
Neurocomputing 409 (2020) 381–393
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Efficient hyperparameter optimization through model-based
reinforcement learning
https://doi.org/10.1016/j.neucom.2020.06.064
0925-2312/� 2020 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jiawu@uestc.edu.cn (J. Wu), chensp@std.uestc.edu.cn (S.

Chen), liuxiyuan@std.uestc.edu.cn (X. Liu).
Jia Wu ⇑, SenPeng Chen, XiYuan Liu
School of Information and Software Engineering, University of Electronic Science and Technology of China, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 January 2020
Revised 15 April 2020
Accepted 16 June 2020
Available online 23 June 2020
Communicated by Zhan Zhi-Hui

Keywords:
Hyperparameter optimization
Machine learning
Reinforcement learning
Hyperparameter tuning is critical for the performance of machine learning algorithms. However, a notice-
able limitation is the high computational cost of algorithm evaluation for complex models or for large
datasets, which makes the tuning process highly inefficient. In this paper, we propose a novel model-
based method for efficient hyperparameter optimization. Firstly, we frame this optimization process as
a reinforcement learning problem and then employ an agent to tune hyperparameters sequentially. In
addition, a model that learns how to evaluate an algorithm is used to speed up the training. However,
model inaccuracy is further exacerbated by long-term use, resulting in collapse performance. We propose
a novel method for controlling the model use by measuring the impact of the model on the policy and
limiting it to a proper range. Thus, the horizon of the model use can be dynamically adjusted. We apply
the proposed method to tune the hyperparameters of the extreme gradient boosting and convolutional
neural networks on 101 tasks. The experimental results verify that the proposed method achieves the
highest accuracy on 86.1% of the tasks, compared with other state-of-the-art methods and the average
ranking of runtime is significant lower than all methods by using the predictive model.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Machine learning algorithms have been successfully applied in
the fields of machine translation [1], speech recognition [2], and
image recognition [3]. Despite their success, the application of
machine learning algorithms still face several challenges, such as
hyperparameter optimization (HPO) for complex models or on
large datasets. Hyperparameters are different from the internal
model parameters. Hyperparameters are set before model training
and remain unchanged during training. However, internal model
parameters are learned from the data during the model training
phrase. HPO is critical for the performance of machine learning
algorithms. However, manually setting the hyperparameters often
requires users to have a deep professional background and practi-
cal experience, which is difficult and time-consuming for nonpro-
fessional users.

To tackle this problem, automatic machine learning (AutoML)
has emerged, which refers to automatically optimizing hyperpa-
rameters without human interference within a fixed computing
budget (iteration or runtime). AutoML focused on, at first, the
algorithm selection problem [4,5] and the hyperparameter opti-
mization problem [6,7]. Recently, the combined algorithm selec-
tion and hyperparameter optimization (CASH) problem was
raised [8].

For the HPO problem, we face the following three challenges.
First, the optimization function is a black-box since the relation-
ship between the hyperparameter configuration and its perfor-
mance cannot be explicitly expressed and as a result, we cannot
directly get an optimal solution based on traditional gradient-
based methods. Second, since the given algorithm contains a vari-
ety of hyperparameters, and each hyperparameters has its own
search space, the overall search space is very large. It is difficult
for existing methods to efficiently explore the optimal solution.
Finally, the evaluation of complex machine learning algorithms
or large datasets can be extremely expensive since we need to train
the target algorithm with the selected hyperparameter configura-
tion to obtain the evaluation.

Thus far, many different kinds of methods have been used to
solve the HPO problem. These methods can be mainly classified
into three categories:

� Basic search methods: e.g., grid search method [9], random
search method [6]. These methods sample without a guiding
strategy, or according to a very simple rule.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.06.064&domain=pdf
https://doi.org/10.1016/j.neucom.2020.06.064
mailto:jiawu@uestc.edu.cn
mailto:chensp@std.uestc.edu.cn
mailto:liuxiyuan@std.uestc.edu.cn
https://doi.org/10.1016/j.neucom.2020.06.064
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

382 J. Wu et al. / Neurocomputing 409 (2020) 381–393
� Sample-based methods: e.g., Bayesian optimization-based
methods [4,10,11], evolutionary algorithm-based method [12].
These methods use a policy to guide the sampling process and
update the policy based on evaluating the new sample. A good
policy helps to find a high quality configuration in a few
iterations.

� Gradient-based methods, e.g., [13,14]. These methods perform
hyperparameter optimization by directly calculating the partial
derivative of loss function on the validation set.

All these methods have their own advantages and disadvan-
tages, but none of them can handle all the challenges perfectly,
especially the third one. Although there have been some excellent
works for solving the third problem [15–17], these researches
focus on improving the performance of the neural architecture
search (NAS).

In this paper, we propose a new model-based method that
applies reinforcement learning (RL) to solve the HPO problem.
RL is a powerful framework for learning decision-making tasks.
Concretely, we first treat the hyperparameter optimization as a
sequential decision process and model it as a Markov decision
process (MDP). Then, an RL agent constructed by the long
short-term memory (LSTM) [18] is employed to sequentially
choose the hyperparameters one by one. In this way, the search
space can be greatly reduced. The agent aims to maximize the
expected accuracy of the algorithm on a validation set. The mea-
sured accuracy of the optimized algorithm on the validation set
is used as the reward signal to update agent’s internal
parameters.

It is note that the reward signal is obtained by training the opti-
mized algorithm, which takes significant time and leads to low
optimization efficiency. To accelerate training the RL agent, a
model is used to predict the performance of the optimized algo-
rithm on the validation set. However, the inaccuracy of the model
is further exacerbated by long-term use, resulting in suboptimal
solution or even collapse performance (as shown in Fig. 3). To solve
this issue, we novelly control model use in the short-term by mea-
suring the distance between policies before and after the model
use in the action space and limiting it to a proper range. In this
way, we can adaptively control the horizon (how many times) of
the model use and improve the efficiency of optimization while
ensuring accuracy.

In the experiment, we apply the proposed method to tune the
hyperparameters of the extreme gradient boosting and convolu-
tional neural networks on 101 real tasks. The experimental results
verify that the proposed method achievers the highest accuracy on
86.1% of the tasks, compared with other state-of-the-art methods
and runs much faster. The main contributions are as follows:

� We propose a method for extending the hyperparameter opti-
mization to RL framework. In this way, we can employ an RL
algorithm to optimize the black-box function based on
sampling.

� We employ an agent which unrolls in multiple time-steps to
select hyperparameters sequentially. The special process
greatly reduces the search space at each step.

� We employ a model to evaluate the optimized algorithm with
selected hyperparameter configuration on the validation set
and propose a novel approach to dynamically control the model
use. This approach offers new perspectives on how to deal with
the third challenge of HPO as mentioned above.

The remaining five sections present the related work, the pro-
posed method, including the framework based on RL and informa-
tion on how to use a model to accelerate learning, experimental
results and the conclusion.
2. Related work

2.1. HPO Problem

HPO is the process of choosing a set of hyperparameters that
archive the best performance on the data in a reasonable budget.
HPO can be formally defined as follows:

LetA denote a machine learning algorithmwith a configuration
space of the overall hyperparameters K. We denote Ak as A with
its hyperparameters k, where k 2 K. The hyperparameter space K
can include both discrete and continuous dimension spaces. Given
a data set D, the goal is to find the optimal hyperparameter config-
uration k� such that:

k� ¼ argmin
k2K

EðDtrain ;DvalidÞ�DLðAk;Dtrain;DvalidÞ ð1Þ

where LðAk;Dtrain;DvalidÞ denotes the loss of a model generated by
algorithm A with hyperparameters k on training dataset Dtrain and
evaluated on validation dataset Dvalid.

