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We explored the problem about function approximation error and complex mission adaptability in multi-
agent deep reinforcement learning. This paper proposes a new multi-agent deep reinforcement learning
algorithm framework named multi-agent time delayed deep deterministic policy gradient. Our work
reduces the overestimation error of neural network approximation and variance of estimation result
using dual-centered critic, group target network smoothing and delayed policy updating. According to
experiment results, it improves the ability to adapt complex missions eventually. Then, we discuss that
there is an inevitable overestimation issue about existing multi-agent algorithms about approximating
real action-value equations with neural network. We also explain the approximate error of equations
in the multi-agent deep deterministic policy gradient algorithm mathematically and experimentally.
Finally, the application of our algorithm in the mixed cooperative competition experimental environment
further demonstrates the effectiveness and generalization of our algorithm, especially improving the
group’s ability of adapting complex missions and completing more difficult missions.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Reinforcement learning (RL) is able to solve sequential decision
problems in Markov Decision Processes (MDPs), and makes a
tremendous progress recently such as AlphaGo [1], AlphaStar,
OpenAI Five on Dota 2. With the development of deep reinforce-
ment learning, single agent algorithm is gradually on the right
track and has already addressed plenty of difficult problems giving
researchers more powerful instruments to study in high dimension
and more complex action spaces. As study more on single agent
reinforcement learning, researchers realize that the introduction
of multi-agent could achieve higher performance on complex mis-
sion environments. Jaderberg et al. [2] shows the advantages of
multi-agent cooperation in the first-person game Quake III. The
successful rate of agents after training surpasses human profes-
sional players as their teammates or opponents.

The development of multi-agent deep reinforcement learning is
closely related with many basic theoretical problems. For example,
there will be an overestimation bias while using a neural network
to approximate the true state-action equation. Wang et al. [3] tried
to make the value estimate more accurate by improving the neural
network structure. However, some factors cannot be eliminated
even if they are reduced due to the application of neural networks.
The state-of-the-art model-free reinforcement learning algorithms,
whether single-agent or multi-agent reinforcement learning algo-
rithms, are based on Time Division (TD) or Monte Carlo (MC) [4].
These methods have an inevitable overestimation problem and
perform badly in large state action space. The utility of policy gra-
dient methods will bring in high variance of the estimation results,
making policies more sensitive, even leading to a failed training.
We will introduce the same overestimation problems faced by
multi-agents in Section 4.1 and 4.2 below.

Inspired by the reduction of overestimation error in real state-
action equations in the field of single-agent reinforcement learning
[5], we present a new algorithm in multi-agents, which is used to
reduce the bias of the function estimation by using dual-centered
Q-network. The method using batch update and delayed policy
update is adopted to reduce the high variance of estimation results
and stabilize the training process. The convergence speed of results
is faster and the effect is also improved.

Another important decisive factor in multi-agent reinforcement
learning is the stability of state spaces. Q-learning [6] is a widely
utilized method in discrete space using MDPs to analyse multi-
agent reinforcement learning problems. Another popular frame-
work applying well in the field of single-agent is actor-critic [4],
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where the critic is also based on Q-learning and deep Q-network
(DQN) [7]. So once other agents change their policy, that is

P s0js; a;p1; . . . ;pNð Þ – P s0js; a;p01; . . . ;p0N
� �

when any pi – p0i, where pi is the policy of agent i, the environment
does not meet the assumptions about environmental stability in
Q-learning. Our team draws on the centralized critic idea in the
multi-agent deep deterministic policy gradient (MADDPG) algo-
rithm [8] allowing individuals in the group to learn the centralized
critic architecture proposed separately without interfering with
each other during training process. Due to different reward shapes
of different individuals, it is possible to allow groups not only to
execute monotonous tasks, but also execute cooperative and com-
petitive missions at the same time without designing the reward
architecture separately for opposite agents. In summary, we pro-
posed our own multi-agent reinforcement learning algorithm
multi-agent time delayed deep deterministic policy gradient
(MATD3) for complex mixture environments.

This paper proves that the problem of overestimation and high
variance also occurred in MADDPG at continuous motion control
scenarios, and under the following assumptions and requirements:

(1) Individual agents only use local information observed dur-
ing execution;
(2) No need to set differential dynamic environment modeling
among intelligent community, especially the communication
methods;
(3) Not only suitable for cooperation interactive environment,
but also for competitive-cooperative hybrid environments.

We propose an approach solving the critic overestimation and
reducing the variance of evaluation results in group reinforcement
learning through double centralized critics and delayed policy
update. Then, for the target policy smoothing, the correlative
actions of individual agents in the group should have similar action
values. Double centralized critics absorb some additional informa-
tion during training in order to stabilize the state space, such as the
policies of other agents. This condition can also be mitigated, as
done in Lowe et al. [8]. Decentralized implementation of double
centralized critics allows us to find a way to reduce the overesti-
mation bias and variance, which can be applied to non-standard
stable environments and used to stabilize the training process.
2. Related work

The common failure mode of deep deterministic policy gradient
(DDPG) [9] is that the learning of Q-function starts to overestimate
the Q-value and eventually breaks down the policy because it takes
advantage of errors in the Q-function. TD3 [5] is an algorithm that
solves this problem by introducing three key techniques that will
be introduced in Section 3.

