [1] can also be used in Minimax-Q, and the optimal

olicy is calculated as follows: 

∗( s ) = arg max 
a ∈ A 1 

min 

o∈ A 2 
Q 

∗( s, a, o ) (3)
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s a result, the Minimax-Q agent selects action conservatively (i.e.,

ssuming the opponent always chooses the best action). In this

aper, we use the RL algorithm name plus the agent to represent

hat the agent uses this algorithm for policy learning. Similar to

-learning, Minimax-Q converges to the Nash equilibrium (NE)

hen the joint state-action pairs are visited infinitely [34] . But it is

ot guaranteed for Minimax-Q, because the agent’s next state de-

ends on the opponent’s action in the given state. If the opponent

ever performs some actions in given states, it can be difficult

or the agent to acquire the optimal policy. Besides, adopting the

ingle-step updating rule, Minimax-Q has a low learning efficiency

nd almost randomly selects actions in the early stage of learning. 

Win or learn fast (WoLF) [35] and Generalized Infinitesimal

radient Ascent WoLF (GIGA-WoLF) [36] are examples of the

irect policy search MARL algorithms. The heuristic of WoLF is to

earn quickly when the agents perform poorly and learn cautiously

hen they perform well. It is proved that for a restrict class

f iterated matrix games, it converges to a rational policy by

ltering the learning rates according to the WoLF principle. WoLF

olicy-hill climbing (WoLF-PHC) [35] and policy dynamics based

oLF (PD-WoLF) [37] are heuristic algorithms using WoLF rules in

ynamic tasks. 

There can be multiple NEs in a game and the policy converges

o a NE may not be the optimal for MARL agent. Therefore, the

oal of MARL has been changed to obtain the optimal payoff in the

resence of other agents rather than to consider NE as a criterion.

ased on this idea, agent-tracing methods have been proposed

o construct other agent’s models in both fully cooperative tasks

38] and fully competitive tasks [13] . Hyper-Q [12] incorporates

ther agents’ models into the state vector. AWESOME (Adapt

hen Everybody is Stationary, Otherwise Move to Equilibrium)

39] has been proposed for repeated matrix games to play against

 stationary opponent. Weinberg et al. [14] have introduced

on-stationary converging policies (NSCP) to general-sum Markov

ames to get the best response policy by inferring the model of

on-stationary opponents. These algorithms combine other agents’

odel with the state-action value functions. However, with the

ncrease of the complexity of the environment and the number

f agents, the computational complexity grows exponentially,

esulting in the dimensional curse problem. 

The huge and/or continuous state space can be addressed by

ntroducing the neural network as the function approximator into

L. Mnih et al. [18] have presented an asynchronous framework

or deep RL and proposed the asynchronous advantage actor-critic

A3C) for continuous control problems. In order to learn efficiently

n rich and efficiently, Heess et al. [20] have proposed the dis-

ributed proximal policy optimization (DPPO) algorithm, in which

ata collections are distributed over workers. Similar ideas can be

ound in proximal policy optimization (PPO) [21] . However, the

fficiency improvement of these NNbRL algorithms requires the

articipation of multiple parallel learners and therefore requires

ore computing resources. 

To further improve the learning efficiency, other player’s be-

aviors have been introduced into NNbRL algorithms. Lowe et al.

15] have extended deep deterministic policy gradient (DDPG)

19] to MAS and proposed MADDPG for multi-agent cooperation

nd competition. Raileanu et al. [40] have proposed self other-

odeling (SOM) to infer the other players’ hidden goals from their

ehaviors and use these estimates to choose actions. However,

OM requires longer training time and assumes other players’

olicies are stationary. He et al. [41] have proposed to incorporate

ix-of-experts architecture to deep Q-network (DQN) [17] for

ifferent types of opponents and presented the deep reinforce-

ent opponent network (DRON). One limitation of DRON is that it

annot response optimally against a particular type of opponent.

o address this, Hao et al. [16] have proposed to extend BPR+
ith DQN and incorporate other players’ models into the agent’s

elief model for accurate opponent policy detection and optimal

esponse policy reuse. However, it assumes that the opponent can-

ot change its policy within an episode. Moreover, these NNbRL

lgorithms use neural networks as the function approximator and

he learned results are tuned parameters that lack interpretability.

n other words, it is difficult to understand the process by which

he algorithms output the selected action through state inputs in

he application phase. 

.2. Approaches to accelerate Minimax-Q learning 

The Minimax-Q agent updates only one Q-value during each

earning process which is not efficient. Minimax-Q( λ) [8] combines

he mechanism of eligibility trace [1] with Minimax-Q to speed

p the learning. Eligibility trace records the state-action trajectory

hat the agent has visited. When updating the Q-table, not only

he current state value is updated, the previously visited ( s, a, o )

uples in the trajectory are also updated. 

Minimax-SARSA [8] is an on-policy algorithm, which com-

ines Minimax-Q and SARSA [1] . The updating rule is similar to

1) except that V ( s ′ ) is replaced by the actual joint action value: 

 

(
s ′ 
)

= Q 

(
s ′ , a ′ , o ′ 

)
(4) 

here a ′ in A 1 and o ′ in A 2 represent the actions of the next

ime step of the agent and the opponent, respectively. Minimax-

ARSA( λ) [8] combines Minimax-SARSA with eligibility trace, using

he actual action value from the next state to update the current

tate. The performance strongly depends on the actual learning

olicy. As eligibility trace is used to update the state-action val-

es previously visited, Minimax-Q( λ) and Minimax-SARSA( λ) are

egarded to accelerate learning through temporal generalization. 

Minimax-QS [2] introduces the spreading function [10] to

inimax-Q, in which a single experience can update a cou-

le of state-action pairs through spatial generalization. The

preading function σ t ( s, a, o, s i , a i , o i ) ∈ [0, 1] defines the

imilarity among state-action pairs. In [2] , σt ( s, a, o, s i , a i , o i ) =
 t ( s, s i ) δ( a, a i ) δ( o, o i ) , where g t is the state similarity function,

nd δ is the Kronecker delta function. For each update, the Q-

alue of the tuple ( s i , a i , o i ) is updated simultaneously according

o the similarity degree to the tuple ( s, a, o ). The updating rule of

inimax-QS is as follows: 

 ( s i , a i , o i ) ← Q ( s i , a i , o i ) + ασ ( s, a, o, s i , a i , o i ) 

×
[
r ( s, a, o ) + γV 

(
s ′ 
)

− Q ( s i , a i , o i ) 
] (5) 

here V ( s ) is the same as (2) . If the spreading mechanism vanishes

t least as quickly as the learning rate α, then Minimax-QS con-

erges to optimal values. However, its performance highly depends

n the accuracy of the domain-related spreading function. 

HAMMQ [7,9] uses a heuristic function to guide action selec-

ion, which also requires the domain-related prior knowledge.

ompared with Minimax-Q, HAMMQ only changes the policy

f action selection without the way of updating Q-values. For

eterministic action policy, the action selection rule is: 

( s ) = 

{ 

arg max 
a ∈ A 1 

min 

o∈ A 2 

[
Q ( s, a, o ) + ξH t ( s, a, o ) 

β
]

if prob ≥ ε 

a random 

otherwise 

(6) 

here ξ and β are real values, H is the heuristic function, and

rob is a random variable drawn from a unifrom distribution over

0, 1]. For a given state s in S and opponent action o in A 2 , H is

epresented as follows: 

 ( s, a, o ) = 

{
max 
a i ∈ A 1 

Q ( s, a i , o ) − Q ( s, a, o ) + η if a = πH ( s ) 

0 otherwise 
(7) 
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Fig. 1. An overview of XCS. 
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where η is a small real value, πH ( s ) is the heuristic policy in

state s . Compared with Minimax-QS, HAMMQ needs more precise

domain-related prior knowledge to construct a valid heuristic

function. However, it is not easy to obtain a handcrafted heuristic

function in practical application. 

