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a b s t r a c t 

In this work, output-feedback control problems for a class of discrete-time non-affine nonlinear systems 

with unknown control directions and input constraints are considered by using reinforcement learning 

(RL) method. Two neural networks (NNs) implement the control: 1) a critic NN that estimates a non- 

quadratic strategic utility function (SUF) and 2) an action NN that generates optimized control input and 

minimizes the SUF. The implicit function theorem is applied to obtain the optimal control law since the 

control is appeared in a non-affine form. For the first time, the discrete Nussbaum gain is introduced 

to overcome the difficulty that the control directions are unknown and a non-quadratic SUF is used to 

deal with the control constraints in the RL-based control. The theoretical derivation of the uniformly 

ultimately boundedness of the NN weights and the closed-loop output tracking error is given. And two 

numerical examples have been supplied to valid the proposed method. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Adaptive dynamic programming (ADP) is an optimal control

method which is implemented to ensure the closed-loop system

stable and minimize the predefined cost functions ( [1,2] ). However,

most of ADP algorithms are designed by an off-line iterative pro-

cess which requires the dynamics of nonlinear systems are known

a prior. Since the dynamics of nonlinear systems are rarely ob-

tained, it makes the implementation of these algorithms hard in

the practical control processes. To overcome this drawback, rein-

forcement learning (RL) is adopted to solve optimal control prob-

lems. 

Reinforcement learning is an interaction between an actor (or

agent) with its environments. The actor (or agent) improves its ac-

tions or control strategies according to the results in answer to its

actions. In discrete time, a direct RL adaptive controller was pro-

vided to guarantee a requested tracking performance for nonlinear

systems in the present of unknown bounded disturbances ( [3] ). A

minimal-learning-parameter mechanism was introduced in the RL

controller to cope with the pure feedback discrete-time systems

in [4] . Radac et al. provided a nonlinear state-feedback Q-learning
∗ Corresponding author. 
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ontroller with a batch fitted Q iteration algorithm and a linear vir-

ual reference feedback tuning technique to solve the model ref-

rence control problem of discrete-time nonlinear systems ( [5] ).

n extra NN was added as an estimator of the unavailable system

tates in RL based output feedback adaptive controllers for affine

onlinear systems and strict feedback nonlinear systems in [6] and

7] , respectively. Novel critic-based adaptive NN controllers have

een implemented for a class of nonlinear pure-feedback systems,

n which a deterministic learning technique was employed to make

nternal states satisfy the partial persistent excitation condition in

 periodic reference orbit tracking problem ( [8] ). Shih et al. intro-

uced one action NN to obtain the virtual control input and an-

ther action NN to provide the actual input into the RL based out-

ut feedback controller for the non-strict feedback nonlinear sys-

ems in [9] . 

In continuous time, Zhu et al. used an integral online RL al-

orithm to find a suboptimal controller in an output-feedback

orm for linear time invariant systems in [10] . A RL algorithm

ased on a model-free off-policy learning technique was utilized

o approximate the optimal solution of the output-feedback con-

rol problem of linear systems in [11] . For the nonlinear systems

ith constrained-input, the infinite-horizon optimal control prob-

em was solved by the RL-based adaptive control method pro-

osed by [12] . In this method, an action-critic structure was de-

https://doi.org/10.1016/j.neucom.2020.03.061
http://www.ScienceDirect.com
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eloped, in which the optimal control input and the minimized

ost were approximated by two feed-forward NNs called actor and

ritic, respectively. Liu et al. implemented an integral RL based de-

entralized state-feedback controller to a constrained-input system

hich has large-scale interconnection subsystems so that the opti-

al state tracking performance can be accomplished in [13] . For

arine surface vessel systems, by using a policy iteration tech-

ique, RL algorithm was applied in [14] to find the solution of the

ptimal control problem when the system dynamic was known

 prior. Most of the works mentioned above were assumed that

he system control direction, i.e. the sign of the control gain, was

nown. However, in practical applications, the control gains of sys-

ems may be unknown. This case bought a difficult control prob-

em that the control operate direction was hardly decided. 

In last decades, an increasing number of attention was received

y the system control problem with unknown control directions.

ussbaum gains were introduced to output feedback adaptive con-

rollers to overcome the drawback that the control direction was

nknown in general nonlinear systems in [15,16] and [17] pro-

ided the adaptive control methods by using back-stepping de-

ign idea to solve control problem of the non-strict-feedback non-

inear systems in the present of unknown backlash-like hystere-

is nonlinearity and full state constraints, respectively. For strict-

eedback nonlinear systems, Liu et al. investigated a generalized

uzzy hyperbolic model-based adaptive predefined performance

ontrol method with Nussbaum gains ( [18] ). Nussbaum gains were

lso utilized in state feedback control design in [19] and the effects

f un-modeled dynamics and unknown dead zones were elimi-

ated. However, most of the past literature dealt with the affine

trict or non-strict-feedback systems. The optimal control problems

f non-affine nonlinear systems with unknown control directions

ere not considered. 

In this paper, an optimal output-feedback control problem of

he discrete-time non-affine nonlinear systems with unknown con-

rol directions and input constraints was considered. An on-line

eal-time RL method with Actor-Critic structure and Nussbaum

ains is chosen to implement the control such that the optimal

ontrol problem can be solved using only fewer data measured

long system trajectories. Temporal difference (TD) and value func-

ion approximation (VFA) are the two key machine learning tech-

ologies applied to this structure. VFA implies a strategic utility

unction (SUF), can be approximated by a estimator with fewer pa-

ameters, i.e. critic NN. TD error means a prediction error between

he values of predicted SUF and observed SUF in response to an ac-

ion, i.e. the output of the actor NN, applied to the systems. Then,

he optimal control problem can be converted to find the control

aw to make the TD error zero. 

The main contributions of this paper are as follows. 

(1) An optimal control law is developed by using Implicit func-

tion theorem and Bellman’s principle of optimality since the

non-affine appearance of the control input. 

(2) Discrete-time Nussbaum gains are firstly introduced in the

optimal control problem of non-affine nonlinear systems to

cope with the unknown control directions. 

(3) A non-quadratic strategic utility function (SUF) is firstly used

to overcome the control constraints in the RL-based output-

feedback control design. 

The rest of this paper is organized as follows. Section 2 presents

he problem formulation and preliminaries. An actor-critic struc-

ure is provided in Section 3 to estimate the optimal control law

nd the minimized SUF. The uniformly ultimately bounded (UUB)

erformance of the tracking error and the NN weights is illustrated

nd two numerical examples are presented to show the effective-

ess of the proposed method in Section 4 and 5 , respectively. Fi-

ally, the conclusions are drawn in Section 6 . 
. Problem Formulation and Preliminaries 

Consider the SISO discrete-time system in a non-affine pure-

eedback form as follows: 
 

 

 

ξi (k + 1) = f i 
(
ξ̄i (k ) , ξi +1 (k ) 

)
, i = 1 , 2 , . . . , n − 1 

ξn (k + 1) = f n 
(
ξ̄n (k ) , u (k ) , d(k ) 

)
y (k ) = ξ1 (k ) 

(1) 

here ξ̄ j (k ) = 

[
ξ1 (k ) , ξ2 (k ) , . . . , ξ j (k ) 

]T 
, j = 1 , 2 , . . . , n are the state

ariables of the system, n ≥ 1 is the system order, f i ( · , · ) and

 n ( · , · , · ) are the unknown nonlinear functions, u ( k ) ∈ R

nd y ( k ) ∈ R are the input and output of the system, respectively,

 

u (k ) | ≤ υ, where υ is the saturating bound, and d ( k ) denotes the

xternal disturbance, which has the unknown constant bound d̄ s ,

.e. | d(k ) | ≤ d̄ s . 