Thus far, there have been various types of algorithms for solving
HPO. For a small configuration space of hyperparameters, a grid
search [9] or random search [6] are widely used. Some empirical
evaluations have shown that the random search works more effi-
ciently than the grid search [6]. However, as the search space
increases, their performances become unstable and even degrade
sharply. Moreover, the grid search suffers from the exponential
combinations of the hyperparameters and the random search is
inefficient since lacking of guidance.

Recently, Bayesian optimization (BO) methods have shown the
success in hyperparameter optimization within limited resources
budget [19,9,4]. Bayesian optimization (BO) is an iterative algo-
rithm with two key components: a probabilistic surrogate model
and an acquisition function to determine which point to evaluate
next. The most popular acquisition function is the expected
improvement (EI) [19]. Three most powerful variants based on
BO are the sequential model-based algorithm configuration
(SMAC) [4], the tree Parzen estimators (TPE) [9] and the Spearmint
[19]. They have different surrogate models. SMAC and TPE are
mainly tree-based models, while Spearmint integrates the Gaus-
sian process (GP). SMAC employs random forests to model the sur-
rogate model. Soon after these studies were conducted, authors in
[20] improved the performance of the SMAC through using a
warm-start technology. TPE is one of the best known BO variants.
TPE uses a tree of Parzen estimators for conditional hyperparame-
ters and demonstrates a good performance on the structured HPO
tasks [9]. Spearmint is a Gaussian process-based Bayesian opti-
mization method, which is a state-of-the-art approach for low-
dimensional hyperparameter optimization. Those BO methods
can find a good configuration by using only a few samples. How-
ever, as the number of iterations increases, each iteration con-
sumes a large amount of resources.

Population-based methods are also widely used for HPO. One of
the best known methods is the covariance matrix adaptation evo-
lution strategy (CMA-ES) algorithm [21], which is an improved
algorithm based on the evolutionary algorithm. Much more
recently, CMA-ES has been demonstrated to be an excellent choice
for parallel HPO, outperforming state-of-the-art BO tools when
optimizing 19 hyperparameters of a deep neural network on 30
GPUs in parallel [22].

Another kind of method to solve the HPO problem is Hyperband
[23]. It formulates HPO problem as a pure-exploration nonstochas-
tic infinite-armed bandit problem. Hyperband has shown strong
performance, especially for optimizing deep learning algorithms.
Despite Hyperband has already achieved great success, it lacks
guidance and can not quickly converge to the best configuration.
To overcome this limitation, the recent method BOHB [24] combi-

J. Wu et al. / Neurocomputing 409 (2020) 381–393 383
nes the advantages of both Bayesian optimization and bandit-
based methods, in order to achieve the best of both worlds: strong
anytime performance and fast convergence to optimal configura-
tions. Empirically, BOHB was shown to outperform many HPO
methods in various of optimization tasks [24].

2.2. Reinforcement learning

The traditional RL problems are often modeled by an MDP,
which defined by the tuple hS;A; P;R; ci where S is the set of all
valid states, A is the set of all valid actions, P defines transition
probabilities for the environment, R is the reward function, r 2 R

is a scalar reward value, and c is a discount factor balancing
between immediate and future rewards. The agent interacts with
the environment and maximizes the expected discount reward.
The agent’s action is governed by a policy, p : S ! A, which com-
putes the state-action value, as:

Qpðs; aÞ ¼ Ep½
X1

t¼0

ctrtjS0 ¼ s;A0 ¼ a� ð2Þ

To solve this maximization problem, the policy selects the
action that maximizes the discounted cumulative reward,
p�ðsÞ 2 argmaxaQ

�ðs; aÞ, where Q �ðs; aÞ denotes the optimal state-
action value. One of the best known value-based and off-policy
methods for solving RL problems is Q-learning [25], which obtain
the optimal policy by constantly estimating the optimal value
function and obeys the fundamental identity, known as the Bell-
man equation:

Q �ðs; aÞ ¼ Ep½r þ cmaxa0Q
�ðs0; a0ÞjS0 ¼ s;A0 ¼ a� ð3Þ

RL has achieved great success in many fields [26–28]. The RL
algorithms can be roughly divided into two categories: model-
free RL and model-based RL. The model-free RL has great potential
for solving complex problems. However, this method often
requires a large number of samples, which is inefficient. The
model-based method allows the agent to learn a model of the envi-
ronment. The agent directly interacts with the model, which can
greatly improve training efficiency. Since the inaccuracy of the
model (model bias [29]) is exacerbated and leads to catastrophic
failures with long-term use, the horizon of model use should be
effectively disciplined. Combining the advantages of both methods,
Sutton [30] proposed the Dyna-Q method, which simultaneously
trains the agent with samples from the model and the environ-
ment. Recently, Kurutach et al. [31] used an ensemble of models
to maintain the model uncertainty and regularize the learning pro-
cess to improve the sampling efficiency of TRPO.

Thus far, RL has achieved great success in AutoML. Many studies
use RL to solve the NAS problem [32,33]. In this paper, we focus
entirely on optimizing hyperparameters of traditional machine
learning algorithms and neural networks, rather than neural archi-
tecture search, or automatic data acquisition and cleaning.

3. HPO Based on RL

We describe the details of our method, including why we treat
it as a sequential decision problem, how to formulate the HPO
problem in the framework of RL, the design of the agent, how to
select the hyperparameters, and the training process.

3.1. Sequential decision problem

We consider HPO as a sequential decision process. Generally, a
difficult problem can be solved effectively by breaking the problem
into multiple subproblems that are easier to handle. Since the con-
figuration space is very large, it is difficult for the agent to select all
the hyperparameters in one step. However, if the agent selects one
hyperparameter after another, the search space can be greatly
reduced at each step, and the optimization efficiency can be
improved. As authors in [34] claimed: any complex high-
dimensional action can be selected incrementally, component by
component, where each component’s probability also depends on
components already selected earlier. The decision process is natu-
rally sequential [35].

To clearly show the advantages of sequential decision, we will
analyze the search space for hyperparameter optimization. Assume
that a machine learning algorithm has n hyperparameters, a simple
solution is to directly select the whole hyperparameter configura-
tion, where the overall search space is K ¼ K1 � K2 � . . .Kn

(� denotes the Cartesian product; Ki denote the search space of
the i-th hyperparameter). The size of search space grows exponen-
tially with the number of hyperparameters. On the other hand, if
we treat the selection of hyperparameters as a sequential decision
process where the agent selects hyperparameter one by one, and
the agent select a new hyperparameter based on the result of the
previous decisions, the search space is greatly reduced to
K0 ¼ K1 [K2 [. . .Kn. The size of the search space grows linearly.
Obviously, the latter can greatly reduce the search space, thereby
improve the optimization efficiency. Besides, the order in which
the agent chooses the hyperparameters does not affect the final
performance. We will study the influence of the order of selecting
hyperparameters in the Section 6.7.

The RL-based method works as follows: for a given task, the
agent first chooses n hyperparameters one by one. Then, the
machine learning model with the selected hyperparameters is
trained on the training set Dtrain. The accuracy on the validation
set Dvalid is used as a reward signal to update the parameters of
the agent by an RL algorithm. As a result, the agent learns how
to tune hyperparameters over time.
3.2. MDP formulation

The sequential nature of HPO decisions allows us to formulate
the problem as Markov decision processes (MDPs) and cast it in
an RL framework. Since there are n hyperparameters to optimized,
the horizon over which the agent will act is n. We formulate the
HPO problem as an MDP with a 5-tuple hS;A; P;R; ci with the fol-
lowing conditions:

� A is the set of all valid actions, at corresponds to a hyperparam-
eter kt , which is sampled from the distribution DtðktÞ output by
the agent.