2.3. Application of XCS in multi-agent systems 

As an accuracy based LCS, XCS has been widely used in MAS

such as social simulation [42,43] , agent modelling [44,45] , financial

[27,46] , path planning [29] , market [47] , distributed learning [48] ,

etc. 

For competitive tasks, Inoue et al. [30] have compared accuracy-

based XCS with strength-based XCS in a simplified soccer domain.

Accuracy-based XCS has performed better in a multi-agent

environment with a teammate without the problem of over gener-

alization on classifiers. Lode et al. [31] have introduced XCS to the

non-observable MDPs, in which each agent is modeled as a single,

independent XCS. 

For cooperative tasks, Li et al. [27] have integrated XCS and neu-

ral networks to make reasonable investment decisions and reduce

man-made errors or mistakes. Énée et al. [28] have defined the

minimal requirements needed by a multi-agent classifier system

to evolve communication for a fully cooperative task. Chen et al.

[29] have presented the DH-HML approach to assign priority dy-

namically to resolve conflicts among agents with shared resources.

However, most of these algorithms has regard XCS agents as

independent individuals in MAS, without considering the inter-

dependent relationships of agents within the XCS framework. In

other words, there are few studies on how to integrate other

agents’ models into the representation of XCS and the learning of

optimal action selection policy. 

3. The eXtended classifier system 

LCS is a rule based evolutionary learning framework, in which

the agent learns to perform a task by evolving a population [P] of

condition-action rules through temporal difference (TD) learning

and GA. We note that such a rule is also called a classifier cl in

the LCS literature. In this paper, we use the term classifier and

rule alternatively as needed. 

XCS is an accuracy based Michigan-style LCS, in which the

strength of the classifier is replaced by the payoff prediction p , the

prediction error ε, and the fitness F . Besides, each classifier cl also

keeps additional parameters to support learning in XCS, e.g., the

action set size as estimates the averaged size of the action set that

contains cl , the time stamp ts indicates the time-step of the last

GA in the action set that contains cl , the experience exp specifies

the number of times cl is selected in an action set, etc. 

The overview of XCS is shown in Fig. 1 . When XCS receives an

input situation s from the environment, a match set [M] is formed,

containing every classifier in [P] whose condition matches s . The

covering mechanism is necessary if the number of actions in [M]

is less than a predefined threshold θmna , which guarantees the

candidate actions for selection are sufficient. Then, new classifiers

with conditions matched with s will be created for those missing

actions with predefined predicted payoff p along with ε and F .

The system prediction of action is a fitness-weighted average of

the predicted payoff of all classifiers in [M] advocating that action.

The prediction array in Fig. 1 contains the system predictions of all

candidate actions. Moreover, the action with the highest system

prediction is selected to execute and the classifiers in [M] advocat-

ing that action forms the action set [A]. After the selected action

is performed and the actual reward is obtained, the prediction

error is calculated and used to update all the relevant rules in the

previous time step’s action set [A] −1 . 
GA is responsible for classifier generalization in LCS. In tradi-

ional LCS, GA in the match set may produce inaccurate classifiers

y crossing parents with different actions [23] . For this reason,

CS executes GA in the action set (named niche GA). Specifically,

iche GA is triggered if the average time step of classifiers in the

ction set exceeds the threshold θGA : 

∑ 

cl∈ [A] ( t − cl.ts ) · cl.num ∑ 

cl∈ [A] cl.num 

> θGA (8)

here [A] indicates the action set, cl.num indicates how many

dentical classifiers exist in the population, and t is the current

ime step. In this paper, we use the dot to refer to the parameter

n a classifier. Two parent classifiers are selected from [A], with

robability proportionate to their fitness. Then, the offspring

lassifiers which can still match the current input are created

hrough the crossover and mutation operators. Finally, parameters

f the offspring classifiers are initiated. The numerosity num and

xperience exp are initialized to 1, and the payoff prediction p ,

he prediction error ε, and the fitness F are initialized in a certain

roportion of the parents. 

Another major difference between XCS and the traditional

CS is the use of macroclassifier and the subsumption mechanism.

fter new classifiers are created through GA or classifiers in the

ction set are updated, the subsumption mechanism is triggered.

A subsumption checks the offspring classifiers to see whether

heir conditions can be subsumed by the classifier that is accurate

nough ( cl . ε < ε0 ) and sufficiently experienced ( cl.exp > θ sub ).

ction set subsumption finds the most general classifier that is

ccurate and sufficiently experienced in the action set and tries to

ubsume other classifiers. After applying the subsumption mech-

nism, the numerosity parameter num of the subsumer (named

acroclassifier ) is increased. In other words, one macroclassifier

epresents multiple regular classifiers with the same parame-

ers. Macroclasifier and subsumption are two major mechanisms

o speed up matching classifiers with an input and evolving

aximally general classifiers. 

In order to maintain a fixed-size population, the classifiers with

ow fitness should be deleted. Besides, in order to ensure pop-

lation diversity, the number of classifiers with different actions

n the population should be approximately the same. For these

urposes, sufficiently experienced ( cl.exp > θdel ) classifiers with

ow average fitness ( cl.F / cl.num < δ · F average ), large action set size,

nd large numerosity are more likely to be deleted. 
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Fig. 2. An overview of X-OMQ( λ). Data modules containing classifiers are represented by the red rounded rectangles, and the blue rectangles describe the main function 

modules. The classifier update process consists of two parts. First, as shown in the upper part and the solid arrow lines of the figure, the classifiers in [P] match the current 

situation are updated in [A] −1 . Second, the classifiers in [P] that can match the historical information recorded in the trace set � are reinforced in [A] et , as shown in the lower 

part and the dashed arrow lines of the figure. Note that the opponent’s model is used not only to select action but evolve classifiers. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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[  
. The proposed X-OMQ( λ) algorithm 

In this section, we propose a novel XCS-based algorithm by

ombining with opponent modelling for concurrent reinforcement

earning in ZSMG. In addition, we incorporate the eligibility trace

echanism to speed up learning. We named our proposed al-

orithm X-OMQ( λ) because it is the extended version of XCS to

SMG combing opponent modelling. Moreover, the incorporated

pdating mechanism of the eligibility trace is similar to the Q( λ)

lgorithm. We focus on deterministic policies and assume that

he XCS-based agent can observe the state and the action of the

pponent. The overview of X-OMQ( λ) is shown in Fig. 2 . The

-OMQ( λ) agent constructs the opponent’s model from scratch

nd updates it by observing the opponent’s states and actions.

esides, the opponent’s model is used for action selection and

volving classifiers. In the learning part, not only the classifiers in

he previous time step’s action set are adjusted, but the classifiers
n the population that can match with the trace set are also

pdated. 

.1. Opponent modelling 

As depicted in Section 2.1 and 2.2 , the Minimax-Q agent as-

umes that the opponent always follows an optimal policy and

herefore selects action conservatively. Minimax-QS and HAMMQ

nhance the learning process through spatial and action gener-

lization. We note that these heuristic-based algorithms must

nsure the correctness of the prior knowledge. However, accurate

rior knowledge is not always available. In contrast, we construct

he opponent’s model from scratch only based on the behaviors of

he opponent, requiring no prior knowledge. Then, the opponent’s

odel is updated on-line while being used for action selection. 