Estimation error in reinforcement learning algorithm and its
effects have been studied in Mannor et al. [10]. We focus on the
overestimation of function approximation and high variance of
the results of policy network. In the process of double Q-learning
to eliminate approximated errors, two separate estimators are
used in the single agent domain [11] to make an unbiased estima-
tion. Dueling DQN [3] improves the network structure based on
double Q-learning. Another approach is to focus directly on how
to reduce the estimated variance in the policy gradient method
[12] and minimize overfitting for early high variance [13].
Recently, some researchers also pay attention to risk-aversion
[10] and exploration [14].

In order to address the high variance caused by cumulative
errors in the TD-like methods, a large part of solutions try to min-
imize the error range of each step or combine off-policy thoughts
with MC methods. A new concept of action value is proposed by
Nachum et al. [15], which is defined by a Gaussian smoothed ver-
sion of the expected Q-value, and takes into account the ability to
learn the covariance and mean during training. Zheng et al. [16]
reduces the error by improving the network structure, but only
applies to a single agent environment. The high variance caused
by the cumulative error in the monomer is more serious in this sit-
uation, so this paper presents a new type of target network for
multiple agents to reduce the pre-update error and provide a tech-
nique for reducing group variances by regularization and averaging
value estimating.

Traditional reinforcement learning methods such as Q-learning
and policy gradient are almost powerless for multi-agent environ-
ments. One of the reasons is that each agent’s policy changes as the
training progresses. Thus, the environment becomes very unstable
for any independent agent, which poses a challenge for the stabil-
ity of learning and results in difficulties in using experience replay
buffer directly. But a stable past experience replaying is a very sig-
nificant condition for stabilizing DQN training. There is also an
option that a single agent can be optimized using a model-based
policy gradient method, which have the ability to learn the opti-
mization strategy through the backpropagation (BP) algorithm.
But this requires each agent to have a discernible model that can
be distinguished from the dynamic changes and assumptions of
the world.

Some recent multi-agent reinforcement learning algorithms
such as MADDPG and QMIX [17] do not have made more consider-
ations for joint overestimation in multi-agent environments. Our
work builds directly on the idea of MADDPG and the relationship
between them is discussed in Section 4. The MATD3 algorithm pro-
posed in this paper can reduce the overestimation error of critic
networks and also be extended to any other multi-agent reinforce-
ment learning algorithm. Chen et al. [18] introduces an application
of reinforcement learning in adapted optimal control. Its algorithm
combines off-policy and experience replay to make the agent study
in linear time system. However it does not refer how to deal with
group experience replay and off-policy methods that are vital
problems in multi-agent RL. Abed-alguni et al. [19] and He et al.
[20] aim to reduce the errors of overestimate of Q-value by using
more estimators. The latter chooses to use two famous estimators,
maximum estimator (ME) and double estimator (DE) alternately.
However, both of them do not consider about multi-agent overes-
timation problem and only useful for single agent in discrete train-
ing space.

Both Abed-alguni et al. [21] and Hengst et al. [22] explore the
hierarchy structure that decomposes complex tasks in reinforce-
ment learning, which improves the efficiency of agents study.
The former considers about multi-agent situation but only suitable
for cooperative environments and do not talk about the reward
structure in competitive environments. Both of them do not deal
with overestimation problems that definitely occurs during the
estimation of Q-value as [5] referred. The latter paper and Kulkarni
et al. [23] only consider about single-agent problem, but it per-
forms well in environments with sparse rewards.
3. Background

Multi-agent reinforcement learning is to maximize the cumula-
tive reward of community agents. Our environment can be mod-
eled as a community Markov game that includes N agents. MDPs
have a typical form of sequential decision-making. In MDPs,
actions not only affect the immediate rewards obtained by the cur-
rent agent, but also affect the subsequent environmental condi-
tions. State s 2 Sdefines the true state of the environment. The



Fig. 1. Double centralized critic network.
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observation set of individual agent i ¼ 1;2; . . . ;Nf g is
Oi 2 O ¼ O1;O2; . . . ;ONf g, the action space of agent i is
Ai 2 A ¼ A1;A2; . . . ;ANf g. The initial state defined by distribution
q : S! 0;1½ �. Given a state st 2 S at every discrete time step t, agent
i 2 1;2; . . . ;Nf g receives a local observation oi : st ! Oi, then agent i
will interactive with environment following random policy
p/ i : Ai � Oi # 0;1½ � abbreviated as pi : Ai � Oi, take an action
at 2 A receive immediate reward Rtþ1. Afterwards, the environment
will transfer to next state stþ1 2 S according to state transition
function C : S� A1 � . . .� AN ! S, meanwhile original environment
state will transfer from the old state st 2 Sto the new state stþ1 2 S.
Individual rewards are related with the state and action of agent
ias ri : S� Ai ! R. The goal of every agent in the community is to
maximize the expected return Ri ¼