� S is the set of all valid states. Since the agent sequentially selects
hyperparameter and makes decision based on the previous
decisions, i.e., st ¼ Dt�1ðkt�1Þ.

� R is the reward function. Since we use the accuracy of a valida-
tion set as a reward signal to update the agent, the undis-
counted reward is obtained only after the final action. Thus,
rt ¼ 0 for t 2 ½1;nÞ and rn ¼ accuracy, where accuracy denotes
the validation performance of the algorithm with selected
hyperparameters according to a1:n.

� P : S� A ! PðSÞ is a transition probability function, which is
unknown for our problem.

� c is a discount factor, and c ¼ 1.

3.3. Design of the agent

Fig. 1 presents the main structure and the workflow of the
agent. The agent consists of an input embedding layer, an output
embedding layer and a LSTM network, which is the core part of
the agent for remembering previous decisions. The input embed-

Fig. 1. Overview of the HPO based on RL. The agent selects hyperparameters sequentially.

384 J. Wu et al. / Neurocomputing 409 (2020) 381–393
ding and out embedding are composed of multilayer perceptron
(MLP). The input is converted to a high-dimensional representation
by an input embedding layer, which allows the agent to better
observe the representation. The output of the LSTM is converted
to a low-dimensional representation by an output embedding
layer. The output of the output embedding layer is then fed to
the input embedding layer in the next time-step. The core network
of the agent consists of three LSTM layers. Although it is difficult to
train the LSTM network, the LSTM cell has been indicated to be a
powerful structure in solving the sequential problem. In addition,
the LSTM network can discover conditionality in the configuration
space.

At each episode k, the agent iterates n time-steps to sequen-
tially select all the hyperparameters, where n is the number of
hyperparameters. It is noted that the order of selecting hyperpa-
rameters is random and will not affect the final performance (We
will prove that in Section 6.7). During the process of sequential
selection of hyperparameters, the agent outputs a distribution Dt

for hyperparameter kt at each time step t. Following [36,37], we
use the normal distribution to represent the distribution of the
hyperparameter, i.e., the output of the agent is Dt ¼ Nðlt ;rtÞ.
The output Nðlt;rtÞ is fed to the agent at the next iteration
t þ 1, i.e., stþ1 ¼ Nðlt ;rtÞ, where t 2 ½1;n� 1�. And the initial state
s1 ¼ Nð0;1Þ.

In this way, the selection process of the agent matches the
sequence decision process very well. That is, the agent selects
hyperparameter one by one while considering the conditionality
among the configuration space by remembering previous deci-
sions. Obviously, the search space of the HPO problem is greatly
reduced at each time step.
3.4. Sampling from Nðl;rÞ

The value of a hyperparameter k is determined by sampling
from the distributionNðl;rÞ. Random sampling causes large vari-
ations during training since the ranges of the possible values of
hyperparameters are significantly different, e.g., for the extreme
gradient boosting [38], the range of n estimators is from 50 to
1200 and learning rate varies from 0.001 to 0.1 (as shown in
Table 1
Search space of hyperparameters for XGBoost and a CNN net, Lower and Upper denote the

Alg. Hyperparameter Lower Upper

XGBoost Algorithm max_depth 1 25
learning_rate 0.001 0.1
n_estimators 50 1200
gamma 0.05 0.9
min_child_weight 1 9
subsample 0.5 1.0
colsample_bytree 0.5 1.0
colsample_bylevel 0.5 1.0
reg_alpha 0.1 0.9
reg_lambda 0.01 0.1
Table 1). As a result, it is difficult for the agent to efficiently explore
the search space. To solve the problem, the following customized
normalization procedure is taken:

� Scale the means of the distributions l to l0 by the tanh function
in the range ð�1;1Þ;

� Sample values h from the new distributions Nðl0;rÞ;
� Scale h into the range of value ½hL;hU � by the following
method:
up
h0 ¼ hL þ ðhU � hLÞ � ð1þ hÞ=2 ð4Þ

k ¼ clip and convertðh0
; hL;hUÞ ð5Þ

where hU and hL represent the upper and lower bounds of a
hyperparameter Table 1, respectively. The clip and convert func-
tion removes the value h0 outside of the interval ½hL; hU � and per-
forms a type of conversion. Thus, we can handle continuous or
discrete hyperparameters. Through the above operations, the
training process becomes more efficient.
3.5. Training the agent

A policy p is a rule used by an agent to decide what actions to
take. Suppose that h represents the parameter of a policy ph. A tra-
jectory s is a sequence of states and actions: s ¼ ðs1; a1; . . . ; sn; anÞ,
which corresponds to the process of sequentially selecting hyper-
parameters. The return is the cumulative reward over a trajectory
RðsÞ ¼ Pn

t¼1rt . The goal of the agent is to find the h that can maxi-
mize the expected return:

max
h

JðphÞ ¼ argmax
h

Es�ph ½RðsÞ� ð6Þ

We choose a policy optimization method to train the agent
since it works in a more stable and fast manner. The algorithm
optimizes h directly by applying a gradient ascent algorithm to
JðphÞ:
hkþ1 ¼ hk þ arhk Jðphk Þ ð7Þ

rhJðphÞ is given by:
per and lower bounds of a hyperparameter, respectively.

Alg. Hyperparameter Lower Upper

CNN batch size 24 128
convolution stride(2) 1 5
convolution kernel(2) 2 5
convolution channel(2) 24 128
pooling kernel(2) 2 5
pooling stride(2) 1 5
pooling type(2) 0 1
fc layer nodes(2) 128 1100
learning rate 0.001 0.05
– – –

d , d ,

Fig. 2. The process of the model use.

J. Wu et al. / Neurocomputing 409 (2020) 381–393 385
rhJðphÞ ¼ Es�ph
½
Xn

t¼1

rhlogphðat jstÞRðsÞ� ð8Þ

Eq. (8) can be estimated by a sample mean:

rhJðphÞ � 1
m

Xm

i¼1

Xn

t¼1

rhlogphðatjstÞRðsiÞ ð9Þ

where si; i ¼ 1; . . . ;m is a set of trajectories.
However, the small differences of updates in h can have very

large differences in the performance. It is very dangerous to use
a large step size that can collapse the whole system. To solve this
problem, a newly developed policy optimization algorithm, proxi-
mal policy optimization (PPO), constrains the updates of h so that
the new policies are close to the old ones [39]. In this paper, we
use the PPO-clip method to update h. The objective function of
the PPO-clip method is defined as:

max
h

ðJðphÞÞ ¼ argmax
h

Es;a�phk
½Lðs; a; hk; hÞ� ð10Þ

where L is given by:

Lðs; a; hk; hÞ ¼ minð phðajsÞ
phk

ðajsÞA
phk ðs; aÞ;

clipð phðajsÞ
phk

ðajsÞ ;1� �;1þ �ÞAphk ðs; aÞÞ
ð11Þ

where � is a hyperparameter that controls the change to the new
policy from the old policy, � ¼ 0:2. A is the advantage function,
which is defined as Aphk ¼ RðskÞ � b, where RðskÞ denotes the accu-

racy of the kth sample (configuration) and b is an exponential mov-
ing average of the accuracy of the previous samples. b is also called
the baseline function, which is used to reduce the training variance.