Similar to NSCP [14] that extends the modelling method in JAL

38] to dynamic tasks, X-OMQ( λ) maintains a table K to record
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t  
the number of times that action o has been executed by the

opponent in the state s . Then, the estimated action distribution of

the opponent in s can be calculated as follows: 

σ ( s, o i ) = 

K ( s, o i ) ∑ 

o∈ A 2 K ( s, o ) 
(9)

4.2. Representation and creation of classifiers 

We incorporate the opponent’s model into the classifiers of

X-OMQ( λ), which helps the agent make the best response in given

states. A classifier in X-OMQ( λ) maps a condition c and an action

a to a payoff prediction vector p with an associated prediction

error ε and a fitness value F as follows: 

〈 c : a 〉 → 〈 p , ε, F 〉 (10)

note that p is a vector rather than a value as in XCS. An element

p [ o ] in p denotes the predicted payoff obtained by the X-OMQ( λ)

agent if the agent executes the action a while the opponent selects

a corresponding action o . In other words, the dimension of p is

the same with the cardinal of the opponent’s action set A 2 . 

The condition c in the classifier cl is represented by a vector

of the ternary alphabet { 0 , 1 , # } in the same way as XCS, where

the wildcard # can be either 0 or 1. Besides, the situation s (i.e.,

the state in RL) relies on binary coding and thus each bit of the

situation s is encoded with 0 or 1. When the X-OMQ( λ) agent

receives an input situation s from the environment, a match set

[M] is formed, containing every classifier in [P] whose condition

matches s . This is achieved by checking whether the situation s

matches the condition in the classifiers. We say that the condition

c matches s only if all specific components (i.e., not a #) are the

same in all corresponding positions. For example, the condition

1011# matches the situation 10 , 111 . 

In the early stage of training, the reward from the environment

can be very sparse, e.g., the agent is rewarded only when it

reaches the goal state. As a result, the elements in the predicted

payoff vector p and the prediction error ε of the classifiers used

for action selection will be zero. According to the mechanism of

XCS, the fitness F of these classifiers should be increased because

they can predict the reward accurately. However, these classifiers

do not contribute to the learning, and they have to be temporally

kept in [P] before the experience value exp reaches the deletion

threshold θdel . 

In this paper, we propose a new covering mechanism to de-

crease the influence of these classifiers. Specifically, we calculate

the expected action prediction (EAP) for every action of the classi-

fiers in [M] and compare it with a predefined threshold θ EAP . The

predicted payoff vector of a candidate action a i is calculated as: 

P a i = 

∑ 

cl.a = a i ∧ cl∈ [M] cl. p · cl.F ∑ 

cl.a = a i ∧ cl∈ [M] cl.F 
(11)

where cl . p and cl.F denote the payoff prediction vector and the

fitness value of the classifier cl , respectively. The element P a i [ o ] in

P a i indicates the payoff prediction calculated by the action set of

a i after the X-OMQ( λ) agent and the opponent execute action a i 
and o , respectively. Combining with the current opponent’s model,

the EAP for each candidate action in [M] can be represented as: 

ξa i = 

∑ 

o∈ A 2 
σ ( s, o ) · P a i [ o ] (12)

If max ξa i ≤ θEAP , the covering mechanism is used and the new

classifier is created accordingly. In summary, the covering mecha-

nism is evoked when [M] does not cover the predefined minimum

actions or the maximum EAP of actions in [M] is less than θ . 
EAP 
.3. Action selection strategy 

Current action selection strategies can be divided into undi-

ected (e.g., Boltzmann distribution and ε − greedy ) and directed

e.g., Bayesian Q-learning [49] ) methods. Besides, optimization al-

orithms have been incorporated into the action selection strategy,

uch as the cuckoo action-selection (CAS) method [50] , which is

ot highly sensitive to parameter settings. Compared with directed

ethods, undirected action selection strategies are easier to be

mplemented. ε − greedy simply suggests the selection of the best

ction for exploitation trials and a random action in exploration

rials. In our case, Boltzmann distribution seems more reasonable

y maintaining a distribution of action selection probability. All

andidate actions are taken into account, and the action with

arger EAP has a higher probability of being selected. To prevent

he numerical issues discussed in [3] , we choose the adapted

oltzmann distribution. The probability of selecting a i in situation

 is as follows: 

( a i ) = 

e ( ξa i 
−max ξa i ) /T ∑ 

a ∈ A 1 e 
( ξa −max ξa ) /T 

(13)

here T is a temperature parameter to adjust the greediness of

he policy. When T grows towards infinite, the policy becomes

ore random. When T decreases toward zero, the policy becomes

ore greedy. In experiments, T decreases gradually so that the X-

MQ( λ) agent can fully explore the environment in the early stage

f training, and then gradually changes to choose the best action. 

Different from the algorithms (e.g., Minimax-Q) that select

onservative actions, X-OMQ( λ) selects action considering the

pponent’s model σ ( s, o i ). If the opponent never takes the action

 in the state s , then the payoff prediction p [ o ] is ignored by the

pponent’s model. 

.4. Eligibility trace in X-OMQ( λ) 

Eligibility trace is a mechanism for recording historical states

nd actions during learning. When the agent is rewarded from the

nvironment, values of the most recently visited states are also

pdated in proportion. In X-OMQ( λ), due to the introduction of

ligibility trace, not only the classifiers in the previous time step’s

ction set but also classifiers in [P] that can match the historical

nformation recorded in the eligibility trace are reinforced. 

X-OMQ( λ) maintains a trace set � and an eligibility trace e

o record the historical information. The trace set � consists of

istorical state-action tuples ( s, a, o ). The eligibility trace e records

he eligibility values of ( s, a, o ) tuples in �, which determines how

o update the classifiers in Section 4.5.2 . 

After each learning cycle, the eligibility value of every tuple ( s,

, o ) recorded in � are decayed as follows: 

 ( s, a, o ) = λ · γ · e ( s, a, o ) (14)

here 0 < γ < 1 is the discount factor, 0 < λ < 1 is the trace-

ecay parameter, which determines the rate at which the trace

alls. X-OMQ( λ) only maintains tuples whose eligibility values are

ignificant enough. In other words, a tuple ( s, a, o ) will be deleted

rom � if its eligibility value is less than the threshold ( e ( s, a,

 ) < θ et ). 

After the X-OMQ( λ) agent and the opponent execute action a

nd o respectively in situation s , tuple ( s, a, o ) is added to � if it is

ot contained by �. We use the replacing trace technique [51] to

pdate the eligibility trace values after the classifiers are updated:

 ( s, a i , o i ) = 

{
1 a i = a, o i = o 
0 otherwise 

(15)

For X-OMQ( λ), the advantage of using replacing trace is that

he eligibility trace e only needs to retain the non-zero value
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a

or each situation s . Thus, the space complexity of e is O (| S |),

here | S | is the number of situations in the environment. In the

orst case, | S | tuples are recorded in �, which means that for

ach state, there is a corresponding tuple in e . In contrast, if the

ccumulating trace [51] is adopted, the space complexity of e will

e O (| S | · | A 1 | · | A 2 |), where | A i | , i = 1 , 2 indicates the number of

ossible actions for player i . 

.5. Evolving the classifiers 

Once an action is selected, the X-OMQ( λ) agent forms an action

et [A] containing all classifiers in the match set [M] that suggests

he selected action. After the selected action is executed, a reward

 is received from the environment, which is used to update the

lassifiers in the previous time step’s action set [A] −1 . Besides, the

ets [A] et matched with the eligibility trace is also updated. In

his section, we discuss the details of the update mechanism of

-OMQ( λ) and the corresponding eligibility trace technique. 