PT
t¼0ctrti , where c is a discount

factor that limits the length of time and T is the end time.
Q-learning is a popular reinforcement learning method based

on TD approach, and there are also lots of examples to apply it to
the multi-agent domain [24]. Q-learning evaluates the value of
the state-action pair called Q-value Qp s; að Þ ¼ Er;s0 Rjst ¼ s; at ¼ a½ �,
rewritten as the form of the Bellman equation
Qp s; að Þ ¼ Ep Rtþ1 þ cQ s0; a0ð Þ½ �. The formula for updating the Q-
value is:

Q st ; atð Þ  Q st ; atð Þ þ a Rtþ1 þ cmaxaQ stþ1; að Þ � Q st; atð Þ½ � ð1Þ
Q-value introduces an overestimation error while calculating

the max operation. Hasselt [11] and Van Hasselt et al. [25] use
two Q-value networks and reduce the estimation error with the
smaller one. However, as the state space dimension becomes
higher and higher, Q-learning’s tabular method is too difficult to
search for the calculation of action-value functions. Therefore,
Mnih et al. [4] proposed the DQN method based on Q-learning
theory, where one trick for stable training is to use a dual
network structure that one is the Q-network and the other one is
the target Q-network qtar with delayed update outputting q. The
Q-function network learns an action-value function Q� by

minimizing the loss: L hð Þ¼ E rþcmaxa0q� s0;a0jh�ð Þ�q� s;ajhð Þð Þ2
h i

,

where y ¼ r þ cmaxa0q� s0; a0 jh�ð Þ is called TD target. h; h� are the
neural network parameter and target network parameter respec-
tively. Another way of DQN stability training is to utilize the expe-
rience replay buffer in which experience tuple s ¼ s; a; s0; rð Þ gained
in the interaction with the environment that is stored breaking
data association and improving its utilization. In a multi-agent
environment, a simple idea is to let the agents in the community
use their own Q-function network and training separately
[26–28], but this makes the environment very unstable and
affect the convergence conditions of Q-learning seriously. And
experience replay method is no longer applicable, since
P s0 js; a;p1; . . . ;pNð Þ– P s0js; a;p01; . . . ;p0N

� �
when any pi – p0i.

In the continuous action space, there is another more common
method better than Q-learning, called policy gradient (PG) [29].
The PG algorithm does not parameterize the Q-value like Q-
learning, but directly parameterizes the policy, which is p/ sð Þ,
and updates the parameters by the gradient descent method
/ /þ ar/J /ð Þ, where a is the learning rate,
r/J p/

� � ¼ E r/ logp ajsð Þqp s; að Þ� �
is the policy gradient of the

stochastic policy. Finding the optimal parameters through the pol-
icy gradient maximizes the expectation of the cumulated return

E
PT

t¼0Rtþ1jph

h i
. The random policy outputs a probability distribu-

tion ph ajsð Þ ¼ P ajs; h½ �. When a random strategy is adopted, differ-
ent actions may be taken even in the same state. The
deterministic policy gradient (DPG) algorithm [30] extends on this
basis. When the agent is in the same state, the action is uniquely
determined that is the deterministic policy lh sð Þ ¼ a. DDPG [9]
algorithm introduces neural networks based on DPG using neural
networks to approximate policy l/ and critic Q h s; að Þ through the
gradient accent and off-policy which can extract experience trajec-
tories from the replay buffer.

Although DDPG can reach good performance sometimes, it is
very sensitive for hyper-parameters and other types of adjust-
ments. The common failure mode of DDPG is the overestimation
of Q-value when starting to learn the Q-function. Twin Delayed
DDPG (TD3) [5] is an algorithm that solves this problem by intro-
ducing three key techniques. The first one is clipped dual Q-
networks. TD3 learns two Q-functions and uses the smaller of
the two Q-values to form the target of the Bellman error
y r; s0dð Þ ¼ r þ c 1� dð Þmin Q hi ;tar s0;l0 sð Þð Þ; i ¼ 1;2. The second is
delayed policy update. The policy network parameters are updated
after dual Q-function networks are updated. Thirdly, smoothed tar-
get policy utilization makes all action values within the specified

range l0 s0ð Þ ¼ clip lhtar
s0ð Þ þ clip n;�c; cð Þ; aL; aH

� �
; n~N 0;1ð Þ.