4. Efficiency improving based on a model

According to the workflow of our method, the given algorithm
with selected hyperparameters is trained on Dtrain, and the cross-
validation result is used as a reward to update the agent. It is noted
that the evaluation process is very time consuming, which makes
the learning process highly inefficient. To accelerate the learning
process, a model is used to predict the performance of the selected
configuration rather than training the algorithm. In this section, we
describe the techniques in detail, including how to design and train
the model and how to control the number of times that the model
use.

4.0.1. Structure and training of the model

The input to the model is the selected configuration and the
output is the predictive performance on the validation set. An
MLP is employed to construct the model, and we train it by super-
vised learning methods. We choose a simple structure for the
model since training a complex model requires more samples
and time. Theoretically, more samples are provided, and the model
is more accurate. However, we cannot afford an adequate number
of samples to train the model because of the cost. Considering sev-
eral factors, the following principle is followed: the number of
training samples is generally 5–10 times the number of parameters
of the model.

4.0.2. Controlling the model use

A model that predicts the performance of the selected configu-
ration can accelerate the learning process. However, the model
inaccuracy is further exacerbated by the long-term use, resulting
in considerable noise in the parameter space and collapse perfor-
mance (as shown in Fig. 3). Although the noise may have risk, it
was shown by [40] that the addition of parameter noise in a rea-
sonable range leads to better exploration and obtains a policy that
exhibits a larger variety of behaviors. Hence, we limit the influence
of the model on the policy by dynamically controlling the horizon
(the number of times) of the model use.

A straightforward method is to discipline the model use in the
short-term horizon. After the short-term model use, the model is
trained again with new samples. The model training and the model
use are alternately repeated. However, the horizon of the model
use cannot be fixed since the inaccuracy of the model varies over
time. Additionally, it is far harder to estimate the horizon of the
model use. We novelly propose a simple solution that resolves all
of the aforementioned difficulties in an easy and straightforward
way (as shown in Fig. 2). This is achieved by relating the horizon
of the model use to the degree that the policy is perturbed. More
specifically, we can define a distance measure between policies
before and after the model use in the action space:

dðp~h;phÞ ¼ DKLðp~hjjphÞ ¼
Xn

t¼1

DKLðp~hðatjstÞjjphðat jstÞÞ ð12Þ

where p~h and ph denote policies before and after the model use,
respectively (as shown in Fig. 2). phðatjstÞ ¼ Nðlt ;rtÞ and
p~h ¼ Nð~lt; ~rtÞ represent the conditional probability distribution
of the action of policies ph and p~h, respectively.

We use the KL divergence between ph and p~h to measure the
impact of the model use on the policy. To limit it in a proper range,
set:

dðp~h;phÞ 6 d ð13Þ
where d > 0 is a threshold value and we will analyze the effect of d
on the final performance and recommend a value in the experi-
ments. In this way, the model use can adapt to changes in policy
and is dynamically controlled.

If dðp~h;phÞ > d, the change in policy is too large, i.e., the inaccu-
racy of the model increases and the model needs to be retrained.
The model training and model use are repeated alternately (see
Fig. 2). Therefore, we can take full advantage of the predictive
model to highly improve the learning efficiency.

5. Overall framework

To clarify the proposed method, we present the entire optimiza-
tion process. The RL-based method works as follows: for a given
task, the agent chooses n hyperparameters one by one based on

386 J. Wu et al. / Neurocomputing 409 (2020) 381–393
the previous decisions. Then, the machine learning model with the
selected hyperparameters is trained on a training set Dtrain. The
accuracy of a validation set Dvalid is used as a reward signal to
update the parameters of the agent by an RL algorithm. In the over-
all framework, the following two processes are performed alter-
nately (see Algorithm 1): train the agent with the real rewards
and train the model (lines 2 to 8); train the agent with the reward
generated by the model to accelerate learning (lines 9 to 12). We
dynamically control the horizon of the model use by limiting the
distance of policies before and after the model use in parameter
space, i.e., dðp~h;phÞ 6 d.

Since RL method uses an iterative training process, the time
complexity is approximated as Oðn� tÞ, where n is the number of
iterations, and t is the time for each iteration. To precisely analyse
the time complexity, we define the following symbols: treal denotes
the time taken at each iteration without the model use; tuse is the
time taken at each iteration with model use, obviously,
tuse < treal; ttrain is the time for training the predictive model. With-
out the model use, the algorithm roughly takes n� treal. When
using the predictive model, the time decreases sharply, which is
approximated as: treal � nreal þ tuse � nuse þ ttrain � ntrain, where nreal

and nuse refer to the number of times without model use and with
model use, respectively, n ¼ nreal þ nuse;ntrain denotes the number of
times the model to be trained, which is a small value. It can be
clearly seen that for complex model or large task, tuse 	 treal, the
efficiency of the whole process is improved. We will conduct fur-
ther analysis through experiments in Section 6.8 and demonstrate
the effectiveness of the model.

Algorithm 1: Overall Framework

Input: Initialize policy ph;p~h.
Initialize the predictive model F.
Initialize data set DF ¼ £.
Procedure:
1: while not done bf do
2: while DF not full do
3: Agent selects a configuration k and obtains the

accuracy r on Dvalid
4: Use ðk; rÞ to update ph by PPO
5: Add ðk; rÞ to DF

6: end while
7: Save the current policy, p~h ¼ ph

8: Fit the model F with DF

9: while dðp~h;phÞ 6 d do
10: Agent selects a configuration k and the model predicts

the accuracy r̂ on Dvalid
11: Use ðk; r̂Þ to update policy ph by PPO
12: end while
13: end while
1 https://github.com/uestc-chensp/datasets
2 Code from https://github.com/hyperopt/hyperopt/
3 Code from https://github.com/fmfn/BayesianOptimization/
4 Code from https://github.com/AIworx-Labs/chocolate
We believe that the reasons that a model can effectively accel-
erate the training while ensuring the improvement of performance
are as follows:

� During the process of training the agent, we employ a predictive
model to directly evaluate the performance of hyperparameter
configuration rather than obtaining the reward by training the
algorithm, which speeds up the training process;

� We use the KL divergence between ph and p~h to dynamically
control the model use, which avoids the model bias problem
[29] and improves the performance of the proposed method.
6. Experiments

In this section, we will verify the performance of the proposed
method by applying it to tune the hyperparameters of a well-
known model - the extreme gradient boosting (XGBoost) and a
convolutional neural network on 101 tasks (datasets). Five main
questions about the proposed method that we will investigate
are as follows:

� Firstly, can the proposed method achieve better optimization
performance than other state-of-the-art methods and the
baseline?

� Is the sequential selection of hyperparameters feasible and
effective? In other words, is the sequential selection of hyperpa-
rameters more advantageous than directly output configuration
in one step?

� How would the performance of the proposed method be
affected if the order in which the hyperparameters are selected
is random on each trial?

� Can the use of the model improve the time efficiency while
ensuring the optimization results?

� How does d affect the final performance? and what are the
advantages of dynamically controlling the model use by adjust-
ing d?

6.1. Datasets

To evaluate the robustness and generalization of the proposed
method on a broad range of datasets, we gather 101 binary and
multiclass classification datasets with different scales1 from the
OpenML [41] and UCI repositories as the target tasks. The size of
datasets ranges from thousands to hundreds of thousands. Impor-
tantly, these datasets cover a diverse range of applications, such as
digit and letter recognition, and other classification tasks for specific
scenarios. The 5-fold cross-validation method is used for training,
and the test set results are used to verify the performance of the
hyperparameter configuration. Specifically, for small datasets (the
number of instances is less than 10,000), the partition ratio is 8
(training set)/2 (test set), and the partition ratio is 9 (training
set)/1 (test set) for big datasets (the number of instances is larger
than 10,000).