.5.1. Update classifiers in [A] −1 

Similar to XCS, in the reinforcement part, the previous time

tep’s action set [A] −1 is updated. For each classifier in [A] −1 , the

xperience parameter exp is incremented by 1: 

l.exp ← cl.exp + 1 (16)

The target prediction P denotes the expected total discounted

uture payoff for [A] −1 , resulting from taking the selected action

 −1 in the previous situation s −1 and continuing the optimal

olicy thereafter. Formally, P is the sum of reward r −1 and the

iscounted maximal EAP: 

 = r −1 + γ max 
a ∈ A 1 

ξa (17) 

here 0 < γ < 1 is the discount factor, A 1 is the set of actions

vailable for the X-OMQ( λ) agent, and ξ a is the EAP for action

 . We note that the reward r −1 is related to the X-OMQ( λ) agent

s well as the opponent thus the prediction corresponding to the

pponent action p [ o ] is updated. The standard Widrow-Hoff delta

ule is used to update p [ o ]: 

l.p[ o] ← cl.p[ o] + β1 ( P − cl.p[ o] ) (18)

here 0 < β1 < 1 is a learning rate. 

The prediction error ε describes the difference between the

arget payoff after executing the action and the expected payoff

sing the current opponent’s model. Since the opponent’s model is

onstantly updated during learning, the prediction error is updated

ccordingly. We use the expected classifier prediction (ECP) cl. ξ to

enote the expected payoff that the classifier cl receives after the

-OMQ( λ) agent executes the action advocated by cl using the

urrent opponent’s model: 

l.ξ = 

∑ 

o∈ A 2 
σ ( s −1 , o ) · cl.p [ o ] (19) 

here σ ( s −1 , o ) is the opponent’ model in situation s −1 of the

revious time step. Then, the prediction error of each classifier in

A] −1 is updated by: 

l.ε ← cl.ε + β2 ( | P − cl.ξ | − cl.ε) (20) 

here 0 < β2 < 1 is a learning rate. 

The action set size as is updated according to the numerosity

arameter num of the classifiers in [A] −1 : 

l.as ← cl.as + β3 

(∑ 

x ∈ [A] −1 

x.num − cl.as 

)
(21) 

here x is a classifier in [A] −1 , and 0 < β3 < 1 is a learning rate. 

Similar to XCS, the moyenne adaptative modifié e (MAM) tech-

ique is also used to update the payoff prediction vector p ,
rediction error ε, and action set size as . βi = 1 /cl.exp (i = 1 , 2 , 3)

hen the experience of a classifier is less than 1/ β0 , while at the

est of the time, βi = β0 (i = 1 , 2 , 3) , where β0 is a fixed value. In

he early learning phase, MAM technique increases the magnitude

f each update and makes X-OMQ( λ) less sensitive to the initial

alue of these parameters. 

The fitness F reflects the accuracy of a classifier, and it is

pdated in the same way with XCS: 

l.F ← cl.F + β4 

(
cl.k · cl.num ∑ 

x ∈ [A] −1 
x.k · x.num 

− c l.F 

)
(22) 

here x is the classifier in [A] −1 , 0 < β4 < 1 is a learning rate,

nd cl.k denotes the current absolute accuracy of the classifier: 

l.k = 

{
1 if cl.ε < ε0 

α
(

cl.ε
ε0 

)−ν
otherwise 

(23) 

here α and ν are real values that further differentiate the

ccuracy of classifiers. ε0 is the error threshold that indicates the

aximal error tolerance. 

After the parameters are updated, GA and subsumption are

xecuted in [A] −1 as stated in Section 3 . 

.5.2. Update classifiers in [A] et 

Eligibility trace value describes the importance of a historical

tate-action tuple ( s, a, o ) to a previous situation. For every tuple

 s, a, o ) in �, a set [A] et is formed by matching the situation s

nd the action a with the classifiers in the population [P]. We

pdate the classifiers in [A] et based on the error between the

arget prediction (17) and the maximum EAP in the previous time

tep’s match set [M] −1 . Similar ideas can be found in Q( λ)-learning

52] , which updates all state-action pairs in the Q-table by the

rror between the target Q-value and the maximal Q-value of the

urrent state at the previous time step. The update mechanism of

A] et is shown in Fig. 3 . 

We note that a set [A] et corresponding to a tuple ( s, a, o ) is

ot a real action set, i.e., action a needs not actually performed.

owever, the classifier parameters of the experience exp , the

tness F , and the action set size as should be updated only when

he classifier has been selected in a real action set [A]. Therefore,

e only update the payoff prediction vector p and the prediction

rror ε of the classifiers in [A] et , while other parameters are not

hanged. Besides, the classifiers in [A] −1 will not be updated again

n this process. The update rule is as follows: 

l.p[ o] ← cl.p[ o] + β5 ( P − �−1 ) · e ( s, a, o ) (24) 

l.ε ← cl.ε + β6 ( | P − �−1 | − cl.ε) · e ( s, a, o ) (25) 

here 0 < β5 < 1 and 0 < β6 < 1 are learning rates, e ( s, a,

 ) is the eligibility value for the tuple ( s, a, o ), and �−1 is the

aximum EAP in [M] −1 calculated as follows: 

−1 = max 
a i ∈ A 1 

∑ 

o i ∈ A 2 
σ ( s −1 , o i ) · P a i [ o i ] (26) 

here a i is the action contained in [M] −1 , P a i [ o i ] is the payoff

rediction after the X-OMQ( λ) agent and the opponent execute

ction a i and o i , respectively. In addition, the MAM technique is

lso used when updating p and ε in [A] et . 

. Experiments and results 

In this section, we will carry out comprehensive evaluations of

he X-OMQ( λ) algorithm in the Littman’s soccer domain [6] , the

unter prey problem [32] , and the Hexcer environment [13] . In

ection 5.1 , the three environments are introduced, and then the

xperimental setup is described in Section 5.2 . Results are given

nd discussed in Section 5.3 . 
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Fig. 3. The workflow of updating [A] et . Every tuple ( s, a, o ) in � is matched with the classifiers in [P] to form [A] et . Meanwhile, the corresponding eligibility value for the 

tuple ( s, a, o ) is obtained from the eligibility trace e . Then, the error ε and the corresponding prediction p [ o ] of the classifiers in [A] et are updated. 

Fig. 4. Littman’s soccer domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The hunter prey problem. 

W  

m  

t  

O

 

c  

m  

s  

L  

i

 

i  

t  

n  

p  

o  

o  

T  

s  

g  

g  

O

5.1. Experimental environment 

The Littman’ soccer domain is shown in Fig. 4 , which is a

classical benchmark for ZSMG. The agent and the opponent are

placed in a 4 × 5 grid world, the initial states of players are

shown in Fig. 4 , and the ball is assigned randomly to the agent or

the opponent at the start of each game. The player who gets the

possession of the ball executes action firstly. Each grid can only be

occupied by one player, and the ball occupies the same grid with

one of the players. At each time step, a player chooses an action

from the action set A i = ( up, down, le f t, right, standby ) , i = 1 , 2 . 

The player’s objective is to bring the ball into the opponent’s

goal area (as shown in the shadow area in Fig. 4 ) and score as

many points as possible in a match. When a player with the ball

moves towards an occupied grid, the player loses the ball and the

move fails. Any action that tries to move the player out of the

bounds is ignored. The game is ended when any player brings the

ball into the opponent’s goal area or after a predefined number of

time steps has passed. Once a game is ended, the positions of the

players and the ball will be reset. 