ssumption 1. The system functions f i ( · , · ) and f n (·, ·, 0) , i =
 , . . . , n − 1 in (1) are continuous with respect to all the arguments

nd continuously differentiable with respect to the second argu-

ent. 

ssumption 2. There exist constants ḡ i > g 
i 
> 0 so

hat 0 ≤ g 
i 
≤ | g i (·) | ≤ ḡ i , i = 1 , 2 , . . . , n, where g j (·) =

∂ f j 
(
ξ̄ j (k ) , ξ j+1 (k ) 

)
/∂ξ j+1 (k ) 

)
, j = 1 , 2 , . . . , n − 1 and g n (·) =

∂ f n 
(
ξ̄n (k ) , u (k ) , d(k ) /∂u (k ) 

))
are the system control gains. 

ssumption 3. The system functions f i ( · , 0) and f n ( · , 0, · )

re Lipschitz continuous on �i and �n × �d , where �i ∈ R i , i =
 , 2 , . . . , n − 1 , �n ∈ R n and �d ∈ R are some known compact sets.

emark 1. Assumption 1 is a standard assumption in nonlinear

ontrol systems with the non-affine form, which can be found in

ots of existing related works such as [20] and [21] . The system

unctions f i ( · , · ) and f n ( · , · , · ) in (1) are continuously differ-

ntiable with respect to the second argument, which ensures the

xistent of g j ( · ) and g n ( · ) of Assumption 2 . 

emark 2. Assumption 2 implies that System (1) has either strictly

ositive or negative control gains g j ( · ) and g n ( · ). However, the

igns of g j ( · ) and g n ( · ), i.e. the control directions, are unknown.

oting that the constraints ḡ i and g i are unknown, since they are

sed for analysis instead of control design. 

In order to simplify the controller design, system (1) is trans-

ormed into an input-output form without the future states accord-

ng to the derivative process given in [20] . 

 (k + n ) = φ( z (k ) , u (k ) ) + d t (k ) (2) 

here z (k ) = [ y (k ) , . . . , y (k − n + 1) , u (k − 1) , . . . , u (k − n + 1) ] , 

( · , · ): R 2 n → R is an unknown nonlinear function. There exists

 finite constant d̄ such that | d t (k ) | ≤ d̄ . 

emark 3. The transformation from System (1) to System (2) is

uaranteed by Assumption 1 and 3 . In addition, φ( · , · ) is also

ipschitz function, since it is obtained by iterative substitution of

ystem functions f i ( · , · ) and f n ( · , · , · ). 

The transformation procedure of a second-order system from

q. (1) to Eq. (2) will be given as an example, which can be di-

ided into two steps. 

Step 1. a second-order system with Form (1) to the NARMAX

orm. 
 

 

 

ξ1 (k + 1) = f 1 
(
ξ̄1 (k ) , ξ2 (k ) 

)
ξ2 (k + 1) = f 2 

(
ξ̄2 (k ) , u (k ) , d(k ) 

)
y (k ) = ξ1 (k ) 
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where ξ̄1 (k ) = ξ1 (k ) , ξ̄2 (k ) = [ ξ1 (k ) , ξ2 (k ) ] 
T 

. Let φ1 , 1 

(
ξ̄2 (k ) 

)
=

f 1 
(
ξ̄1 (k ) , ξ2 (k ) 

)
and φ1 , 2 (·, ·, ·) = f 2 (·, ·, ·) . Then, we have ⎧ ⎨ 

⎩ 

ξ1 (k + 1) = φ1 , 1 

(
ξ̄2 (k ) 

)
ξ2 (k + 1) = φ1 , 2 

(
ξ̄2 (k ) , u (k ) , d(k ) 

)
y (k + 2) = ξ1 (k + 2) 

In k + 2 step, ξ1 (k + 2) = φ1 , 1 

(
φ1 , 1 

(
ξ̄2 (k ) 

)
, ξ2 (k + 1) 

)
. Then, we ob-

tain that 

y (k + 2) = φ1 

(
ξ̄2 (k ) , u (k ) , d(k ) 

)
, 

where φ1 ( ̄ξ2 (k ) , u (k ) , d(k )) = φ1 , 1 (φ1 , 1 ( ̄ξ2 (k )) , φ1 , 2 ( ̄ξ2 (k ) ,

u (k ) , d(k ))) . Rewrite the first equation of (1) as 

ξ1 (k + 1) − f 1 (ξ1 (k ) , ξ2 (k )) = 0 . 

According to Assumption 2 , the derivative of the left-hand side

of the above equation with respect to ξ 2 ( k ) is not zero. From Im-

plicit Function Theorem given by [22] there exists an implicit func-

tion p ′ 
2 
(·) such that ξ 2 ( k ) can be seen as a function of ξ1 (k + 1)

and ξ 1 ( k ) as follows: 

ξ2 (k ) = p ′ 2 ( ξ1 (k + 1) , ξ1 (k ) ) 

:= p 2 ( y (k + 1) , y (k ) ) 

Substituting ξ 2 ( k ) in y (k + 2) with the above equation, the

NARMAX form of System (1) with second-order can be obtained. 

y (k + 2) = φ1 ( y (k ) , p 2 ( y (k + 1) , y (k ) ) , u (k ) , d(k ) ) 

= φs 

(
y (k + 1) , u (k ) , d(k ) 

)
, 

where y (k + 1) = [ y (k + 1) , y (k ) ] 
T 

. 

Step 2. The NARMAX system to System (2). 

To overcome the difficulty in controlling NARMAX system lies

in the existence of future outputs y (k + 1) , which are not available

at the current step, the output prediction approach is considered. 

Moving back 1 step of y (k + 2) , we have 

y (k + 1) = φs 

(
y (k ) , u (k − 1) , d(k − 1) 

)
. 

Substituting y (k + 1) in y (k + 2) , it follows that 

y (k + 2) = φs (φs ( y (k ) , u (k − 1) , d(k − 1)) , u (k ) , d(k )) 

= φp ( y (k ) , u (k ) , u (k − 1) , d (k ) , d (k − 1)) 

= φ( z (k ) , u (k )) + d t (k ) 

where z (k ) = [ y (k ) , y (k − 1) , u (k − 1)] T , φ( z (k ) , u (k )) =
φp ( y (k ) , u (k ) , u (k − 1) , 0 , 0)) and d t (k ) = φp ( y (k ) , u (k ) , u (k −
1) , d(k ) , d(k − 1)) − φp ( y (k ) , u (k ) , u (k − 1) , 0 , 0)) . Since φp

is obtained by iterative substitution of the system func-

tions f i , i = 1 , 2 , which satisfies Lipschitz condition in

Assumption 3 . Then, there exists a finite constant L d such that

| d t (k ) | ≤ L d | d(k ) | + L d | d(k − 1) | ≤ d̄ . 