The MADDPG algorithm extends the DDPG algorithm to the
multi-agent domain, and the agent i takes the centralized Q-
value as Ql

i s; að Þ, where l ¼ l1;l2; . . . ;lN is j ¼ j1;j2; . . . ;jN

parameterized group deterministic policy set. s is the state of the
current environment. a ¼ a1; a2; . . . aN is the set of actions of N
agents, and x ¼ o1; o2; . . . ; oNð Þ is the set of observations of all
agents. Another reason for stable training in MADDPG is that since
we know the actions taken by all agents,
P s0js;u;l1; . . . ;lN

� � ¼ P s0js;u;l01; . . . ;l0N
� �

will be sufficient
evenli – l0i. A stable training environment makes it possible to
use the experience replay. Taking centralized critic discretized exe-
cution with an off-policy way, the policy gradient of agent is
r/i

J li

� � ¼ Es;a~B r/i
li aijoið ÞraiQ

l
i s; að Þjai ¼ li oið Þ

� �
, where B is the

replay buffer storing experience tuple x; a; r; x0ð Þ.

4. Method

4.1. Double critic

We set up two independent centralized critic networks with
corresponding target networks and one policy network with its
target network for individual agents in the group. Its purpose is
reducing overestimation by selecting a smaller Q-value when the
neural network approximates the real state-action function.

Fig. 1 shows a double centralized critic network. Agent i obtains
local observations and actions by interacting with the environ-
ment. For double critic networks of agent i, the input layer absorbs
not only local observations oi and action ai, but also local observa-
tions and action information sets of other agents. The network out-
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puts an approximation of the true state-action equation, and
selects a smaller Q-value through the minimization operator to
the input layer of the policy network as a guide for its policy
gradient.

4.2. Population overestimation

In Q-learning with discrete action space, the update formula for
TD target is y ¼ r þ cmaxa0Q s0; a0ð Þ. Because each step involves a
maximizing greedy operation, if the Q-value of a state action pair
is overestimated, an error is introduced, which is accompanied
by the Bellman update formula used by Q-learning which finally
made

Ex maxa0 Q s0; a0ð Þ þxð Þ½ �P maxa0Q s0; a0ð Þ ð2Þ
Thrun and Schwartz [31]. In some current reinforcement learning
algorithms, like Fujimoto et al. [5] based on actor-critic, further
proves that when the learning rate is satisfied, a single agent will
have an overestimate error based on Thrun and Schwartz [31], as

E Q h s;l/true
oð Þ

� i
P E Qp s;l/true

oð Þ
� i

; when a < min x1;x2ð Þ
hh

ð3Þ
where the real Q-function is Qp s; að Þ and the approximate
Q-function that actually estimates the real Q-function is Q h s; að Þ.
x1 and x2 limit the learning rate to a very small value range. And
it has proved that this deviation appeared in the DPG experiment.
The most significant method of stabilizing training environment
used in MADDPG is that the Q-network does not only absorb local
observation and action of one agent when calculating Q-value but
also absorbs observations and actions of other members if
necessary. Thus, it doesnt change the intrinsic property of the
Q-network. The overestimation in multi-agent scenarios still exist,
as the input of formula (5) from local information changes to global
information which means every individual’s Q-network takes
observations and actions from all members in the same ‘coopera-
tive’ group. The experiments also proved that the overestimation
error does exist in multi-agent environments as shown in Fig. 2.
In the multiple agent reinforcement learning scenario, due to the
environmental stability assumptions by Lowe et al. [8], the follow-
ing errors exist:

Ex maxa0Q h;i x0;a0ð Þþx� �
Pmaxa0Q

p x0;a0ð Þ; where x¼ o1;o2; . . . ;oNð Þ
ð4Þ
Fig. 2. The original estimated Q-value in MADDPG and the Q-value after taking
reduction in MATD3.
This is an observation set for all agents. oi is the local observa-
tion of agent i. a ¼ a1; a2; ::; aNf g is the action set of all agents. ai is
the action of the agent i.

Our policy updating method in this paper is DDPG-like way. We
let the real Q-function network of multiple agent reinforcement
learning be annotated as Q h;i x; að Þ, and the actor guided by
Q h;i x; að Þ, which l/i;approx

is abbreviated as li;approx. The approximate

Q-function network is expressed as Ql
i x; að Þ (unknown at training

time), and the actor under its guidance work is l/i;true
abbreviated

as li;t rue
. The group policy parameters are updated by:

/i;approx ¼ /þ a
K1

Expl r/l/ xð ÞraiQ h;i x;að Þjai¼l/i
oið Þ

h i
ð5Þ

/i;true ¼ /þ a
K1

Expl r/l/ xð ÞraiQ
p
i x; að Þjai¼l/ oið Þ

h i
ð6Þ

K1 and K2 are used to normalize the gradient. The overestima-
tion error will still appear under some more stringent conditions
without normalized gradient [5], because gradient direction is a
local optimum rate of increase of the equation. Thus existing x1,
when x1 enough small, if a < x1, the true Q-function value under
the guidance of li;approx xið Þ will limit the true value of the Q-
function under the policy li;true oið Þ guidance:

E Q h; i o1; . . . ; oN; a1; . . . ; aNð Þjai¼li;approx oið Þ
h i
P E Q h ;i o1; . . . ; oN; a1; . . . ; aNð Þjai¼li;true oið Þ

h i
ð7Þ

On the contrast, there exist x2 while it is enough small, if
a < x2, the true value of Q-function under the policy li;approx xð Þ
guidance will limit that under the policy li;true xð Þ guidance:

E Qp
i o1; . . . ; oN ; a1; . . . ; aN jai¼li;true oið Þ
� �h i

P E Qp
i o1; . . . ; oN ; a1; . . . ; aN jai¼li;approx oið Þ
� �h i

ð8Þ

When both of their policies are assumed to be l/i;true
because of

the formula (1) and a < min x1;x2ð Þ, the value of the group Q-
function value will be overestimated:

E Q h;i o1; . . . ; oN ; a1; . . . ; aN jai¼li;approx oið Þ
� �h i

P E Qp
i o1; . . . ; oN ; a1; . . . ; aN jai¼li;approx oið Þ
� �h i

ð9Þ

Although this overestimated error is relatively small at each
update, the presence of this error can cause two concerns. First,
if not confirmed, this overestimation bias may accumulate as a
large deviation. Second, an unhealthy inaccurate value estimation
may also cause the strategy to be updated in a bad direction. In
the current multi-agent algorithm MADDPG, we show the differ-
ence between the estimate of the true value and the true value
of the estimated value after the elimination. As shown in Fig. 2,
it can be clearly seen that the deviation does exist.

4.3. Reduce the population overestimate

There have been some ways to reduce the overestimation bias
that occurs when using Q-learning. In the field of multi-agents,
Zheng et al. [16] explores the extension of double Q-learning to
the multi-agent domain, but only suitable for cooperative situa-
tion. We improve the critic under the actor-critic setting, and make
the algorithm suitable for the mixed cooperative competition envi-
ronment. Besides, we also reduce the overestimation bias of the
real state-action equation.

In double Q-learning, the update to the TD target is through two
independent Q-networks, each of which is used to update the esti-
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mate of another Q network. If the estimates of values are indepen-
dent of each other, they can select actions for the policy, making an
unbiased estimate of actions chose by the other ’s policy.

In WMA double weighted multi-agent [16], the update of two
Q-networks Qv and Qu randomly select a Q-network for updating,
and one network is used as the target network of the other net-
work. Both Qu and Qv are Q-networks in Fujimoto et al. [5] which
balance two Q-networks with b as Eq. (9). If one of them overesti-
mates issues during evaluating the Q-value of same pair of obser-
vation and action, it is able to reduce overestimation partly using
this method. Because the Q-value is balanced with b, Q-target cal-
culating will be more precise as shown in Eq. (10). The TD target
update function is:

Qw
U s0; a�ð Þ  bQU s0; a�ð Þ þ 1� bð ÞQV s0; a�ð Þ; a�

 argmax aQU s0; að Þ ð10Þ

Qtarget
x s0; a�ð Þ  R s; að Þ þ Qw

U s0; a�ð Þ ð11Þ
Where U is the Q-function network 1, V is the Q-function net-

work 2, or turn them upside down.
Due to MADDPG is under actor-critic setting, its TD target

update function is:

y ¼ ri þ cQl0
i x0; a01; . . . ; a

0
N

� �ja0
j
¼l0

/j
oið Þ ð12Þ

In the experiment, we found that if the policy is slowly changed
in the actor-critic structure, the difference between the current and
target value network will be very small as well as the update, and
the improvement effect will not be obvious. Let critics of the agent
i be ðQi;h1

;Qi;h2 Þ, and policies under their guidance are ðli;/1
;li;/2

Þ
respectively. We draw on the TD update method in WMA Double
DQN and MADDPG, and propose our own TD target update mode
of MATD3 agent i:

yi ¼ ri þ c minn¼1;2Qi;h0n x0; a01; . . . ; a
0
N

� �ja0
j
¼l0

/j
ojð Þ ð13Þ

Another benefit of setting the independent variable of the esti-
mated error to be variable is that we can see that the minimized
operator should provide higher values for states with low variance
estimation errors, because the expected smallest value of random
variables set will decrease as the variance of the random variable
increases. This effect means that the minimum of Eq. (9) will have
some preference when estimating state value with low variance.
This preference is beneficial and can lead to a more secure policy
update that stabilizes learning. This method reduces the draw-
backs that the algorithms only apply cooperative environment
caused by using DQN and MADDPG cannot alleviate the overesti-
mate error.