The hunter prey problem is shown in Fig. 5 , in which the

opponents consist of the chaser and the blocker. The initial

state of the agent and the opponents are shown in Fig. 5 . At

each time step, the agent chooses an action from the action set

A 1 = (up, down, le f t, right) . The opponents follow the policy pro-

posed in [53] . In details, the chaser follows the agent movement,

while the blocker moves in a horizontal direction to the agent.
hen the chaser and the blocker collide in the same position, the

oves fail. The game is ended when the agent is caught by one of

he opponents or a predefined number of time steps has passed.

nce the game ends, the positions of the three players are reset. 

The Hexcer environment is shown in Fig. 6 , which is a more

omplicated soccer domain. Two players are located in the map

ade up of connected multiple hexagonal grids. The initial

tates of the players and the ball are shown in Fig. 6 . Unlike the

ittman’s soccer domain, the initial state of the ball in Hexcer is

n the center of the map. 

The action set for players in Hexcer is: A i =
( upper left , upper right , right , lower right , lower left , left , stan dby , 

 = 1 , 2) . Once a player moves to the grid that has the free ball,

hen the ball belongs to the player until it is taken by the oppo-

ent. When two players collide in the same position while one

layer is taking the ball, the ball will be randomly reassigned to

ne of the players and the move fails. If the players try to move

ut of Hexcer, the move fails and the player remains in its grid.

he scoring rules of the game are similar to those in Littman’s

occer domain. When a player brings the ball into the opponent’s

oal, the game ends and the player gets a point. Otherwise, the

ame is ended after a predefined number of time steps has passed.

nce the game is ended, the scenario will be reset. 



H. Chen, C. Wang and J. Huang et al. / Neurocomputing 399 (2020) 449–466 457 

Fig. 6. Hexcer environment and the heuristic policy of the HAMMQ agent used in the experiments. The heuristic policy of the HAMMQ agent is presented as the arrows. 

5

 

a  

[  

N  

D  

t  

e  

T  

W  

g  

g  

n  

e

 

M  

a  

t  

d  

r  

o  

i  

f  

g  

M  

H

 

{  

o  

f  

w  

a  

p  

p  

X  

b  

m  

w  

w  

X  

w

 

w  

h  

Fig. 7. The workflow of the experiments. 
.2. Experimental setup 

We compared the performance of the proposed X-OMQ( λ)

lgorithm with a variety of QbRL algorithms, including Minimax-Q

6] , Minimax-QS [2] , Minimax-Q( λ) [8] , Minimax-SARSA( λ) [8] ,

SCP-z [14] , and HAMMQ [7] , and NNbRL algorithms, including

QN [17] , A3C [18] , MADDPG [15] , PPO [21] , and DPPO [20] in

he environments introduced in Section 5.1 . In the experiments,

ach player can observe the position and actions of other players.

he state of each player consisted of the positions of all players.

e use NSCP-z to represent the application of NSCP in zero-sum

ames. If NSCP [14] is applied to deterministic policy zero-sum

ames, its best-response solver is nearly identical to the oppo-

ent modelling approach in [13] . Moreover, the workflow of the

xperiments is shown in Fig. 7 . 

For QbRL algorithms (Minimax-Q, Minimax-QS, Minimax-Q( λ),

inimax-SARSA( λ), NSCP-z, and HAMMQ), the parameters of the

bove algorithms were almost identical to the original work. In

hese algorithms, the learning rate α was initialized to 1.0 and

ecayed at a rate of 0.9999954 for each iteration. The exploration

ate was 0.2 and the discount factor γ = 0 . 9 . Besides, the Q-values

f all ( s, a, o ) tuples and the value function V ( s ) of all states were

nitialized to 0. For Minimax-QS, the linearly decreasing spreading

unction was the same with [2] , where σt ( s, a, o, s i , a i , o i ) =
 t ( s, s i ) = τ d , τ = 0 . 7 , and d ch = 1 . For Minimax-Q( λ) and

inimax-SARSA( λ), the trace-decay parameter λ = 0 . 05 . For

AMMQ, ξ = β = η = 1 , which were the same with [7,9] . 

For X-OMQ( λ), we used the ternary alphabet consisting of

 

0 , 1 , # } to represent the condition of the classifiers as with the

riginal XCS. We encoded the grids in the two soccer environments

rom left to right and from top to bottom, which was consistent

ith the compared QbRL algorithms. Take Littman’s soccer domain

s an example, the initial state of players for QbRL algorithms was

resented as (11, 8), which was composed by the grid number the

layer located. Correspondingly, the situation of the initial state for

-OMQ( λ) was presented as 01011 010 0 0, which was constituted

y the players’ binary coded state. This situation representation

ay not the best choice because only the position of the players

as included, but no other information was used for comparison

ith other QbRL algorithms above. Parameters initialization of

-OMQ( λ) were shown as Table 5 in Section A.1 , most of which

ere the same with the original XCS. 

For NNbRL algorithms (DQN, A3C, MADDPG, PPO, and DPPO),

e adopted a similar network structure, each neural network

ad a hidden layer of 200 units. See Table 6, 7, 8, 9 and 10 in
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Fig. 8. Averaged goals in each match for the QbRL agents versus a random oppo- 

nent in the Littman’s soccer domain. 

Fig. 9. Accumulated goals for the QbRL agents versus a random opponent in the 

Littman’s soccer domain. 
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Appendix A for detailed parameters. Moreover, the state repre-

sentation in these algorithms was consistent with the proposed

X-OMQ( λ) in the experiments. 

5.2.1. Experiments in Littman’s soccer domain 

In this environment, we conducted experiments to evaluate the

performance of the proposed X-OMQ( λ) compared with the QbRL

algorithms, in which the agents were confronted with a random

opponent. Once the player scored a goal, it would receive a reward

r = 1 from the environment, otherwise r = 0 . The predefined

maximum step for every player was 10 and the population size of

X-OMQ( λ) was 500. The spreading area used in Minimax-QS and

the heuristic policy used in HAMMQ were the same with the orig-

inal works. A sequence of 100 sessions were run for each learning

algorithm and each session consisted of 500 matches of 10 games.

5.2.2. Experiments in hunter prey problem 

In the hunter prey problem, we evaluated the performance of

X-OMQ( λ) with NNbRL algorithms including A3C, MADDPG, and

DPPO. In this case, the agent receive a reward r = −10 if it was

captured, otherwise r = 1 . Besides, the chaser and the blocker were

considered as a whole opponent. In this way, the action space of

the opponent was the combination of the chaser and the blocker.

The game was ended if the agent was caught or after each player

took 100 steps. In this scenario, the state representation was the

same for all algorithms, which was made up of the coordination

encoded in binary of all players. For example, the initial state

in Fig. 5 was expressed as 011 101 0 0 0 0 0 0 101 0 01, which was

composed of the coordination of the agent, the chaser, and the

blocker. Specifically, every 6 digits represented the coordination

of a player, where the first 3 digits represented the row and the

last 3 digits were for the column. The population size was set

10 0 0 initially for the X-OMQ( λ) agent. In this experiment, we ran

a sequence of 50 sessions for each algorithm and each session

consisted of 20 0 0 games. 

5.2.3. Experiments in Hexcer environment 

In Hexcer, we compared the proposed algorithm with the

QbRL and the NNbRL algorithms and carried out more challenging

experiments. A random player was also selected as the opponent

for the agents. In order to evaluate the performance of the agents

against the opponent with learning ability, we selected HAMMQ,

which speeding up the learning process through heuristic infor-

mation, as the opponent. In summary, there were 2 serials of

experiments carried out in Hexcer: 

1) RL agents versus a random opponent. 