The general optimal control objective is to obtain the admissi-

ble control u ( k ) which can guarantee the system stability and min-

imize the non-quadratic SUF defined in [23] .By introducing an in-

finite vector z̄ (k ) = [ y (k ) , u (k ) , y (k + 1) , u (k + 1) , . . . ] T , the SUF is

defined as 

J( ̄z (k )) = 

∞ ∑ 

i =0 

{ W ( u (k + i ) ) + q ( y (k + i ) ) } (3)

where W ( u (k ) ) = 2 
∫ u (k ) 

0 ϕ 

−1 
(
υ−1 s 

)
υrds, r is a positive constant,

ϕ( · ) is a bounded one-to-one function satisfying | ϕ( · )| ≤ 1

and belonging to L 2 ( �n ). Moreover, ϕ( · ) is an odd function and

increases monotonically. The gradient of ϕ( · ) is bounded by a

constant M . Such a function is easy to find, and one example

is the hyperbolic tangent function, i.e. ϕ(·) = tanh (·) . q ( y (k ) ) =
( y (k ) − y r (k ) ) 
2 
, y r ( k ) is referred as the desired trajectory which is

 known smooth bounded function over the compact subset of R .

t should be noticed that by the definition above, W ( u ( · )) is as-

ured to be positive because ϕ 

−1 (·) is a monotonic odd function

nd r is positive. In addition, the symbol z̄ (k ) is only used to anal-

sis instead of control design. 

By rewriting (3) as 

( ̄z (k )) = W (u (k )) + q (y (k )) + 

∞ ∑ 

i =1 

{ W (u (k + i )) + q (y (k + i )) } , 

t can be equivalent to a difference equation given by 

( ̄z (k )) = W (u (k )) + q (y (k )) + J( ̄z (k + 1)) , J( 0 ) = 0 . 

It means that the value of a current policy u ( k ) can be obtained

y solve the above difference equation. This equation refers as the

ellman equation . The Bellman equation is applied to evaluate the

alue of a current policy u ( k ) and is solved online in real-time us-

ng observed data from the system trajectories. 

Define a discrete-time Hamiltonian function as 

 ( ̄z (k ) ) = W ( u (k ) ) + q ( y (k ) ) + J( ̄z (k + 1)) − J( ̄z (k )) , 

he Bellman equation requires the Hamiltonian associated with the

pecified strategy to be zero. 

The optimal value can be written using the Bellman equation

s 

 

∗( ̄z (k )) = min 

u (·) 
{ W (u (k )) + q (y (k )) + J( ̄z (k + 1)) } . 

Bellman’s principle states that “An optimal policy has the prop-

rty that no matter what the previous decisions (i.e. controls) have

een, the remaining decisions must constitute an optimal policy

ith regard to the state resulting from those previous decisions”.

or this J ∗( z ( k )), it means that 

 

∗( ̄z (k )) = min 

u (·) 
{ q (y (k )) + W ( u (k ) ) + J ∗( ̄z (k + 1)) } . (4)

his is known as the Bellman optimality equation, or the discrete-

ime Hamilton-Jacobi-Bellman (HJB) equation. 

As shown by Implicit Function Theorem, there exists an optimal

olicy u ∗( k ) defined as 

 

∗(k ) = arg min 

u (k ) 
{ q (y (k )) + W ( u (k ) ) + J ∗( ̄z (k + 1)) } . (5)

Assuming that the value function J ∗( · ) is smooth, the min-

mum of the right-hand side of (4) can exactly be solved by

etting the gradient of q (y (k )) + W ( u (k ) ) + J ∗( ̄z (k + 1)) with re-

pect to u ( k ) equal to zero. From System (2), it follows that y (k +
 ) , . . . , y (k + 2 n − 1) depend on u ( k ) such that 

∂ J ∗( ̄z (k )) 

∂u (k ) 
= 

∂ ( q (y (k )) + W ( u (k ) ) ) 

∂u (k ) 

+ 

n −1 ∑ 

i =0 

∂ J ∗( ̄z (k + 1)) 

∂y (k + n + i ) 
· ∂y (k + n + i ) 

∂u (k ) 
= 0 . (6)

Therefore, the corresponding optimal control law u ∗( k ) can be

btained by solving the above equation, i.e. 

 

∗(k ) = υϕ 

( 

−1 

2 

( υr ) 
−1 

n −1 ∑ 

i =0 

h i (k ) 
∂ J ∗( ̄z (k + 1)) 

∂y (k + n + i ) 

) 

(7)

here h i (k ) = 

∂y (k + n + i ) 
∂u (k ) 

, i = 0 , . . . , n − 1 . 

To facilitate the control design, the definition of Nussbaum gain

s first reviewed. 

efinition 1 ( [20] ) . Consider a discrete nonlinear function N ( x ( k ))

efined on a sequence x ( k ) with x s (k ) = sup 

i ≤k 

{ x (i ) } . N ( x ( k )) is a dis-

rete Nussbaum gain if and only if it satisfies the following two

roperties: 
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+ W (k ) − J (k − 1) . (17) 
(i) If x s ( k ) increases without bound, then for any given constant

δ0 

sup 

x s (k ) ≥δ0 

S N ( x (k ) ) 

x s (k ) 
= + ∞ , inf 

x s (k ) ≥δ0 

S N ( x (k ) ) 

x s (k ) 
= −∞ . 

(ii) If x s ≤ δ1 , then | S N ( x ( k ))| ≤ δ2 with some positive constants

δ1 and δ2 , where S N ( x ( k )) is defined with 	 x (k ) = x (k + 1) −
x (k ) as follows: 

S N ( x (k ) ) = 

k ∑ 

i =0 

N ( x (i ) ) 	 x (i ) . 

Let { x ( k )} be a discrete sequence with 

 (0) = 0 , x (k ) ≥ 0 , ∀ k 

nd 

 

	 x (k ) | = | x (k + 1) − x (k ) | ≤ c 1 

here c 1 is a constant. 

In this paper, the discrete Nussbaum gain N ( x ( k )) proposed in

24] will be used, which is defined as: 

 ( x (k ) ) = x s (k ) s (x (k )) 

here x s (k ) = sup 

σ≤k 

{ x (σ ) } and s ( x ( k )) is defined in the following

anner: 

 ( x (0) ) = +1 . 

At k = k 1 , if s ( x (k 1 ) ) = +1 , then if 

k 1 ∑ 

=0 

N ( x (σ ) ) 	 x (σ ) > x 3 / 2 s (k 1 ) 

et s ( x (k 1 + 1) ) = −1 otherwise set s ( x (k 1 + 1) ) = +1 . 

But if s ( x (k 1 ) ) = −1 then if 

k 1 ∑ 

=0 

N ( x (σ ) ) 	 x (σ ) < −x 3 / 2 s (k 1 ) 

et s ( x (k 1 + 1) ) = +1 , otherwise set s ( x (k 1 + 1) ) = −1 . 

The next lemma gives a fact of the discrete Nussbaum gain

 ( x ( k )). 

emma 1 ( [25] ) . Let V ( k ) be a positive definite function defined for

 k, N ( x ( k )) be a discrete Nussbaum gain, and ϑ be a nonzero constant.

f the following inequality holds, for ∀ k 

 (k ) ≤
[ 

k ∑ 

i = k 1 
( ρ1 + ϑN ( x (i ) ) ) 	 x (i ) 

] 

+ ρ2 x (k ) + ρ3 

here ρ1 , ρ2 and ρ3 are some constants, k 1 is a positive integer,

hen V ( k ), x ( k ) and 
∑ k 

i = k 1 ( ρ1 + ϑN ( x (i ) ) ) 	 x (i ) + ρ2 x (i ) + ρ3 must

e bounded for ∀ k. 

. Output Feedback Controller Design 

In this section, an output feedback controller which has an

ctor-critic architecture is developed by using reinforcement learn-

ng methods. The design processes of the critic NN and the action

N are introduced, respectively. 

.1. Critic NN and weight update law 

In this section, a critic NN is used to approximate the SUF J ( k ).

ince J ( k ) is unavailable at the k th time instant, the critic NN is

uned online to ensure its output converges close to J ( k ). 