6.2. Comparison methods

In our experiments, the proposed method is called MBRL-SDP
(MBRL: model-based RL; SDP: sequential decision process), which
uses an RL agent to tune hyperparameters sequentially and
employs a model to accelerate training. We also propose other
two variants of our method to validate the various components
of our method. First, RL-SDP employs an RL agent to select hyper-
parameters sequentially but without using a model. By comparing
MBRL-SDP and RL-SDP, we can demonstrate the effectiveness of
the model. Second, RL-DOC (DOC: directly output configuration)
method directly outputs the whole hyperparameters in one step,
and the process of the agent selecting hyperparameters is shown
in Fig. 4. The other settings are the same as RL-SDP method. We
will study whether sequential decisions can improve optimization
performance by comparing RL-SDP and RL-DOC. In addition, we
compare our proposed method with other optimization methods:
random search method2, two Bayesian optimization-based methods
TPE2 and Spearmint3, a well-known evolutionary method CMA-ES4, a

https://github.com/uestc-chensp/datasets
https://github.com/hyperopt/hyperopt/
https://github.com/fmfn/BayesianOptimization/
https://github.com/AIworx-Labs/chocolate

Fig. 3. Comparison between RL agents with and without long-term model use. ‘‘Agent without model use” denotes the learning curve of RL agent without model use during
1000 episodes training. ‘‘Agent with model use” presents the learning curve of RL agent with long-term model use from the 25th or 100th episode (indicated by a black arrow)
to the 1000th episode. ‘‘T” is the number of samples (episodes) taken to train the predictive model.

Fig. 4. This figure shows the hyperparameter selection process of RL-DOC method. The agent of RL-DOC directly outputs the whole configuration at one step. Suppose there
are n hyperparamters to optimize. The inputs to the agent are n standard normal distributions Nð0;1Þ; the outputs of the agent are n normal distributions corresponding to
the distribution of n hyperparmeters.

J. Wu et al. / Neurocomputing 409 (2020) 381–393 387
bandit-based method Hyperband5, a recent method BOHB 5 combin-
ing bandit-based and Bayesian optimization, and the default config-
uration of XGBoost (Baseline).

6.3. Evaluation criterion

We follow the evaluation criterion of the state-of-the-art works
[4,42], and use the test performances as the basic evaluation crite-
rion of the optimization methods. In addition, we also evaluate the
time to achieve the best optimization result in a fixed number of
samples, which denotes the time efficiency of the optimization
methods. To show the performance difference more clearly, a
statistic measure, Average Rank, is used for evaluating the rank of
the test performance:

Average Rank ¼ 1
D

X

i2D
ranki ð14Þ
5 Code from https://github.com/automl/HpBandSter
where D represents the number of datasets evaluated and ranki is
the ranking of the algorithm with the test performance achieved
for a particular dataset i.
6.4. Experimental details

The hidden layers of the predictive model consists of 3 dense
layers, and each layer contains 16, 16 and 8 nodes, respectively.
The number of nodes in the input layer is the number of hyperpa-
rameters of the model to be optimized. The output layer has only
one node to output a predictive performance. The samples pro-
vided for training the predictive model were 80 and 240, for the
XGBoost and the convolutional neural network optimization tasks,
respectively. Since the convolutional neural network has more
hyperparameters to be optimized, we need more samples to pre-
vent the predictive model from underfitting. For the agent, the
input embedding layer has 35 nodes, the output embedding layer
has 2 nodes, the LSTM network consists of 3 layers, and each layer
contains 35 nodes. The settings of d and the learning rate for each
optimization task are 0.4 and 0.007, respectively. We employ the

https://github.com/automl/HpBandSter

Table 2
The average rank of test set results over 101 datasets (300 samples). ‘‘*” and ‘‘+” denotes that the differences between ours and other methods are statistically significant with
p < 0:01 and p < 0:05, respectively.

Measure MBRL-SDP(ours) BOHB Hyperband Spearmint CMA-ES TPE Random Baseline

Average rank 1.119(+)(*)(*) (*)(*)(*)(*) 2.495 5.277 3.782 3.168 5.713 6.891 7.554
Std 0.3799 1.4325 0.9023 1.1990 0.5982 1.1110 0.9217 0.4970

Table 3
Number of tasks with the top performance of each method over 101 tasks.

Method Name Number of Datasets with Top Performance

BOHB 11 (10.9%)
Hyperband 2 (2.0%)
Spearmint 14 (13.9%)
CMA-ES 7 (6.9%)
TPE 1 (1.0%)
Random 0 (0.0%)
Baseline 0 (0.0%)
MBRL-SDP 87 (86.1%)

Fig. 5. The number of datasets that the evaluated method performs better or worse
than Baseline (accuracy on the test set), across 101 datasets. ‘‘Better” denotes the
evaluated method performs better than Baseline and ‘‘worse” means the evaluated
method performs worse than Baseline.

Table 4
The average rank of runtime to achieve the best performance in 300 samples over 101
datasets. ‘‘*” and ‘‘+” denotes that the statistically significant difference from other
values in the same line is p < 0:01 and p < 0:05, respectively.

Measure MBRL-
SDP

BOHB Hyperband Spearmint CMA-
ES

TPE Random

Average
rank

1.832
(*)(+)
(*)(*)
(*)(*)

3.198 2.574 6.257 6.178 4.683 3.277

Stdev 0.8568 1.5671 1.0749 0.8402 0.8489 1.0141 1.7299

388 J. Wu et al. / Neurocomputing 409 (2020) 381–393
PPO algorithm to train the RL agent and use its default parameter
settings.

6.5. Compare with other methods

6.5.1. HPO for XGBoost classifier
6.5.1.1. Search space. We chose to optimize the hyperparameters of
an advanced classification algorithms, XGBoost, based on the fol-
lowing reasons: the XGBoost algorithm has recently been dominat-
ing the Kaggle competition; the performance of the algorithm is
sensitive to the hyperparameter configuration. The code of
XGBoost is based on scikit-learn [43]. Ten hyperparameters of
XGBoost are chosen to be optimized (see Table 1).

6.5.1.2. Results. We first measured the Average Rank of each
method on 101 optimization tasks (as shown in Table 2). In addi-
tion, we used the Friedman test to validate the statistical signifi-
cance of differences between the evaluated methods [44]. The
null hypotheses that the 8 methods perform the same and the
observed differences are merely random was rejected with
p < 0:05. Meanwhile, the Wilcoxon post hoc tests is applied and
the results suggest that the differences between MBRL-SDP(ours)
and other methods were found to be statistically significant with
p < 0:01 or p < 0:05 (Table 2). In Table 2, we found that the aver-
age ranking of all the optimization methods are lower to the Base-
line, which indicates that tuning hyperparameters indeed improves
the performance. It is clear that MBRL-SDP outperforms the other
methods both in performance and consistency (i.e., low average
rank and small standard deviation). Importantly, our method is sig-
nificantly better than random search method, which suggests that
the RL agent learns how to turn hyperparameter. In addition to
obtaining the top average ranking (1.119), our approach has
achieved a perfect optimization results on 87 of the 101 tasks
(see Table 3). As shown in Table 3, the number of tasks with top
performance achieved by our method is significantly higher than
any of the other methods and baseline. To further investigate the
effectiveness of each method, Fig. 5 presents the number of tasks
that each optimization method outperforms the Baseline on 101
tasks. It is clear to see that MBRL-SDP is better than Baseline on
more tasks, which demonstrates that our method is much more
effective in hyperparameter tuning processes.