2) RL agents versus a HAMMQ opponent. 

For each experiment, we ran a sequence of 50 sessions, each

of them consisting of 30 0 0 matches. Each match consisted of 10

games, and the maximum step was 50 for each player. A player

would obtain a reward of r = 100 if it scored one goal, otherwise

r = 0 . 

The population set size of the X-OMQ( λ) agent was initialized

to 10 0 0. The heuristic policy for HAMMQ agent was shown as the

arrows in Fig. 6 . Moreover, the heuristic policy for the HAMMQ

opponent was symmetric with the HAMMQ agent. As can be

seen from Fig. 6 , the heuristic policy required a comprehensive

and accurate prior knowledge of the environment, in which the

heuristic information for each state was targeted. 

5.3. Results 

We note that Minimax-Q, Minimax-QS, Minimax-Q( λ), and

Minimax-SARSA( λ) will be abbreviated as MMQ, MM-QS, MM-

Q( λ), and MM-S( λ) in figures of the rest of the paper. 
.3.1. Results in Littman’s soccer domain 

Figs. 8 and 9 illustrate the averaged and accumulated goals of

he RL agents versus the random opponent, respectively. It clearly

hows that the X-OMQ( λ) agent gets the best performance. The

inimax-SARSA( λ), the Minimax-Q( λ), and the Minimax-QS agent

ehave similarly in the experiment. Elicited by the heuristic policy,

he HAMMQ agent averages nearly 5 goals at the beginning and

emains stable throughout the learning process. While NSCP-z and

-OMQ( λ) maintain the same opponent’s model, it is clear that

ur X-OMQ( λ) agent achieves a better performance leveraging the

dvantage of XCS and eligibility trace for classifier evolving. In

etail, the classifiers that are obviously useless are deleted from

he population, which makes the action selection more reasonable

nd targeted for given states. Besides, once the X-OMQ( λ) agent

eceives a reward from the environment, the classifiers matched in

he trace set � are also updated to improve the learning efficiency.

To further compare the performance of the X-OMQ( λ) agent

nd the HAMMQ agent versus the random opponent, Fig. 10

resents the T-test results for each match between these two

gents. It is evident that after about 25 matches, most of the T

alues are above the 5% threshold line, which means a significant

erformance improvement for X-OMQ( λ) compared with HAMMQ. 
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Fig. 10. T-test results for the X-OMQ( λ) agent and the HAMMQ agent versus a ran- 

dom opponent in the Littman’s soccer domain. 

Fig. 11. Averaged cumulative number of wins in 500 matches of the QbRL agents 

versus a random opponent in the Littman’s soccer domain. The gray lines refer to 

the standard deviation. 
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Fig. 12. Averaged total steps in 500 matches of each player in the Littman’s soccer 

domain. The green dotted line refers to the mean. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 13. Accumulated reward for the RL agents in hunter prey problem. 
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The averaged number of wins in Fig. 11 combing with the

veraged total steps in Fig. 12 can be used as a criterion to eval-

ate the learning performance of the agent. This is because if the

ame ends in only a few steps, it indicates that one player’s policy

s dominant. It clearly shows that the X-OMQ( λ) agent obtains

he most averaged cumulative number of wins while using the

inimum averaged total steps. 

From the above results, it is clear that the X-OMQ( λ) agent

erforms best among the seven RL agents without the need of

ny prior knowledge. The QbRL algorithms maintain a Q-table

ontaining 20 × 20 × 5 × 5 = 10 0 0 0 entities. In contrast, the X-

MQ( λ) agent only maintains an average of 242 macroclassifiers

n population [P] after learning of each session, among which,

nly 141 macroclassifiers has been selected into action sets (i.e.,

l.exp > 0). In other words, our proposed algorithm achieves good

erformance with only a few frequently used classifiers. 

.3.2. Results in hunter prey problem 

In this section, we present the accumulated rewards of the RL

gents in the hunter prey problem. Fig. 13 shows the compari-

on of X-OMQ( λ) with NNbRL algorithms, where the proposed

lgorithm performs better than MADDPG and DPPO. In details,
-OMQ( λ) accumulates the rewards a little faster than A3C and

ADDPG in the first 1600 games, while A3C performs better after

hat. This is because there are 4 parallel actor-learners updating

he shared model together. The results show that X-OMQ( λ) has

imilar learning performance to the NNbRL algorithms, such as

3C. 

In this experiment, X-OMQ( λ) maintains an average of 497

acroclassifiers in population [P] after learning, of which 249 have

een selected for action selection (i.e., cl.exp > 0). The generaliza-

ion and interpretability of the classifiers are described thoroughly

n Section 5.3.5 . 

.3.3. Results of against a random opponent in Hexcer 

Fig. 14 (a) and Fig. 15 (a) present the averaged and accumulated

oals of the QbRL agents against a random opponent. The HAMMQ

gent scores nearly 8 goals at the start due to the guidance of the

euristic policy in Fig. 6 . Using the opponent’s model, the NSCP-z

gent only performs well in the early stage, while is almost stable

fter 400 matches. Minimax-Q and Minimax-SARSA( λ) get similar

erformance in this experiment and outperform NSCP-z after 20 0 0

atches. The X-OMQ( λ) agent shows an excellent learning per-

ormance in the early stage without prior knowledge. After about
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Fig. 14. Averaged goals in each match for the RL agents versus a random opponent in Hexcer. 

Fig. 15. Accumulated goals for the RL agents versus a random opponent in Hexcer. 
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100 matches, advantages of the HAMMQ agent is outperformed by

our method. 

Fig. 16 (a) and Fig. 17 (a) present the averaged cumulative num-

ber of wins and the averaged total steps for 30 0 0 matches of each

QbRL player, respectively. Due to the guidance of the heuristic

policy for each state in Fig. 6 , the averaged total steps of the

HAMMQ agent in Fig. 17 are the most stable. The X-OMQ( λ) agent

gets the most wins in Fig. 16 (a) using the least steps without

any prior knowledge. In detail, its averaged total steps are nearly

20,0 0 0 fewer than the of HAMMQ, while the number of wins is

2500 more than that of HAMMQ. In other words, the X-OMQ( λ)

agent has learned a better dominant policy than the HAMMQ

agent. 

Fig. 14 (b) and Fig. 15 (b) show that X-OMQ( λ) performs sim-

ilarly to DPPO during the whole learning process. We note that

DPPO presents the best performance among the NNbRL algorithms

in this experiment. In details, X-OMQ( λ) and DPPO perform bet-

ter than other algorithms in the first 500 matches. After 1500

matches, except for DQN, the performance of other algorithms
tends to be consistent. t  
Similar results can be found in Fig. 16 (b) and Fig. 17 (b). It

learly shows that X-OMQ( λ) and DPPO win the most games with

he least number of averaged total steps. The above results present

hat X-OMQ( λ) performs similar learning performance to NNbRL

lgorithms. This is due to the fact that our method maintains a

xed-size of the population while evolving the maximally general

nd accurate classifiers leveraging the advantage of XCS. 

.3.4. Results of against a HAMMQ opponent in Hexcer 

Fig. 18 (a) and Fig. 19 (a) show the averaged goal balance and

ccumulated goals of the QbRL agents against the HAMMQ oppo-

ent. Minimax-Q, Minimax-Q( λ), Minimax-SARSA( λ), and NSCP-z

et similar performance with more than -4 averaged goal balance.

he averaged goal balance of HAMMQ fluctuates around 0 during

he learning process because they use the same learning algorithm.