4.4. Population policies variance

If the group overestimate error does not be suppressed or
reduced in time, it will cause the accumulation of the overestimate
error of the group, and finally seriously affect the policy update.
This means that when a certain state-value pair is evaluated, there
will be a large divergence, causing a large variance in value evalu-
ation so that seriously affects the policy to update in a beneficial
direction. Sutton [29] mentions that the high variance of the esti-
mate results will produce a noise gradient when the policy is
updated, which can be reduced by decreasing the learning rate,
but it is not easy to perform well in actual training. In this section,
we emphasize:

(1) The description of relationship between target network and
estimate error.
(2) The importance of minimizing population error in each time
step of updating.
(3) Proposing how to reduce variance of estimate results based
on actor-critic.

4.4.1. Accumulated population error
The policy update of our algorithm uses a time difference

method similar to DDPG update. Each evaluation of state action
pairs is based on the evaluation of next state, so agent i will intro-
duce an estimation error at each time step t:

di;t s1; . . . ; sN; a1; . . . ; aNð Þ ¼ di;t s; að Þ ð14Þ

Qhi
s1; . . . ; sN; a1; . . . ; aNð Þ ¼ r þ cE Q hi

s01; . . . ; s
0
1; a

0
1; . . . ; a

0
N

� �� �
� di s1; . . . ; sN; a1; . . . ; aNð Þ ð15Þ

Q hi s; að Þ ¼ r þ cE Q hi s
0; a0ð Þ� �� di s; að Þ ð16Þ

Although we hope that this estimation error is as small as pos-
sible, it may be accumulated and finally makes the policy update to
the local optimal direction. The above formula can be rewritten as:

Q hi st; atð Þ ¼ rt þ cE Q hi s0tþ1; a
0
tþ1

� �� �� di;t s; að Þ
¼ rt þ cE rtþ1 þ cE Q h stþ2; atþ2ð Þ½ � � di;tþ1

� �� di;t

¼ Esinl ;ail
XT
j¼t
cj�t rj � di;j

� �" #
; while i ¼ 1; . . . ;N ð17Þ

As can be seen from the function 11, when we explicitly write
the estimated error into the equation for the Q-value, the variance
of the Q-value is not only related to the expected variance of the
future reward, but also of the estimation error. If the discount fac-
tor c is large at each step of updating, and does not pay attention to
the reduction of the estimation error, the accumulation of errors
will be accumulated, so that the variance of the Q-value will
increase rapidly every time an update is made. Gradient updates
only reduce errors in this mini-batch, but do not help reduce the
remaining errors in the entire set of value estimates.

4.4.2. Individual target network and delayed population policy update
The target network is an important tool for stable deep learning.

Because the approximator of function needs multi-step gradient
update to converge, the target network provides a stable target
and makes possible that the training data more effectively conver-
gent during the individual learning process in the group. Without a
fixed personal target, each update may have residual errors and
begin to accumulate. The accumulation of errors can be harmful
to itself. when the residual error appear with policy maximization
along the estimation of values, it will result in a uncontrollable
divergence.

Fig. 3 shows that the failure of actor critic may be due to the
interaction between critic and actor. If our individual policy is
updated with the Q-value estimated by its dual centralized critic
after each individual critic update, it is easy to update in a terrible
direction due to the high variance and inaccurate estimation of the
Q-value distribution. And because we adopt a centralized critic,
bad policies will spread throughout the group. So it is better to
consider updating when critic is stable.

If the policy is updated on a high error state, it will lead to
decentralized behavior. And since the target network can reduce
the cumulative error caused by multi-step updates, our individual
target network should be updated with low frequency. Our algo-
rithm allows the individual’s target network to be updated after
the critic updating. In order to wait for the critic to be slightly
stable, the value error is small enough before updating the policy



Fig. 3. Comparison of policy delay update.

Fig. 4. The double centralized critic networks.
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and target network. We limit the possibility of repeated updates
for updating the policy with appropriate delays when the critic
does not change. The lower the frequency of policy updates, the
higher probability of using low variance for value estimation in
principle making the policy update in a better direction. The effec-
tiveness of this method has been demonstrated in the experiment
of Section 5, and the performance has been effectively improved.

4.5. Target policy smoothing

The shortcoming of MADDPG is that it may overfit to local
peaks. The TD target of individual agent i is:

yi ¼ ri þ cQl0
i x0; a01; . . . ; a

0
N

� �ja0
j
¼l0

k
ojð Þ ð18Þ

It can be seen that when calculating the TD target of the agent i,
two approximate networks are adopted. One is the approximate
network of the value network Qi, and the other is the approximate
network of the deterministic policy set l0, so the error of the TD
target due to the approximation of the equation is very sensitive.
Therefore, the variance of the TD target is also increased that can
be mitigated by regularization. By referring to TD3s thoughts that
a single agent should have similar Q-values under similar state-
actions, our algorithm mitigates the bias and variance caused by
the approximation of the equation with smoothing the target pol-
icy l0i of each agent i:

yi ¼ ri þ Exi
Q i;h0 x

0; a01; . . . ; a
0
N

� �þxi
� �j

aj¼lj;/0 o0
j

� � ð19Þ

In the actual experiment, the processed random noise xi is
added to the target policy li;/0 of each agent i:

yi ¼ ri þ cQi;h0 x
0; a01; . . . ; a

0
N

� �þ nij
aj¼lj;/0 s0

j

� �; ni
� clip N 0; dð Þ; action low; action highð Þ ð20Þ

where action low and action high are the minimum and maximum
of the total action space respectively. m 0; dð Þ is a Gaussian distribu-
tion with an expectation of 0 and a variance of d.