Secondly, we measured the average ranking of runtime of each
method on 101 optimization tasks (as shown in Table 4). The ‘‘run-
time” denotes the time to achieve the best hyperparameter config-
uration in 300 samples. Meanwhile, we performed the same
statistical test as before. We can see that MBRL-SDP also achieves
the best time performance in a fixed number of samples, compared
with other methods (i.e., low average ranking and small standard
deviation).

To conclude, all these results show that the proposed method
MBRL-SDP significantly improves the optimization performance
for XGBoost in term of accuracy and runtime.

6.5.2. HPO for convolutional neural network
6.5.2.1. Search space. We study further to optimize a convolutional
neural network with the main structure shown in Figure 6, which
is similar to the one proposed by [45]. It includes two convolution
layers (Conv1, Conv2), two pooling layers (Pool1, Pool2), and two
fully connected layers (FC1, FC2). 16 hyperparameters are chosen
to be optimized, including the stride size, kernel size, and channel
size in each convolutional layer; the pooling type, kernel size, and
stride size in each pooling layer; the number of hidden nodes in
each fully connected layer; the batch size and the learning rate.
The range of values of hyperparameters is shown in Table 1.
6.5.2.2. Results. We conducted experiments on MNIST [46] and
Fashion MNIST [47] datasets, both of which are commonly used
to evaluate the performance of convolutional neural networks.
The results are presented in Table 5. The error rate of the one
[45] is considered as the Baseline. We can see that the error rate
of the Baseline is lower than some optimization methods, which
indicates that Baseline is very competitive and some optimization
methods can not work well in large hyperparameter space.
MBRL-SDP (ours) outperforms other methods in terms of optimiza-

Fig. 6. Convolutional neural network structure.

J. Wu et al. / Neurocomputing 409 (2020) 381–393 389
tion results and standard deviation on both datasets. It is noted
that MBRL-SDP is very competitive in time performance. The rea-
son is that for most of the time, MBRL-SDP uses a predictive model
to infer the accuracy of the CNN on the validation set without
directly training it.

We used the Friedman test to verify the statistical significance
among all methods. The null hypothesis that all the methods per-
form the same and the differences are merely randomwas rejected
by p < 0:05.

6.6. Study of agent’s structure

In this part, we would like to investigate whether the sequential
selection of hyperparameters feasible and effective. We compared
two RL-based methods, RL-SDP (output hyperparameters sequen-
tially) and RL-DOC (directly output all hyperparameters in one
step).

6.6.1. Experiments
The experiment is implemented on 12 tasks to optimize hyper-

parameters of XGBoost. The way of partitioning the dataset and
training the algorithms are the same as before. Each method sam-
ples 300 times.

6.6.2. Results and analysis
The experimental results are presented in Fig. 7. Although RL-

DOC performs well in some tasks, the performance fluctuates shar-
ply and is quite unstable, even fails to work in some tasks (see
Fig. 7-(d), (g), (j)). The experiment result indicates that RL-DOC
may easily fall into suboptimal solution.

The above ablation experiments suggest that it is more reason-
able to output hyperparameters sequentially. We believe that the
reasons is as follows: if the search space is very large, it is difficult
for RL-DOC to explore a good policy in such a large space. However,
RL-SDP method outputs hyperparameters one by one and makes a
new decision based on the previous ones, the search space reduces
at each time-step. Therefore, it is much easier for the agent to han-
dle the problem.
Table 5
Optimizing hyperparameters of a convolutional neural network on the MNIST and Fashion
the test set error over multiple experiments. ‘‘time” denotes the time to achieve the best
experiments. Each method samples 300 times in each experiment. Values in bold denote t
other methods were found to be statistically significant with p < 0:05.

Methods MNIST

err std(%) time

MBRL-SDP 0.0051 0.64 6.04
BOHB 0.0057 1.99 19.3
Hyperband 0.0101 3.41 20.5
Spearmint 0.0068 0.98 44.7
CMA-ES 0.0099 7.07 25.4
TPE 0.0101 2.70 41.2
Random 0.0104 7.74 27.9
Baseline 0.0073 – –
6.7. Effect of optimization order

6.7.1. Experiments
We aim to study whether the performances of the proposed

method is affected by the order in which the hyperparameters
are selected. In this experiment, we use RL-SDP method to opti-
mize hyperparameters of XGBoost over 12 datasets of different
scales. Three different orders for selecting hyperparameters are
randomly set (as shown in Table 6). The performances of RL-SDP
method with different orders are compared in Table 7.

6.7.2. Results and analysis
We can see from Table 7 that the performances of RL-SDP with

three different orders are similar. The results show that the order
of selecting hyperparameters will not affect the final optimization
performance. The reason is that:

Let PðX1X2 . . .XnÞ denote the probability of selection a hyperpa-
rameter configuration, where Xi denote the random variable of
selection a hyperparameter ki. Since the agent selects hyperparam-
eters one by one, where the probability of selection one hyperpa-
rameter depends on hyperparameters already selected earlier,
PðX1X2 . . .XnÞ equals:
PðX1X2 . . .XnÞ ¼ PðX1ÞPðX2jX1Þ . . . PðXnjX1 . . .XnÞ

¼ PðX2ÞPðX3jX2Þ . . . PðX1jX2 . . .XnÞ ¼ . . . ð15Þ
The second line in Eq. (13) indicates that the order of selecting

hyperparamters is X1 ! X2 ! . . .Xn and the third line denotes the
order is X2 ! X3 ! . . .X1. We can easily see that the order of
selecting hyperparameters will not affect the final result.

6.8. Effectiveness of the model

6.8.1. Experiments
In this section, we compared the performance of MBRL-SDP

(with model use) with RL-SDP (without model use) on 20 opti-
mization tasks to verify the effectiveness of the model. The perfor-
mance results are presented in Table 8. Each value reports the
average performance of 5 independent experiments. Each method
samples 300 times in each experiment.

6.8.2. Results and analysis
In Table 8, it is clear that the time to achieve the best perfor-

mance of MBRL-SDP is lower than RL-SDP on all tasks, which sug-
gests that directly evaluating the reward using the model can
speed up the tuning process. It is noted that MBRL-SDP can reduce
runtime by more than half on big scale dataset, such as MNIST and
Fashion MNIST. However, the advantage of time efficiency is not
obvious on small scale task, like Anuran C and Breast C. To further
analyze the reason, we define the following symbols: treal refers to
MNIST datasets. ‘‘err” means the test set error. ‘‘std” means the standard deviation of
optimization results. Each value reports the average performance of 5 independent
he best values. Friedman test shows that the differences between our method and all

Fashion MNIST

(h) err std(%) time(h)

0.1065 1.27 5.35
7 0.1080 2.67 6.44
4 0.1516 3.80 7.38
2 0.1354 1.73 15.18
9 0.1097 1.79 6.71
8 0.1418 4.64 13.31
1 0.1903 5.93 13.95

0.1074 – –

Table 6
Random order of selecting hyperparameters of XGBoost algorithm

No. Hyperparameter Optimization Order

Order 1)max_depth)n_estimators)min_child_weight
)colsample_bytree)reg_alpha)learning_rate)gamma
)subsample)colsample_bylevel)reg_lambda

Order 2)learning_rate)gamma)subsample)colsample_bylevel
)reg_lambda)max_depth)n_estimators)min_child_weight
)colsample_bytree)reg_alpha

Order 3)colsample_bytree)reg_alpha)learning_rate)max_depth
)n_estimators)min_child_weight)gamma)subsample
)colsample_bylevel)reg_lambda

Table 7
Performance of RL-SDP with three random orders of selecting hyperparameters. We perfo
those of Table 5.