In contrast to X-OMQ( λ), OMQ( λ) is its Q-table version without

he XCS framework. And the parameters used in OMQ( λ) are

dentical to X-OMQ( λ) in this experiment. While after about 200

atches in Fig. 18 (a), the performance of the OMQ( λ) agent begins

o drop blow X-OMQ( λ) clearly, and the averaged goal balance
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Fig. 16. Averaged cumulative number of wins in 30 0 0 matches of the RL agents versus a random opponent in Hexcer. The gray lines refer to the standard deviation. 

Fig. 17. Averaged total steps in 30 0 0 matches of the RL agents versus a random opponent in Hexcer. The green dotted line refers to the mean. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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s stable around -2. It indicates that the improved XCS and the

pdate mechanism for [A] et play an important role in X-OMQ( λ).

he comparison with the QbRL algorithms shows that X-OMQ( λ)

emonstrates an excellent learning ability, and after about 400

atches, it outperforms HAMMQ. 

Fig. 20 (a) and Fig. 21 (a) present the averaged cumulative

umber of wins and the averaged total steps for 30 0 0 matches

f the QbRL agents against a HAMMQ opponent, respectively.

hen Minimax-Q, Minimax-Q( λ), Minimax-SARSA( λ), and NSCP-z

ompete against the HAMMQ opponent, the initiative is con-

rolled by the opponent. As a result, their averaged total steps

re very close and stable. When HAMMQ confronts itself, both

f them use the same learning algorithm. As a result, it per-

ormed similarly with the opponent. In contrast, X-OMQ( λ)

chieves the best performance while ensuring that the averaged

otal number of steps is small, and the averaged goal balance

eaches about 2, demonstrating the learning performance of our

lgorithm. 
c  
Comparison with the NNbRL algorithm in Fig. 18 (b) and

ig. 19 (b) show that only DPPO performs slightly better than X-

MQ( λ). Except for DPPO, MADDPG is the most similar algorithm

o the performance of X-OMQ( λ). However, our approach obtains

ore wins than MADDPG and the total number of steps is more

venly distributed as shown in Fig. 20 (b) and Fig. 21 (b). It indicates

hat the performance of our approach is more stable. The above re-

ults show X-OMQ( λ) behaves a similar performance as the state-

f-the-art NNbRL algorithms, such as DPPO. Besides, the learned

lassifiers are also interpretable, which is detailed in Section 5.3.5 . 

.3.5. Generalization and interpretability of classifiers 

Due to the space limitation, we only present the generality

nd interpretability of the classifiers learned in Littman’s soccer

omain and hunter prey problem. 

Table 1 gives examples of macroclassifiers after learning against

 random opponent in Littman’s soccer domain. In this environ-

ent, the X-OMQ( λ) agent learns the most accurate and general

lassifiers. Specifically, the errors of the 2nd and the 3rd classifiers
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Fig. 18. Averaged goal balance in each match for the RL agents versus a HAMMQ opponent in Hexcer. 

Fig. 19. Accumulated goal balance in each match for the RL agents versus a HAMMQ opponent in Hexcer. 

Fig. 20. Averaged cumulative number of wins in 30 0 0 matches of the RL agents versus a HAMMQ opponent in Hexcer. The gray lines refer to the standard deviation. 
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Fig. 21. Averaged total steps in 30 0 0 matches of the RL agents versus a HAMMQ opponent in Hexcer. The green dotted line refers to the mean. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Examples of learned classifiers against a random opponent in the Littman’s soccer domain. 

No. Condition Action Prediction vector Fitness Error Experience Numerosity 

1 0##101##00 Right [0.08 0.08 0.08 0.11 0.07] 0.03 0.32 126 2 

2 ###00##### Right [0.08 0.08 0.08 0.08 0.08] 1.00 0.00 4847 90 

3 ##0####### Right [0.08 0.08 0.08 0.08 0.08] 1.00 0.00 4918 158 

4 10011####1 Up [0.12 0.00 0.00 0.00 0.00] 0.28 0.03 21 2 

Table 2 

Examples of learned classifiers in the hunter prey problem. 

No. Condition Action Prediction vector Fitness Error Experience Numerosity 

1 11010#1001##101#01 Down [0.00 0.00 ��� 3.13 0.00] 0.94 -0.08 17 1 

2 ################## Down [0.00 0.16 ��� 1.13 0.00] 0.97 0.00 56,512 314 

3 ################## Up [3.42 0.05 ��� 3.45 0.00] 0.97 0.00 56,166 312 

4 ################## Down [0.00 0.00 ��� 0.63 0.00] 1.00 0.00 37,048 201 
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Table 3 

The number of macroclassifiers after learning in Hexcer. 

Opponent Number Selected 

Random 773 262 

HAMMQ 720 267 
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a  

i

 

c  

n  
volve to 0.00 after the experiment, and the wildcards # occupies

ost of the bits in these classifiers. Besides, because the opponent

dopts a random policy i.e., each candidate action in each state has

he same probability of being selected, after sufficient iterations,

he optimal opponent’s model in X-OMQ( λ) has the same prob-

bility of performing each action in each statec. As a result, the

ost accurate and general classifiers (the 2nd and 3rd classifiers)

onverge to the prediction vector p with identical elements. It

ndicates that if the agent’s situation matches with the condition

f the classifiers and the agent selects the action right , then it will

et the same reward regardless of the opponent action. 

We indicate that X-OMQ( λ) has the generalization capability

ecause, in the application phase, the classifier can be used in any

ituation s that matches the condition c of the classifier. Moreover,

e can also obtain a quantitative description of the accuracy

f a classifier according to its fitness. In addition, some learned

lassifiers for the specific states are interpretable. Take the 4th

lassifier as an example, it can be interpreted as: if the agent is

ocated in the 19th grid (the lower right corner in Fig. 4 ), the

gent should select the action up . It indicates that X-OMQ( λ) not

nly has the generalization ability, but also can learn what human

eings can understand. 

Table 2 shows several learned macroclassifiers in the hunter

rey problem. As described in Section 5.2.2 , the state for players
 T  
as constituted with the binary-coded coordination of the agent,

he chaser, and the blocker, respectively. As a result, the 1st classi-

er in Table 2 can be interpreted as: if the agent is located in the

ixth row and the fourth or fifth column, the chaser is in the fourth

ow and its column number is greater than three, and the blocker

s in the fifth row and the first or fifth column, the agent should

hoose action down . This classifier is reasonable because in most

f these situations, the two opponents collide with each other

ccording to their policy and thus the move fails. Besides, we also

btain the most general and accurate rules, such as the 2nd, 3rd,

nd 4th classifiers, in which the fitness is close to 1.0 and the error

s 0.0. 

Population size in macroclassifiers is a measure of the space

omplexity of the XCS [23] . In the two experiments in Hexcer, the

umber of macroclassifiers averaged over 50 sessions is shown in

able 3 , and the number of selected macroclassifiers in the action
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Table 4 

Comparison of learning time in each session against a HAMMQ opponent in Hexcer. 

Algorithms Learning Time ( s ) ( ± std) 

Minimax-Q 839.7 ( ± 139.5) 

Minimax-Q( λ) 764.3 ( ± 37.5) 

Minimax-SARSA( λ) 1716.4 ( ± 59.6) 

NSCP-z 753.8 ( ± 44.9) 

HAMMQ 1928.7 ( ± 1360.9) 

OMQ( λ) 1068.8 ( ± 139.6) 

DQN 1035.5 ( ± 325.5) 

A3C 1081.1 ( ± 156.3) 

A3C(GPU) 740.6 ( ± 64.7) 

PPO 886.7 ( ± 45.3) 

PPO(GPU) 792.8 ( ± 67.9) 

MADDPG 540.5 ( ± 252.2) 

DPPO 1011.2 ( ± 224.1) 

X-OMQ( λ) 2549.2 ( ± 119.2) 
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sets ( cl.exp > 0) is also listed. We note that X-OMQ( λ) achieves

similar performance to the state-of-the-art RL algorithms only

using a relatively small number of classifiers. 