5. Experiments

In this section, we show that the MATD3 algorithm has a better
performance than the multi-agent environment used by the
MADDPG algorithm. With the critic of truncated duel centralized
Q-network to reduce the overestimation bias of a single agents
critic networks in the population, the stability of the training envi-
ronment is increased and the overestimation error is reduced.
Besides, the performance of the algorithm is improved. In MATD3,
there are two Q-networks for critic, which are used to compare the
estimate values, and take a smaller estimate value as the reference
Q-value used in actor network update. Critics are updated by min-
imizing the difference between the target network and the Q-value
estimation network. The target network and actor are updated
after critics updating certain times.

5.1. Comparison

We performed our algorithm testing in MADDPG’s self-built
multi-agent particle environment [32]. This environment includes
nine scenarios, and the detailed description of the scene is in the
MADDPG article, we will not repeat them. The nine scenarios
are: simple, physical deception, covert communication, keep-
away, simple reference, cooperative communication, cooperative
navigation, predator–prey and simple world comm. Our algorithm
is compared to DQN, DDPG and MADDPG in nine scenarios. Our
results include tables and images shows as following. In our algo-
rithm, each agent i has two centralized critic networks and one
actor network, and those networks have their own corresponding
target network respectively. The neural network structure is used
to set up adversaries and good agents are the same as what uses
three full-connected layers as Fig. 4. There is one active unit Relu
between each layer, and every layer has 64 units. The parameters
of network are updated by Adam. The learning rate is 10e� 2
and set 1024 transitions for mini-batch training which are uni-
formly sampled from the experience replay buffer. The two inde-
pendent centralized critic target networks of each agent receive
the state set x0 ¼ o1; o2; . . . ; oN and action set a1; a2; . . . ; aN in the
tuple uniformly is sampled from the replay buffer as the input of
the first layer. We compare two outputs and take a smaller
Q-value to update the target value of the two critics.

From the Fig. 4, double centralized critic networks have their
own streams to estimate the Q-value of current population state-
action set and output a smaller Q-value to the policy network by
the minimize operator.

To achieve target policy smoothing, the action is eventually lim-
ited to the action space of corresponding environment by adding
noise n 2 N 0;noiseð Þ to the action. After critic updating certain
times, all target networks and actor networks are updated. We
use the Q-estimated-value of critic network 1 to update the agent’s
unique actor network parameters. Update the actor by policy gra-

dient: r/i
J /ið Þ ¼ Ex;a~A raiQ

l
i x; a1; . . . ; aNð Þr/i

l/i
oið Þjai¼lhi

oið Þ
h i

. Each

task of MATD3 ran between 60,000 and 160,000 times as we
marked in tables and figures, and the policy evaluation was con-
ducted every 1000 times.

We don’t make any special changes to other three algorithms’
original setting when comparing with our work. It should be
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emphasized that the network structure of these algorithms adopts
the same network structure and parameter setting. We did not
make changes to achieve our goals deliberately. The detail of our
algorithms is shown in the appendix.

Our learning curves are shown in Fig. 5. From this figure, we can
see that the curves of DQN are strongly undulant and do not reach
at a stable state in most of secarios within limited number of iter-
ations. What’s more, MATD3 has smaller oscillation range. For the
purpose of more detailed evaluation, the size and figure are
adjusted appropriately as Fig. 6 in order to compare MATD3 and
other algorithms.

Benifited from reducing overestimation errors, smoothing the
target policy and delayed policy update, our algorithm finally per-
forms well in most of scenarios and accelerates the convergence
speed of previous period.

In the cooperation scenario, the reward obtained by MATD3 in
cooperative navigation is higher than the reward obtained by the
original algorithm in the environment. In the convergence of the
previous period of MATD3 in cooperative communication, the con-
vergence speed is accelerated due to the reduction of the overesti-
mation error. In the competition scenario, we uniformly set good
agents to the agent using MADDPG algorithm, and set adversaries
to one of DQN, DDPG, MADDPG and MATD3, then compare good
ones and adversaries. In the most complex scene simple world
Fig. 5. MATD3 compared with DQN, DD
comm, our algorithm performs much better, especially it has
improved performance in the confrontation with MADDPG.

5.2. Competition experiments

In the scenario physical deception, we let adversaries’ algorithm
be MATD3, and good agents be MADDPG. Compare the confronta-
tion between two sides as we showed in Table 1.