No. Order1

err time(h)

Winequality W. 0.3918 2.90 0.
Optdigits 0.0285 2.80 0.
Turkiye S.E. 0.1330 2.82 0.
Anuran C. 0.0283 0.82 0.
Crowd S.M. 0.0430 5.85 0.
Clave V.F.T. 0.0009 0.29 0.
Pen B.R.H. 0.0129 3.62 0.
Phishing W. 0.0390 1.91 0.
HTRU_2 0.0205 1.30 0.
Letter.R 0.0653 7.17 0.
Miniboone 0.0329 13.36 0.
Airline 0.3295 15.18 0.

Fig. 7. Comparison between RL-SDP and RL-DOC on the 12 target tasks. Each figure shows the test performance in 300 episodes.

390 J. Wu et al. / Neurocomputing 409 (2020) 381–393
the time taken for optimizing hyperparameters without model
use; ttrain refers to the time taken by training the prediction model,
and tuse refers to the time taken by using the prediction model.
Therefore, the time saved is tsave ¼ treal � ttrain � tuse, where treal is
determined by the size of the optimization task (dataset size and
number of hyperparameters). Obviously, this value is big on large
scale task. ttrain and tuse are determined by the size of the predictive
model and are almost the same for different tasks. Therefore, for
small scale tasks, the sum of ttrain and tuse is comparable to treal,
and tsave � 0 or even tsave < 0 ; while for large scale tasks,
ttrain þ tuse is much smaller than treal, and the model use saves a
lot of time.
rmed 5 independent runs of RL-SDP with each order. ‘‘err” and ‘‘time” are similar to

Order2 Order3

err time(h) err time(h)

3932 2.96 0.3901 2.84
0277 2.86 0.0281 2.64
1327 2.90 0.1337 2.74
0280 0.85 0.0283 0.83
0451 5.62 0.0446 5.74
0007 0.28 0.0009 0.29
0131 3.79 0.0133 4.21
0340 2.33 0.0357 1.85
0221 1.26 0.0208 2.87
0668 7.23 0.0652 6.90
0323 10.52 0.0339 12.90
3279 13.55 0.3303 15.73

Table 8
Comparison between MBRL-SDP (with model use) and RL-SDP (without model use) on 20 optimization tasks. The definitions of ‘‘err”, ‘‘std” and ‘‘time” are the same as those of
Table 5. The value in bold indicates the best value between the two.

Alg. Dataset MBRL-SDP RL-SDP

err std time err std time

XGBoost Anuran C. 0.0234 0.11% 0.72 h 0.0283 0.14% 0.82 h
Breast C. 0.0294 0.11% 0.26 h 0.0297 0.26% 0.29 h
Car E. 0.0327 0.23% 3.00 h 0.0379 0.49% 3.92 h
CTG 0.1364 0.25% 1.75 h 0.143 0.29% 2.75 h
Clave V.F.T. 0.0003 0.01% 0.15 h 0.0009 0.02% 0.29 h
Crowd S.M. 0.0423 0.01% 2.92 h 0.0430 0.10% 5.85 h
Diabetic R.D. 0.3227 0.06% 0.23 h 0.3321 0.56% 0.54 h
Digits 0.0412 0.35% 0.23 h 0.0326 0.40% 0.78 h
HTRU2 0.0207 0.02% 0.06 h 0.0205 0.03% 1.30 h
Image S. 0.0067 0.03% 0.96 h 0.0066 0.05% 1.82 h
Iris 0.0417 0.04% 0.04 h 0.0424 0.48% 0.08 h
Letter R. 0.0618 0.21% 3.49 h 0.0653 0.25% 7.17 h
Optdigits 0.0248 0.16% 2.17 h 0.0285 0.19% 2.80 h
Pen B.R.H. 0.0096 0.10% 1.48 h 0.0129 0.06% 3.62 h
Phishing W. 0.0379 0.04% 1.68 h 0.0390 0.22% 1.91 h
Turkiye S.E. 0.1322 0.16% 0.82 h 0.1330 0.12% 2.82 h
Wilt 0.0248 0.11% 0.21 h 0.0287 0.20% 0.46 h
Winequality W. 0.3836 0.17% 2.01 h 0.3918 0.32% 2.90 h

CNN MNIST 0.0051 0.64% 6.04 h 0.0085 1.39% 16.35 h
Fashion MNIST 0.1065 1.27% 5.35 h 0.1075 2.05% 12.53 h

Table 9
Study the influence of d on the accuracy and the runtime. ‘‘err” and ‘‘time” are the same as those of Table 5.

Algorithm-
Dataset

d=0.1 d=0.2 d=0.3 d=0.4 d=0.5 d=0.6 d=0.7 d=0.8 d=0.9

err time
(h)

err time
(h)

err time
(h)

err time
(h)

err time
(h)

err time
(h)

err time
(h)

err time
(h)

err time
(h)

XGB-Letter 0.0621 10.2 0.0618 9.4 0.0624 6.7 0.0618 3.5 0.0741 3.1 0.0886 2.9 0.0891 2.4 0.0910 2.1 0.0974 2.0
CNN-Fashion

MNIST
0.1070 10.6 0.1065 8.4 0.1067 6.8 0.1065 5.4 0.1174 4.7 0.1209 4.1 0.1281 3.3 0.1309 3.1 0.1343 2.7

J. Wu et al. / Neurocomputing 409 (2020) 381–393 391
In addition, we can see that the test error of MBRL-SDP is lower
than RL-SDP on most tasks, which indicates that the inaccuracy of
the model does not degrade performance; in contrast, the added
noise to the parameter space contributes to explore better hyper-
parameter configurations. Moreover, MBRL-SDP also shows the
lowest standard deviation value on the most tasks, which suggests
that MBRL-SDP runs more stable.

6.9. Advantages of dynamical control of model use

6.9.1. Experiments
In this part, we conducted two experiments to demonstrate the

advantage of dynamical control of model use:

� According to Eq. (13), d is a quite important hyperparameter to
control the horizon of model use. A series of experiments with
different values of d are implemented to study how d affects
the final performance.

� We compare our method with the one that fixes the horizon of
model use to demonstrate that the dynamical control of model
use has more advantages. Here, we set three different values for
the horizon of model use, N ¼ f10;20;30g.

6.9.2. Results and analysis
Table 9 shows the experiment results of different values of d.

We can see that d does affect the final performance and the run-
time. Firstly, it is clear that d does not greatly affect the optimiza-
tion results when d 2 [0.1, 0.2, 0.3, 0.4]. When d > 0:4 , the
optimization results become worse. Secondly, the runtime gradu-
ally decreases as d increases.
We empirically analyze the above experimental results. d is a
threshold that determines how long or how many times the model
can be used. If d is too small, the change of policy is limited to a
small range. That means the horizon of the model use is short,
and the model is frequently updated, resulting in time-
consuming but the final accuracy can be guaranteed. Conversely,
large d value allows a big change of policy. That means the horizon
of the model use is long, and the inaccuracy of the model may be
exacerbated, resulting in poor performance of the optimization.
However, the training time can be greatly saved. In fact, d balances
the runtime and optimization results. According to our experi-
ments, the optimal balance of runtime and performance can be
achieved near 0.4.