Define a prediction error of the critic NN, i.e. the TD error, as: 

 c (k ) = r c ̂  J (k ) − ˆ J (k − 1) + D 

−2 (k ) ( q (k ) + W (k ) ) a (k ) (8) 
here ˆ J (k ) = 

ˆ W 

T 
c (k ) φc 

(
V T c z(k ) 

)
represents the output of the critic

N, z(k ) = [ z (k ) , u (k ) ] 
T 
, and 0 < r c < 1 is the temporal differ-

nce coefficient. a ( k ) and D 

−2 (k ) are defined later in Section 3.2 .

he critic NN has a two-layer structure, while ˆ W c (k ) ∈ R n c ×1 and

 c ∈ R n z ×n c indicate its actual weight vector of the output and the

eight matrix of hidden layers, respectively. The term n c denotes

he number of the neurons in the hidden layer and n z = 2 n + 1 .

he regression z(k ) ∈ R n z , which is composed of the past value of

he input and output measurements, are chosen as the input of

he critic NN. The activation function vector of the hidden layer

c 

(
V T c z(k ) 

)
∈ R n z can be written as φc ( z ( k )) or short. If there are

nough number of the neurons in the hidden layer, the critic net-

ork can approximate the optimal SUF J ∗ with arbitrarily small es-

imation error εc ( k ) as 

 

∗( ̄z (k )) = W 

T 
c φc 

(
V 

T 
c z(k ) 

)
+ ε c ( z(k ) ) 

= W 

T 
c φc ( z(k ) ) + ε c ( z(k ) ) (9) 

here W c denotes the desired weight matrix of the optimal SUF,

c ( z ( k )) denotes the bounded error. 

The weight estimation error of the critic network NN is defined

s 

˜ 
 c (k ) = 

ˆ W c (k ) − W c (10) 

nd the approximation error is described as 

c (k ) = 

˜ W 

T 
c (k ) φc (k ) . (11) 

Thus, the prediction error can be 

 c ( k ) = r c ̂  J ( k ) − ˆ J ( k − 1 ) + a ( k ) ( q ( k ) + W ( k ) ) D 

−2 ( k ) 

= r c ζc ( k ) + r c J 
∗( z ( k ) ) + ζc ( k − 1 ) − J ∗( z ( k − 1 ) ) 

+ ε c ( k ) − ε c ( k − 1 ) + a ( k ) ( q ( k ) + W ( k ) ) D 

−2 ( k ) . (12) 

Define a quadratic function of the prediction errors as the min-

mization object of the critic NN: 

 c (k ) = 

1 

2 

e 2 c (k ) . (13) 

The weight update rule for the critic NN is a gradient-based

daptation which is given by 

ˆ 
 c (k ) = 

ˆ W c (k − n ) + 	 

ˆ W c (k ) (14) 

here 

 

ˆ W c (k ) = αc 

[
− ∂E c (k ) 

∂ ˆ W c (k ) 

]
(15) 

here αc ∈ R is the adaptation gain. Then, the following Lemma is

iven to obtain the specific weight updating law. 

emma 2 ( [7] ) . Given the matrices A ∈ R m × m , X ∈ R n × m and vec-

ors b ∈ R n and q ∈ R m , the derivative of the following quadratic term

ith respect to the matrix X is given by 

d 

((
AX 

T b + q 
)T (

AX 

T b + q 
))

dX 

= 2 b 
(
A 

T 
(
AX 

T b + q 
))T 

(16) 

here the matrix A, vectors b and q are independent of the matrix X.

Combining (11),(12),(13) with (15) , the weight updating law of

he critic NN can be derived as 

ˆ 
 c (k + n ) = 

ˆ W c (k ) − αc φc ( z(k ) ) ·
(
r c ̂  J (k ) + a (k ) D 

−2 (k )(q (k ) 

ˆ 
)
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Fig. 1. Reference signal and system output. 

Fig. 2. Tracking error between reference signal y r ( k ) and output y ( k ). 

Fig. 3. Control signal u ( k ). 
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3.2. Action NN and weight update law 

In this section, an action NN is used to generate the input signal

to approximate the desired control input (5) . The desired control

signal can be approximated as 

u (k ) = υϕ 

(
−1 

2 

(υr) −1 U(k ) 
)

(18)
here U(k ) = 

ˆ W a (k ) S ( V a z(k ) ) denotes the output of action NN.
ˆ 
 a (k ) and V a denote the weighted vector of output layer and the

eighted matrix of hidden layer, respectively. S ( z ( k )) is shorted for

 ( V a z ( k )) which denotes the activation function vector of the hid-

en layer, ˆ W a ∈ R n a ×1 and V a ∈ R n a ×n z , n a is the number of the neu-

ons in the hidden layer. 

Define an auxiliary variable: 

 

∗(k ) = W 

T 
a S(z(k )) (19)



M. Huang, C. Liu and X. He et al. / Neurocomputing 402 (2020) 50–65 55 

Fig. 4. Discrete Nussbaum gain N ( x ( k )) and its argument x ( k ). 

Fig. 5. Output of the critic NN 

ˆ J (k ) . 

Fig. 6. Reference signal and system output. 
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here W a denotes the desired weighted vector so that u ∗(k ) =
ϕ 

(
− 1 

2 (υr) −1 ( U 

∗(k ) + d ∗(k ) ) 
)
, d ∗( k ) denotes a bounded error. 

The tracking error at instant k is defined as 

 (k + n ) = y (k + n ) − y r (k + n ) 

= φ( z (k ) , u (k ) ) − φ( z (k ) , u 

∗(k ) ) + d φ(k ) 

= �( z (k ) , U(k ) ) − �( z (k ) , U 

∗(k ) ) + η̄(k ) (20) 

here η̄(k ) = d φ(k ) − �( z (k ) , U 

∗(k ) + d ∗(k ) ) + �( z (k ) , U 

∗(k ) ) and

 φ(k ) = d t (k ) − y r (k + n ) + φ( z (k ) , u ∗(k ) ) . From Assumption 3 , we

now that �( · , · ) is a Lipschitz function and the boundedness of
¯ (k ) , i.e. | ̄η(k ) | < η̄∗, where η̄∗ is a positive constant. Then, (20) be-

omes 

 (k + n ) = δ(k ) ( U(k ) − U 

∗(k ) ) + η̄(k ) (21) 

here δ( z (k ) , U 

c (k ) ) = 

∂�( z (k ) ,U c (k ) ) 
∂U c (k ) 

is denoted as δ( k ) for sim- 

licity, U 

c ( k ) ∈ [min { U 

∗( z ( k )), U ( k )}, max { U 

∗( z ( k )), U ( k )}] and δ ≤
 

δ(k ) | ≤ δ̄, ̄δ > δ > 0 . 

Thus, the dynamic of closed-loop tracking error is expressed

s 

 (k + n ) = δ(k ) ζa (k ) + η̄(k ) (22) 
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Fig. 7. Tracking error between reference signal y r ( k ) and output y ( k ). 

Fig. 8. Control signal u ( k ). 