The definition of adv success once is that the center distance
between the agent and the target landmark less than a certain
threshold which is set to the sum of the radius of the agent and
the target landmark. Take the 20,000 times after the reward is sta-
bilized to calculate the number of successes in 60,000 times. Take
the 50,000 times after the reward is stabilized to calculate the
number of successes in 100,000 times. successful times is the num-
ber of MATD3 (adversaries successful times) minus MADDPG (good
agents’ successful times).

5.3. Complexity experiment

The number of agents and targets involved in the nine experi-
ments are shown in Table 2. The most complicated scenario is sim-
ple world comm which involves the largest agents number and
includes communication and competition at the same time. In
PG and MADDPG in nine scenarios.



Table 1
Results in competitive scenario physical deception.

Good agent 1, 2 Adversary agent Good successful times Adv successful times d successful times

MADDPG MATD3 49,137 10,863 1369 (60 k)
MATD3 MADDPG 50,405 9494 1369 (60 k)
MATD3 MATD3 50,485 9515 1695 (60 k)
MADDPG MADDPG 48,790 11,210 1695 (60 k)
MADDPG MATD3 75,672 24,328 3538 (100 k)
MATD3 MADDPG 79,210 20,790 3538 (100 k)

Table 2
Complexity and improvement of space and tasks in nine scenarios.

Number Experiment name Competitive? Comm? Number of Agents Number of Raise by (%)

1 Simple N N 1 1 9.55%
2 Keep-away Y N 2 2 12.05%
3 Simple reference N Y 2 3 3.48%
4 Cooperative communication N Y 2 3 �3.64%
5 Physical deception Y N 3 2 �1.04%
6 Cooperative navigation N N 3 3 6.93%
7 Predator–prey Y N 4 2 �7.75%
8 Covert communication Y Y 3 2 12.08%
9 Simple world comm Y Y 6 5 25.04%

Fig. 6. Adjusted MATD3 compared with DQN, DDPG and MADDPG in nine scenarios.

F. Zhang et al. / Neurocomputing 411 (2020) 206–215 213
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Fig. 5, it clearly shows that we get the highest score increase in this
scenario, which confirms that the more complex the scenario of
our MATD3 algorithm, the higher the execution of the group task.

Adv vs good means the competition between adversaries and
good agents. Simple world comm involves six agents. Correspond-
ingly, the adversaries group has four agents, the good group has
two, and the landmark has five. The landmarks consist of two green
areas representing the forest, two blue areas representing the
water source, and a black obstruction area. Good agents try to
get close to the water source to get rewards, and the adversaries
prevents good agents from getting close to the water source.
Agents hiding in the forest cannot be discovered by agents other
than leaders. Agents in the same group learn to cooperate and
can communicate to learn tasks such as chasing and pushing away.
6. Conclusion

This paper explores the overestimation errors and high variance
problems in multiple agent deep reinforcement learning. We alle-
viate the overestimation problem by reducing the population cen-
tralization Q-value, and constrain the individuals action value
additionally. The delayed policy update further stabilizes the
multi-agent training environment, finally achieves good results in
the experimental scenarios.

One of the advantage of delayed update policy is that the policy
will improve itself towards a better direction when the critic is
stable. However, we found that each agent’s individual delayed
policy update will cause a large group delay when extending the
single agent TD3 to the multi-agent field, which limits the conver-
gence speed and may even lead to lower exploration rate. There-
fore, future research can consider increasing the exploration rate
and increasing the utilization of high-value trajectories in the
experience replay buffer.
Appendix A

Algorithm 1: Delayed Double Critics DDPG for N-Agents Population

1: Initial two critic networks for each agent i;Ql
hi;1

;Ql
hi;2

and actor ne

networks for each agent i; h0i;1  hi;1 , h0i;2  hi;2 , /0i  /i ,Initial re
2: bf forepisode = 1 to Num-episodes do
3: Initial a random noise nfor exploring actions, and receive initia
4: for t = 1 to Max-length-episodes do
5: for each agent i, select random action ai � li oið Þ þ ni, w.r.t ex

ni � clip N 0; dð Þ; a low; a highð Þ
6: Execute actions a ¼ a1; . . . ; aNð Þ and observe reward r and new
7: Store experience tuple x0; a; r; x0ð Þ in replay buffer B, and upd
8: foreach agent = 1 to N do
9: Randomly sample a mini-batch including N samples xj; aj;

�
10: Set target yj ¼ rji þ cminn¼1;2Q

l0
h0i;n

x0j; a01; . . . ; a
0
k; . . . ; a

0
N

� �jak¼l0k
11: Update critic hi;n  argminhi;nN

�1 P yj � Ql
hi;n

x0j; aj1; . . . ; a
��

12: if t mod d then

13: Update actor parameter /by policy gradient: r/i
J /ið Þ ¼

14: Update target networks:
15: h0i;n  shi;n þ 1� sð Þh0i;n , n ¼ 1;2

16: /0  s/þ 1� sð Þ/0
17: end if
18: end for
19: end for
20: end for
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