5.3.6. Learning time analysis 

In this section, we compare the time needed in each session

of the proposed algorithm with RL algorithms against a HAMMQ

opponent in Hexcer. The algorithms were implemented in Python,

and the experiments performed in a Microsoft Windows computer

with 16-Core Intel i9-9900K CPU, 64GB of RAM and GeForce GTX

2080Ti GPU. Besides, the neural networks were implemented in

TensorFlow 1.14.0. The summarized results are averaged over 50

sessions and shown in Table 4 . 

It shows that X-OMQ( λ) requires much more time in the learn-

ing phase compared with algorithms with similar performance,

such as A3C and DPPO. This is because GA and the eligibility trace

mechanism consume most of the time in the classifiers update

process. 

Summarizing the above results, X-OMQ( λ) shows an excel-

lent learning performance and outperforms the QbRL algorithms

using a relatively small number of classifiers. Its performance

exceeds the algorithms with prior knowledge, such as HAMMQ.

Moreover, X-OMQ( λ) behaves similar learning performance to

the state-of-the-art NNbRL algorithms, such as DPPO and A3C.

Furthermore, the learned classifiers are also interpretable while

having generalization capabilities. One deficiency of X-OMQ( λ) is

that it requires more time in the learning phase compared with

the NNbRL algorithms. 

6. Conclusion and future works 

In this paper, we have proposed the X-OMQ( λ) algorithm

to learn general and interpretable action selection policies in

ZSMG. The opponent’s model runs through the entire process

of agent modelling, action selection, and learning. Elicited by

the opponent’s model, the X-OMQ( λ) agent chooses action in a

best-response manner. Besides, the incorporation of the improved

XCS generalizes the state-action space and obtains interpretable

action selection rules. Moreover, the eligibility trace mechanism is

introduced to the learning part, and the classifiers that can match

the historical information are reinforced in [A] et . 

The comprehensive experiment results have shown that X-

OMQ( λ) has similar learning performance with state-of-the-art

RL algorithms in competitive Markov Games. One advantage of

X-OMQ( λ) is that the learned classifiers are both general and accu-

rate. Another advantage is that X-OMQ( λ) can learn interpretable

classifiers. Thus, the explainability of the learning results is better

compared with the NNbRL algorithms. Furthermore, the learned

interpretable classifiers can be directly used as heuristic rules for
ther similar but more complex scenarios to speed up learning.

evertheless, the deficiency of X-OMQ( λ) is that it requires more

ime in the learning phase due to the process of rule evolution

onducted by GA and the eligibility trace mechanism. In addition,

ompared with the NNbRL algorithms, our method does not yet

upport images as input and is not suitable for continuous action

pace. Future work could be adapting the proposed X-OMQ( λ)

lgorithm to solve more complex tasks in which multiple coop-

rative agents learn against multiple opponents that are learning

oncurrently in continuous environment. Besides, we will further

ptimize the efficiency of the algorithm by, for example, combing

fficient action selection methods such as CAS. 
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ppendix A. Parameters of the algorithms used in the 

xperiments 

1. Initial parameters of X-OMQ( λ) in the experiments 

able 5 

nitial parameters of X-OMQ( λ) in the experiments. 

Parameter Notation value 

Trace decay λ 0.05 

Learning rate β i (i = 1 , 2 , 3 , 4 , 5 , 6) 0.15 

Accuracy coefficient α 0.1 

Error threshold ε0 0.01 

Accuracy power ν 5 

Discount factor γ 0.71 

GA threshold θGA 35 

Eligibility trace threshold θ et 0.001 

Covering threshold θ EAP 0 

Cross probability χ 0.75 

Mutation probability μ 0.03 

Deletion threshold θ del 20 

Fitness threshod δ 0.1 

Subsumption threshold θ sub 20 

Wildcard probability P # 0.33 

Initial prediction vector p [0.00001 0.00001 ���] 

Initial prediction error ε 0.00001 

Initial fitness F 0.00001 

2. Parameters of A3C in the experiments 

In the hunter prey problem, the A3C agent was updated every

 steps, or when it was caught by the opponent. In the Hexcer

cenario, the A3C agent was updated every 5 matches, or when

he agent scored a goal. 

https://doi.org/10.13039/501100001809


H. Chen, C. Wang and J. Huang et al. / Neurocomputing 399 (2020) 449–466 465 

Table 6 

Parameters of A3C in the experiments. 

Parallel learners 4 Minibatch size 32 

Actor learning rate 0.0001 Critic learning rate 0.0001 

Entropy parameter 0.001 Optimizer RMSPropOptimizer 

Activation function ReLU Discount factor 0.9 
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Table 10 

Parameters of PPO in Hexcer experiments. 

Discount factor 0.9 Minibatch size 32 

Actor learning rate 0.0001 Critic learning rate 0.0001 

Clipping parameter 0.2 Optimizer AdamOptimizer 

Activation function ReLU Soft replacement parameter 0.01 

Actor update rounds 10 Critic update rounds 10 
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3. Parameters of MADDPG in the experiments 

In MADDPG, the estimates player model has a hidden layer of

00 units, and the output layer is a softmax layer with each unit

orresponding to the candidate action selection probability of the

stimated player. In the hunter prey problem, the MADDPG agent

as updated every step. In the Hexcer scenario, the MADDPG

gent was updated every 50 steps. 

able 7 

arameters of MADDPG in the experiments. 

Memory size 1000 Minibatch size 100 

Actor learning rate 0.0001 Critic learning rate 0.0005 (hunter prey) 

/ 0.005 (Hexcer) 

Discount factor 0.9 Optimizer AdamOptimizer 

Activation function ReLU Soft replacement 

parameter 

0.01 

Learning rate for 

the estimated 

player model 

0.0001 Entropy parameter 0.001 

4. Parameters of DPPO in the experiments 

In the hunter prey problem, the DPPO agent was updated every

 steps, or when it was caught by the opponent. In the Hexcer

cenario, the DPPO agent was updated every 5 matches, or when

he agent scored a goal. 

able 8 

arameters of DPPO in the experiments. 

Parallel workers 4 Minibatch size 32 

Actor learning 

rate 

0.001 (hunter prey) / 

0.0001 (Hexcer) 

Critic learning 

rate 

0.01 (hunter prey) 

/ 0.0001 (Hexcer) 

Clipping 

parameter 

0.2 Optimizer AdamOptimizer 

Activation 

function 

ReLU Soft replacement 

parameter 

0.01 

Actor update 

rounds 

10 Critic update 

rounds 

10 

Discount factor 0.9 

5. Parameters of DQN in Hexcer environment 

In the Hexcer scenario, the DQN agent began to updated after

00 transactions stored in the memory. 

able 9 

arameters of DQN in Hexcer environment. 

Learning rate 0.01 Minibatch size 32 

Optimizer RMSPropOptimizer Discount factor 0.9 

Memory size 1000 Target network Update every 

10 matches 

ε-greedy 1.0(initial) → 0.001 

6. Parameters of PPO in Hexcer environment 

In the Hexcer scenario, the PPO agent was updated every 5

atches, or when the agent scored a goal. 
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