Fig. 9. Discrete Nussbaum gain N ( x ( k )) and its argument x ( k ). 
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where ˜ W a (k ) = 

ˆ W a (k ) − W a and 

ζa (k ) = 

˜ W a (k ) S ( z(k ) ) . (23)

The design principle of the adaption law of the action NN is

to minimize the SUF function and track the desired trajectory. The

prediction error of action NN is defined as 

e a (k ) = 

(
N ( x (k ) ) a (k ) ε(k ) + a (k ) ̂  J (k − n ) 

)
D 

−1 (k ) (24)

where 

ε(k ) = 

e (k ) 

G (k ) 
(25)

	 x (k ) = x (k + 1) − x (k ) = 

a (k ) G (k ) ε 2 (k ) 

D (k ) 
(26)
 (k ) = 1 + | N ( x (k ) ) | (27)

 (k ) = 

(
1 + | N ( x (k ) ) | + 

∣∣ ˆ J (k − n ) 
∣∣)(1 + ε 2 (k ) + ‖ 

S(k − n ) ‖ 

2 
)
(28)

 (k ) = 

{
1 , i f | ε(k ) | > λ

0 , otherwise. 
(29)

here x (0) = 0 is the initial value of x ( k ), λ is a threshold value

nd λ > 0. 

emark 4. Noting that x ( k ) is the discrete sequence, which is the

ey factor to obtain an appropriate Nussbaum gain N ( x ( k )). The
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Fig. 10. Output of the critic NN 

ˆ J (k ) . 

Fig. 11. Reference signal and system output of the output feedback NN control system proposed by [20] with g = 1 . 

Fig. 12. Tracking error between reference signal y r ( k ) and output y ( k ) of the output feedback NN control system proposed by [20] with g = 1. 
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ynamic of x ( k ) given by (25) –(29) is different from the existing

orks, which is one innovation of this paper. 

Tune the weight of the action NN 

ˆ W a (k ) to minimize the er-

or 

 a (k ) = 

1 

e 2 a (k ) . (30) 

2 
Combining (23),(24) and (30) with Lemma 2, we have 

 

ˆ W a (k ) = −S(k − n ) 

D (k ) 

(
N ( x (k ) ) ε(k ) + 

ˆ J (k − n ) 
)
αa a (k ) (31) 

here αa ∈ R + is the adaptation gain of the action NN. So, the

eight updating algorithm for the action NN is obtained as 

ˆ 
 a (k ) = 

ˆ W a (k −n ) − S(k −n ) 

D (k ) 

(
N ( x (k ) ) ε(k ) + ̂

 J (k −n ) 
)
αa a (k ) . (32) 
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Fig. 13. Control signal u ( k ) of the output feedback NN control system proposed by [20] with g = 1 . 

Fig. 14. Reference signal and system output of the output feedback NN control system proposed by [20] with g = −1 . 

Fig. 15. Tracking error between reference signal y r ( k ) and output y ( k ) of the output feedback NN control system proposed by [20] with g = -1. 
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Remark 5. Consider the MIMO discrete-time system with n sub-

systems � j , j = 1 , . . . , n in the non-affine pure-feedback form pro-

posed in [21] . It can be transformed into an input-output model

with the following form: 

y j (k + n j ) = F j 
(
y 

1 
(k + n 1 − 1) , . . . , y 

n 
(k + n n − 1) , ū j (k ) , d j (k ) 

)
, 

where n j is the order of subsystem �j , y 
j 
(k ) = [ y j (k ) , y j (k −

1) , . . . , y j (k − n j + 1)] T , ū j (k ) = [ u 1 (k ) , u 2 (k ) , . . . , u j (k )] T and
∂F j (·) 
∂u j (k ) 

= 

∏ n j 
i j =1 

g j,i j (·) := g j (·) , g j ≤ | g j (·) | ≤ ḡ j . 
Then, using future output prediction procedure, the input-

utput model is further transformed into: 

 j (k + n j ) = φ j 

(
z j (k ) , ū j (k ) 

)
+ d ′ j (k ) , 

here z j (k ) = [ Y 1 (k ) , . . . , Y n̄ (k ) , U 1 (k − 1) , . . . , U n̄ (k − 1)] T ,

¯ = max n 
j=1 

(n j ) , Y i (k ) = y 
i 
(k ) , U i (k − 1) = [ ̄u i (k − 1) , . . . , ū i (k −

 i + 1)] T , i = 1 , 2 , . . . , ̄n , d ′ 
j 
(k ) = F j,n j ( z j (k ) , ū j (k ) , d j (k )) −

 j,n j 
( z j (k ) , ū j (k ) , 0 n j ) , d j (k ) = [ D 1 (k − 1) , . . . , D n̄ (k − 1) , d j (k )]

nd D i (k − 1) = [ d i (k − 1) , . . . , d i (k − n i + 1)] T . | d ′ 
j 
(k ) | ≤ d̄ j is the

ounded disturbance. 
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Fig. 16. Control signal u ( k ) of the output feedback NN control system proposed by [20] with g = -1. 

Fig. 17. The MSE trend along with the proposed systems with the values of r c and λ. 

Table 1 

The MSE of the proposed systems with different values of r c and λ

r c 

λ 0.76 0.79 0.83 0.87 0.91 0.95 0.99 

0.001 0.03 0.0237 0.0219 0.0215 0.0214 0.0213 0.0213 

0.003 0.03 0.0239 0.0223 0.0215 0.0216 0.0216 0.0213 

0.005 0.0303 0.0240 0.022 0.022 0.0215 0.0215 0.0215 

0.007 0.0306 0.0242 0.0225 0.0216 0.0216 0.022 0.0219 

0.009 0.0304 0.0239 0.0226 0.0219 0.0218 0.0217 0.0222 

0.011 0.0308 0.0246 0.0234 0.0228 0.0222 0.0225 0.0229 

0.013 0.0309 0.0254 0.0231 0.0228 0.0231 0.0235 0.0235 
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Proof. See the Appendix A. �
Then, for each input-output model y j (k + n j ) , we can design RL

ased control to obtain u j ( k ) using the SISO method proposed in

his paper. 

. Theoretic Result 

ssumption 4. Let ideal output layer weights W a and W c be

ounded over the compact set � by known positive constants W aM 

nd W cM 

, respectively. That is, 

 

W a ‖ 

≤ W aM 

, ‖ 

W c ‖ 

≤ W cM 

. 

heorem 1. Consider the nonlinear discrete-time systems given by

1) . Let the Assumptions 1–4 hold and the disturbance bound with an

nknown constant d̄ s .Let the control input be provided by an output
eedback control law (18) with an action NN and a critic NN. Let the

eights of the action NN and the critic NN tune along with (32) and

17) , respectively. Then the estimated error of NN weight ˜ W c (k ) is UUB

y positive constants 

 c = 

1 

σcM 

√ 

D 

2 
M 

r 2 r 
2 
c − 2 r 1 − 2 r 1 αa − 2 r 1 ̄η∗2 

δ2 − r 3 

nd the tracking error e ( k ) and the estimated error of NN weight
˜ 
 a (k ) are UUB provided that the following conditions hold: 

a) 0 < αc ‖ φc (k − n ) ‖ 2 < 

1 

r 2 c 

b) αa > 0 

where αc , αa are NN adaptation gains and r 1 , r 2 and r 3 are posi-

ive constants, which satisfy the following in-equations: 

 3 − r 2 
4 

> 0 , (33) 

 2 r 
2 
c − 2 r 1 − 2 r 1 αa − 2 r 1 ̄η∗2 

δ2 
− r 3 > 0 , (34) 

 4 − r 2 
4 

− r 2 

2 δ2 
> 0 . (35) 

here r 4 is a positive constant. 
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Fig. 18. Output signals of the proposed method and the NAC method proposed by [26] . 

Fig. 19. Input signals of the proposed method and the NAC method proposed by [26] . 

Fig. 20. Discrete Nussbaum gain N ( x ( k )) and its argument x ( k ). 
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5. Numerical examples 

5.1. Example 1 

In this section, the following second-order nonlinear pure-

feedback plant is considered for simulation studies: 

ξ1 (k + 1) = f 1 ( ξ1 (k ) , ξ2 (k ) ) 

ξ2 (k + 1) = f 2 ( ξ1 (k ) , ξ2 (k ) , u (k ) ) + d(k ) (36)
 a  
here 

f 1 ( ξ1 (k ) , ξ2 (k ) ) = 1 . 4 

ξ 2 
1 (k ) 

1 + ξ 2 
1 
(k ) 

+ 0 . 1 ξ 3 
2 (k ) + 0 . 5 ξ2 (k ) 

f 2 
(
ξ̄2 (k ) , u (k ) 

)
= 

ξ1 (k ) 

1 + ξ 2 
1 
(k ) + ξ 2 

2 
(k ) 

+ gu (k ) 

here g = ±1 and the disturbance is d(k ) =
 . 1 cos (0 . 05 k ) cos ( ξ1 (k ) ) . The control objective is to make

he output y ( k ) track the desired reference trajectory

 r (k ) = (1 / 2) sin ( (π/ 5) kT ) + (1 / 2) cos ( (π/ 10) kT ) , where T = 0 . 05 ,

nd guarantee the boundedness of all the closed-loop signals.
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Fig. 21. Output of the critic NN 

ˆ J (k ) . 
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he system initial states are ξ̄2 (0) = [ 0 . 1 , 0 . 1 ] 
T . The controller is

onstructed in the same manner as in Section 3 . The tuning rates

f the critic NN and the action NN are αa = 5 . 6 and αc = 0 . 01 ,

espectively. The threshold value and the temporal difference

oefficient and are chosen as λ = 0 . 01 and r c = 0 . 99 , respectively.

he saturating bound of u ( k ) is v = 2 . 

The system responses are presented in Figs. 1 –5 when g = 1 is

hosen. Fig. 1 shows the results of reference signal y r ( k ) and sys-

em output y ( k ). Fig. 2 and 3 illustrate the boundedness of the

racking error e ( k ) and the control input u ( k ). Fig. 4 shows the

oundedness of x ( k ) and N ( x ( k )). Fig. 5 gives the output of the

ritic NN 

ˆ J (k ) . 

Then, let g = −1 . Employing the same control law and NN

eights adaption laws, the system responses are shown in Figs. 6–

0 . 

To illustrate the effectiveness of the proposed control method,

he simulation results of the control method proposed by [20] are

lso shown in Figs. 11–16 as a comparison. The proposed method

utperforms that proposed by [20] either the control gain g of sim-

lation system (36) is assumed positive or negative, respectively. 

emark 6. The choice of the design parameters r c and λ affects

he convergence property of the proposed systems. How to tune

hem to obtain better performance is a topic worth to be dis-

ussed. Take System (36) with the positive control gain i.e. g = 1 ,

or example. Fig. 17 shows the MSE trend along with the proposed

ystems with the values of r c and λ changing from 0.76 to 0.99

nd 0.001 to 0.013 within certain steps. The MSE values are listed

n Table 1 , when some values of r c and λ chosen in this domain

re applied. It can be seen that the MSE value decrease along the

ncrease of r c and the decrease of λ both from Fig. 17 and Table 1 . 

.2. Example 2 

In this section, a networked-control based robotic manipula-

or system is considered. Its dynamic is described by a Lagrangian

quation: 

 ̈q (t) + B ̇

 q + MgLsin (q (t)) = u (t) , (37) 

here q and ˙ q are the angle and angular velocity of the rigid link,

espectively. J denotes the rotation inertia of the servo motor, B

s the damping coefficient, L is the length from the axis of joint

o the mass center, M is the mass of the link, and g is the grav-

tational acceleration. For this example, J = 1 , MgL = 10 and B = 2

re assumed to be unknown parameters with respect to the con-

roller design. The controller design task is to make the angle q

ove back to zero. The output feedback controller proposed in

ection 3 is applied to System (37) . The saturating bound of u ( k )
s v = 50 . The tuning rates of the critic NN and the action NN are

c = 4 . 7 and αa = 0 . 01 . The threshold value and the temporal dif-

erence coefficient are chosen as λ = 0 . 001 and r c = 0 . 9 , respec-

ively. 

The simulation results are compared with a backstepping based

onlinear adaptive control (NAC) proposed by [26] . Fig. 18 and

ig. 19 show the output and input responses of the proposed

ethod and the method proposed by [26] , respectively. From the

gures, it can be seen that the proposed method has faster re-

ponses and smaller amplitude of the control signals than the

AC method. Fig. 20 shows the boundedness of x ( k ) and N ( x ( k )).

ig. 21 gives the output of the critic NN 

ˆ J (k ) . 

. Conclusions 

In this paper, we develop an output feedback control algorithm

ased on RL approaches for a class of non-affine discrete-time non-

inear systems with unknown control directions and control con-

traints. Firstly, Implicit Function Theorem and Bellman’s principle

f optimality are employed to obtain the optimal control law. The

ontroller is implemented by two NNs which are used as the actor

nd the critic to estimate the optimal control and the SUF approx-

mately. In this architecture, the weights of the actor and the critic

re simultaneous updated by Nussbaum gain-based adaption laws.

oreover, the UUB performance of the NN estimation weights and

ystems tracking errors is proved to be guaranteed. Finally, two nu-

erical simulations are provided to demonstrate the effectiveness

f the proposed control schemes. 
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Appendix A 

Proof of Theorem 1: Define the quadratic functions as 

 1 (k ) = 

r 1 
αa 

n ∑ 

t=1 

˜ W 

T 
a (k − n + t) ˜ W a (k − n + t) (38)

 2 (k ) = 

r 2 
αc 

n ∑ 

t=1 

˜ W 

T 
c (k − n + t) ˜ W c (k − n + t) (39)

 3 (k ) = r 3 ζ
2 
c (k − n ) (40)

 4 = r 4 

n ∑ 

t=1 

	 x (k − n + t) (41)

where r 1 , r 2 , r 3 and r 4 are positive constants. 

The difference of V 1 is given as 

	 V 1 (k ) = 

r 1 
αa 

(
˜ W 

T 
a (k ) ˜ W a (k ) − ˜ W 

T 
a (k − n ) ˜ W a (k − n ) 

)
. (42)

Combining (22),(23), (24) and (32) , we have 

� V 1 ( k ) = 

r 1 
αa 

((
˜ W a ( k − n ) + � 

ˆ W a ( k ) 
)T (

˜ W a ( k − n ) + � 

ˆ W a ( k ) 
)

− ˜ W 

T 
a ( k − n ) ̃  W a ( k − n ) 

)
= 

r 1 
αa 

(
2 ̃  W a ( k − n ) � W a ( k ) − � W 

2 
a ( k ) 

)
= 

r 1 
αa 

(
− 2 αa S ( k − n ) 

D ( k ) 

(
N ( x ( k ) ) a ( k ) ε ( k ) + a ( k ) ̂ J ( k − n ) 

))
˜ W a ( k − n )

+ 

S 2 ( k − n ) 

D 

2 ( k ) 
α2 

a 

(
N ( x ( k ) ) a ( k ) ε ( k ) + a ( k ) ̂ J ( k − n ) 

)2 

= −2 r 1 S(k − n ) 

D (k ) 
N ( x (k ) ) a (k ) ε(k ) ˜ W (k − n ) 

+ 

2 S 2 (k − n ) r 1 αa 

D 

2 (k ) 
( N ( x (k ) ) a (k ) ε(k ) ) 2 

+ 

2 S 2 (k − n ) r 1 αa ̂  J 2 (k − n ) a 2 (k ) 

D 

2 (k ) 

− 2 r 1 S(k − n ) 

D (k ) 
ˆ J (k − n ) ˜ W a (k − n ) a (k ) 

≤ 2 r 1 αa a (k ) G (k ) ε 2 (k ) 

D (k ) 
+ 

∣∣∣∣2 ̄η

δλ

∣∣∣∣ r 1 a (k ) G (k ) ε 2 (k ) 

D (k ) 

− 2 

δ(k − n ) 
N ( x (k ) ) 

r 1 a (k ) G (k ) ε 2 (k ) 

D (k ) 
+ 	 V 11 (k ) (43)

where 

	 V 11 (k ) = 

2 S 2 (k − n ) r 1 αa ̂  J 2 (k − n ) a 2 (k ) 

D 

2 (k ) 

− 2 r 1 S(k − n ) 

D (k ) 
ˆ J (k − n ) ˜ W a (k − n ) a (k ) 

≤ 2 S 2 (k − n ) r 1 αa ̂  J 2 (k − n ) a 2 (k ) 

D 

2 (k ) 

− 2 r 1 ̂  J (k − n ) a (k ) 

D (k ) δ(k − n ) 
( ε(k ) G (k ) − η̄(k ) ) 

≤ 2 r 1 αa ̂  J (k − n ) a 2 (k ) 

D (k ) 
− 2 r 1 ̂  J (k − n ) a (k ) ε(k ) G (k ) 

δ(k − n ) D (k ) 
+ 

2 r 1 ̂  J (k − n ) a (k ) ̄η(k ) 

D (k ) δ(k − n ) 

≤ 2 r 1 αa ̂  J (k − n ) a 2 (k ) 

D (k ) 
+ 

r 1 G (k ) ε 2 (k ) a (k ) 

δ2 (k − n ) D (k ) 

+ 

r 1 G (k ) a (k ) ̂  J 2 (k − n ) 

D (k ) 

+ 

2 r 1 ̂  J (k − n ) a (k ) ̄η(k ) 

D (k ) δ(k − n ) 
. (44)

Then, 	 V 1 ( k ) becomes 

 V 1 (k ) ≤ 2 r 1 αa a (k ) G (k ) ε 2 (k ) 

D (k ) 
− 2 

δ(k − n ) 
N ( x (k ) ) 

r 1 a (k ) G (k ) ε 2 (k ) 

D (k ) 

+ 

r 1 G (k ) ε 2 (k ) a (k ) 

δ2 
D (k ) 

+ r 1 a (k ) ( J ∗( ̄z (k − n )) + ζc (k − n ) ) 
2 

+ 

r 1 αa a 
2 (k ) ̂  J 2 (k − n ) 

D (k ) 

+ 

r 1 a (k ) ̂  J 2 (k − n ) ̄η∗2 

δ2 
D (k ) 

+ 

r 1 a (k ) 

D (k ) 
+ 

∣∣∣∣2 ̄η

δλ

∣∣∣∣ r 1 a (k ) G (k ) ε 2 (k ) 

D (k ) 

+ 

r 1 αa a 
2 (k ) 

D (k ) 

≤ 2 r 1 αa a (k ) G (k ) ε 2 (k ) 

D (k ) 
+ 

∣∣∣∣2 ̄η∗

δλ

∣∣∣∣ r 1 a (k ) G (k ) ε 2 (k ) 

D (k ) 

− 2 

δ(k − n ) 
N ( x (k ) ) 

r 1 a (k ) G (k ) ε 2 (k ) 

D (k ) 

+ 

r 1 G (k ) ε 2 (k ) a (k ) 

δ2 
D (k ) 

+ 2 r 1 a (k ) J ∗2 ( ̄z (k − n )) 

+ 2 r 1 aζ
2 
c (k − n ) + 2 r 1 αa a 

2 (k ) J ∗2 ( ̄z (k − n )) 

+ 2 r 1 αa a 
2 (k ) ζ 2 

c (k − n ) + r 1 αa a 
2 (k ) + 

2 r 1 a (k ) ̄η∗2 

δ2 
J ∗2 ( ̄z (k − n )) 

+ 

2 r 1 a (k ) ̄η∗2 

δ2 
ζ 2 

c (k − n ) + r 1 a (k ) (45)

The difference of V 2 ( k ) is shown as: 

 V 2 (k ) = V 2 (k ) − V 2 (k − 1) = 

r 2 
a c j 

(
˜ W 

T 
c j (k ) ˜ W c j (k ) 

− ˜ W 

T 
c j (k − n ) ˜ W c j (k − n ) 

)
Using (11), (12), (14) and (17) , it can be following that 

 V 2 ( k ) = 

r 2 
αc 

(
−2 ̃  W 

T 
c ( k − n ) αc r c φc ( k − n ) e c ( k − n ) 

+ � W 

T 
c ( k − n ) � W c ( k − n ) 

)
= −2 r 2 r c ζc ( k − n ) e c ( k − n ) + r 2 αc r 

2 
c e 

2 
c ( k − n ) ‖ φc ( k − n ) ‖ 2 

≤ −r 2 
(
1 − αc r 

2 
c ‖ φc ( k − n ) ‖ 2 )e 2 c ( k − n ) − r c r 

2 
c ζ

2 
c ( k − n ) 

+ 

r 2 
4 

ζ 2 
c ( k − n − 1 ) 

+ 

r 2 
4 

( r c J 
∗( z ( k − n ) ) − J ∗( z ( k − n − 1 ) ) ) 

2 

+ 

r 2 
4 D 

2 ( k − n ) 
( q ( k − n ) + W ( k − n ) ) 

+ 

r 2 
4 

( ε c ( k − n ) − ε c ( k − n − 1 ) ) 
2 

≤ −r 2 
(
1 − αc r 

2 
c ‖ φc ( k − n ) ‖ 2 )e 2 c ( k − n ) − r 2 r 

2 
c ζ

2 
c ( k − n ) 

+ 

r 2 
4 

ζ 2 
c ( k − n − 1 ) 

+ 

r 2 
4 

( r c J 
∗( z ( k − n ) ) − J ∗( z ( k − n − 1 ) ) ) 

2 

+ 

a ( k − n ) r c ‖ e ( k − n ) ‖ 2 
4 D 

2 ( k − n ) 

+ 

r 2 
4 

a ( k − n ) 

D 

2 ( k − n ) 

∫ u ( k −n ) 

0 

ϕ −1 
(
u 

−1 
s 
)
u rds 
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+ 

r 2 
4 

( ε c ( k − n ) − ε c ( k − n − 1 ) ) 
2 

≤ −r 2 
(
1 − αc r 

2 
c ‖ φc ( k − n ) ‖ 2 )e 2 c ( k − n ) − r 2 r 

2 
c ζ

2 
c ( k − n ) 

+ 

r 2 
4 

ζ 2 
c ( k − n − 1 ) 

+ 

r 2 
4 

( r c J 
∗( z ( k − n ) ) − J ∗( z ( k − n − 1 ) ) ) 

2 

+ 

a ( k − n ) r 2 ‖ e ( k − n ) ‖ 2 
4 D 

2 ( k − n ) 

+ 

r 2 
4 

a ( k − n ) 

D 

2 ( k − n ) 

∫ υϕ 
(

1 
2 

( υr ) −1 ( ‖ ζa ( k −n ) ‖ + ‖ W a S ( z ( k −n ) ) ‖ ) 
)

0 

ϕ −1 
(
υ−1 s 

)
υrds 

+ 

r 2 
4 

( ε c ( k − n ) − ε c ( k − n − 1 ) ) 
2 

≤ −r 2 
(
1 − αc r 

2 
c ‖ φc ( k − n ) ‖ 2 )e 2 c ( k − n ) − r 2 r 

2 
c ζ

2 
c ( k − n ) 

+ 

r 2 
4 

ζ 2 
c ( k − n − 1 ) 

+ 

r 2 
4 

( r c J 
∗( z ( k − n ) ) − J ∗( z ( k − n − 1 ) ) ) 

2 

+ 

a ( k − n ) r 2 ‖ e ( k − n ) ‖ 2 
4 D 

2 ( k − n ) 

+ 

r 2 
4 

a ( k − n ) 

D 

2 ( k − n ) 
( ‖ ζa ( k − n ) ‖ + ‖ W a S ( z ( k − n ) ) ‖ ) 2 

+ 

r 2 
4 

ε 2 cm 

≤ −r 2 
(
1 − αc r 

2 
c ‖ φc ( k − n ) ‖ 2 )e 2 c ( k − n ) − r 2 r 

2 
c ζ

2 
c ( k − n ) 

+ 

r 2 
4 

ζ 2 
c ( k − n − 1 ) 

+ 

r 2 
4 

( r c J 
∗( z ( k − n ) ) − J ∗( z ( k − n − 1 ) ) ) 

2 

+ 

a ( k − n ) r 2 ε 
2 ( k − n ) G ( k − n ) 

4 D ( k − n ) 

+ 

r 2 
2 

a ( k − n ) ε 2 ( k − n ) G ( k − n ) 

D ( k − n ) δ2 ( k − n − 1 ) 

+ 

r 2 a ( k − n ) 

2 D 

2 ( k − n ) 
‖ W a S ( z ( k − n ) ) ‖ 2 + 

r 2 
4 

ε 2 cm . (46) 

Then, from the definition of 	 x , let c 1 = 2 r 1 αa + 

∣∣∣ 2 ̄η∗
δλ

∣∣∣ + 

r 1 

δ2 and

btain a positive-definite V ( k ) as 

 (k ) = V 1 (k ) + V 2 (k ) + V 3 (k ) + V 4 (k ) . 

The first difference of V ( k ) is given as 

 V (k ) = 	 V 1 (k ) + 	 V 2 (k ) + 	 V 3 (k ) + 	 V 4 (k ) . (47) 

Combining (45), (46) and (47) , we derive 

 V (k ) = − 2 

δ(k − n ) 
N ( x (k ) ) 

r 1 a (k ) G (k ) ε 2 (k ) 

D (k ) 
+ c 1 	 x (k ) 

−
(

r 2 r 
2 
c − 2 r 1 a (k ) − 2 r 1 αa a 

2 (k ) − 2 r 1 a (k ) ̄η∗2 

δ2 

)
ζ 2 

c (k − n ) 

− r 2 
(
1 − αc r 

2 
c ‖ φc (k − n ) ‖ 2 )e 2 c (k − n ) + 

r 2 
4 

ζ 2 
c (k − n − 1) 

+ 

r 2 
4 

	 x (k − n ) + 

r 2 

2 δ2 
	 x (k − n ) + r 3 ζ

2 
c (k − n ) − r 3 ζ

2 
c (k − n − 1) 

+ r 4 	 x (k ) − r 4 	 x (k − n ) + D 

2 
M (48) 

here 

 

2 
M 

= 

r 2 
4 

( r c J 
∗( ̄z (k − n )) − J ∗( ̄z (k − n − 1)) ) 

2 

+ 

r 2 a (k − n ) 

2 D 

2 (k − n ) 
‖ 

W a ‖ 

2 S 2 m 

+ 

r 2 
4 

ε 2 cm 

+ 2 r 1 aJ ∗( ̄z (k − n )) + 2 r 1 αa a 
2 (k ) J ∗2 ( ̄z (k − n )) 

+ r 1 αa a 
2 (k ) + 

2 r 1 a (k ) η∗2 

δ2 
J ∗( ̄z (k − n )) + r 1 a (k ) 
rom the fact that the activation functions are bounded by known

ositive values, i.e. ‖ S ( k ) ‖ ≤ σ aM 

and the boundedness of J ∗( ̄z (k )) .

Suppose that the design parameter r 1 , r 2 , r 3 and r 4 satisfy In-

quations (33) - (35) . Then, the following condition holds: 

 

ζc (k − n ) ‖ 

> 

D M √ 

r 2 r 
2 
c − 2 r 1 − 2 r 1 αa − 2 r 1 ̄η∗2 

δ2 − r 3 

. (49) 

Denote N 

′ ( x (k ) ) = 

1 
δ(k −n ) 

N ( x (k ) ) r 1 and then, noting 1 / ̄δ ≤
 /δ(k − n ) ≤ 1 / δ and according to Lemma 1, it can be seen that

 

′ ( x ( k )) is also a discrete Nussbaum gain. Deriving the summation

f the right side of (47) and noting 0 ≤ 	 x ( k ) ≤ 1, we have 

 V (k ) ≤ (c 1 + r 4 ) 	 x (k ) − 2 N 

′ ( x (k ) ) 	 x (k ) 

nd 

 (k ) ≤ −2 

k ∑ 

k ′ =0 

N 

′ (x (k ′ ) 
)
	 x (k ′ ) + c 1 x (k ) + c 1 + r 4 . (50) 

Applying Lemma 1 to (50) , we have the boundedness of V ( k )

nd x ( k ). Noting that the definition of V ( k ), the boundedness of
˜ W a (k ) 

∥∥, 
∥∥ ˜ W c (k ) 

∥∥ is obtained. Since | N ( x (k ) ) | = 

∣∣sup k ′ ≤k 

{
x (k ′ ) 

}∣∣, 
t can be implied that N ( x ( k )) and G (k ) = 1 + | N ( x (k ) ) | are

ounded. In addition, from 	 x ( k ) ≥ 0, we can find x ( k ) is a non-

ecreasing sequence. Thus, we have 

im 

 → 0 
	 x (k ) = 0 . 

ote ‖ ζc (k ) ‖ ≤ σcM 

∥∥ ˜ W c (k ) 
∥∥. Then, by using (49) , it can be derived

hat 

˜ W c (k ) 
∥∥ > 

1 

σcM 

√ 

D 

2 
M 

r 2 r 
2 
c − 2 r 1 − 2 r 1 αa − 2 r 1 ̄η∗2 

δ2 − r 3 
, 

here σ cM 

≥ ‖ φc ( k ) ‖ from the fact that the activation function

or the critic NN is bounded by known positive constants over the

ompact set �. 

Let us define a time interval as Z = { k | a (k ) = 1 } and suppose

hat Z is an infinite set. Then, we have 

lim 

 → 0 ,k ∈ Z 
ε(k ) = lim 

k → 0 ,k ∈ Z 
a (k ) ε(k ) = 0 

hich conflicts with a (k ) = 1 , k ∈ Z, because | ε( k )| ≥ λ, when

 (k ) = 1 . Therefore, Z is a finite set, and then it follows 

lim 

 →∞ 

a (k ) = 0 , lim 

k →∞ 

sup { ε(k ) } ≤ λ, 

hich indicates that N ( x ( k )) converges to a constant ultimately.

rom the definition of ε( k ), the tracking errors satisfy 

lim 

 →∞ 

sup { | e (k ) | } ≤ Cλ

αa 

here C denotes the limit of G ( k ). 

Then, the conclusion that the tracking error vector e ( k ), the

eights of estimation error for the action NN 

˜ W a (k ) , and the

eights of estimation error for the critic NN 

˜ W c (k ) are all UUB can

e drawn. The proof is completed. 
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