Figs. 8 and 9 present the comparison results between the
dynamic horizon of model use and the fixed one. Compared with
the fixed-horizon of model use, the dynamic control method has
more advantages in terms of runtime and optimization perfor-
mance. Firstly, it is noted in Fig. 8 that the runtime curve of the
method with fix horizon rises regularly, i.e., the training (the rising
part of the curve) and use (the flat part of the curve) of the model
alternate strictly. In contrast, the horizon of dynamic model use
varies in length. This is because our method dynamically adjusts
the horizon of model use according the change on the policy. If
the change is less than d, the agent continues to use the model to
obtain samples. Therefore, the dynamic adjustment method
reduces runtime significantly. Secondly, we found in Fig. 9 that
the method with dynamic controlling of horizon achieves a higher
accuracy than the method with fixed-horizon. Besides, for the
method with fixed-horizon, the final accuracy decreases as N
increases. The reason is that as the inaccuracy of the model

Fig. 8. Runtime of optimizing hyperparameters of XGBoost and CNN over UCI
Handwritten letter dataset and Fashion MNIST dataset, respectively. Two methods
of controlling horizon of model use is compared: d values is 0.4 for the dynamic one.
The fixed one sets the horizon of model use N, where N ¼ f10;20;30g.

Fig. 9. Average validation accuracy of optimizing hyperparameters of XGBoost and
CNN over UCI Handwritten letter dataset and Fashion MNIST dataset, respectively.
Two methods of controlling horizon of model use is compared: d values is 0.4 for
the dynamic one. The fixed one sets the horizon of model use N, where
N ¼ f10;20;30g.

392 J. Wu et al. / Neurocomputing 409 (2020) 381–393
increases, the policy of the agent is greatly perturbed, and the dif-
ferences in parameter space can have very large influence in per-
formance, so a single bad step can collapse the performance. The
method with dynamic–horizon controls the degree of perturbation
on policy by satisfying a special constraint on how close the poli-
cies before and after model-use are allowed to be. Therefore, the
dynamic one achieves a higher accuracy compared to the fixed one.
7. Conclusions

In this paper, we propose an efficient model-based method to
solve the HPO problem. First, we formulate the HPO problem as a
sequential decision problem and model it as a Markov decision
process. Then, an RL agent is used to tune the hyperparameters
of a given algorithm. To speed up the training process of the agent,
we employ a model to evaluate the performance of the selected
configuration. Since the inaccuracy of the model is further exacer-
bated by long-term use, we dynamically control the horizon of
model use by measuring the distance between policies before
and after the model use in parameter space. In the experiment,
we apply the proposed method to tune XGBoost on 101 tasks
and a CNN on 2 tasks. The experimental results indicate that our
method outperforms other methods in terms of accuracy and run-
time. In the future, we will extend our work to solve the combined
algorithm selection and hyperparameters tuning problem.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
CRediT authorship contribution statement

Jia Wu: Conceptualization, Methodology, Writing - original
draft, Writing - review & editing. SenPeng Chen: Software, Visual-
ization, Writing - original draft, Writing - review & editing. XiYuan
Liu: Investigation, Validation.
References

[1] M. Fandong, Z. Jinchao, Dtmt: A novel deep transition architecture for neural
machine translation, arXiv preprint arXiv:1812.07807.

[2] M. Brian, R. Delip, Listening to the world improves speech command
recognition, in: Proceedings of the 32st AAAI Conference on Artificial
Intelligence, 2017, pp. 378–385.

[3] X. Jie, L. Lei, D. Cheng, H. Heng, Bilevel distance metric learning for robust
image recognition, Adv. Neural Inform. Process. Syst. 31 (2017) 4198–4207.

[4] F. Hutter, H.H. Hoos, K. Leytonbrown, Sequential model-based optimization for
general algorithm configuration, in: Learning & Intelligent Optimization-
international Conference, 2012.

[5] C. Thornton, F. Hutter, H.H. Hoos, K. Leyton-Brown, Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms, 2013,
pp. 847–855.

[6] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J.
Mach. Learn. Res. 13 (1) (2012) 281–305.

[7] S. Samantha, C. Christophe, Giraud, Informing the use of hyperparameter
optimization through metalearning, IEEE Int. Conf. Data Mining (2017) 1051–
1056.

[8] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter,
Efficient and robust automated machine learning, in: Advances in Neural
Information Processing Systems 28, 2015, pp. 2962–2970.

[9] B. James, B. Remi, B. Yoshua, K. Balazs, Algorithms for hyper-parameter
optimization, in: International Conference on Neural Information Processing
Systems, 2011.

[10] H. Yi-Qi, Q. Hong, Y. Yang, Sequential classification-based optimization for
direct policy searc, in: The 31st AAAI Conference on Artificial Intelligence,
2017, pp. 2029–2035.

[11] L. Marius, H. Frank, Warmstarting of model-based algorithm configuration, in:
The 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1355–1362.

[12] Y. Sun, B. Xue, M. Zhang, G.G. Yen, Completely automated cnn architecture
design based on blocks, IEEE Trans. Neural Networks Learn. Syst. (2019) 1–13.

[13] M. Dougal, D. David, P.A. Ryan, Gradient-based hyperparameter optimization
through reversible learning, International Conference on Machine Learning
(15’ICML) (2015) 2113–2122.

[14] P. Fabian, Hyperparameter optimization with approximate gradient, in:
International Conference on Machine Learning(17’ICML), 2017, pp. 737–746.

[15] Y. Sun, H. Wang, B. Xue, Y. Jin, G.G. Yen, M. Zhang, Surrogate-assisted
evolutionary deep learning using an end-to-end random forest-based
performance predictor, IEEE Trans. Evol. Comput. 24 (2) (2020) 350–364.

[16] R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos, C. Bekas, A.C.I. Malossi,
Tapas: Train-less accuracy predictor for architecture search, arXiv:1806.00250..

[17] B. Baker, O. Gupta, R. Raskar, N. Naik, Accelerating neural architecture search
using performance prediction, in, in: Proceedings of the 6th International
Conference on Learning Representations, Workshop Track Proceedings, 2018.

[18] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation.
[19] S. Jasper, L. Hugo, A. Ryan P., Practical bayesian optimization of machine

learning algorithms, Neural Information Processing Systems(NIPS’12).
[20] M. Lindauer, F. Hutter, Warmstarting of model-based algorithm configuration,

in: Association for the Advancement of Artificial Intelligence(18’AAAI), 2018,
pp. 1355–1362.

[21] N. Hansen, The CMA Evolution Strategy: A Comparing Review, Springer, Berlin,
2006.

[22] L. Ilya, H. Frank, Cma-es for hyperparameter optimization ofdeep neural
networks, International Conference on Learning Representations workshop.

[23] L. Li, K.G. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A
novel bandit-based approach to hyperparameter optimization, J. Mach. Learn.
Res. 18 (2017), pp. 185:1–185:52.

[24] S. Falkner, A. Klein, F. Hutter, BOHB: robust and efficient hyperparameter
optimization at scale, in: Proceedings of the 35th International Conference on
Machine Learning, 2018, pp. 1436–1445.

[25] C. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (1992) 279–292.
[26] C. Tessler, Y. Efroni, S. Mannor, Action robust reinforcement learning and

applications in continuous control, in: Proceedings of the 36th International
Conference on Machine Learning, 2019, pp. 6215–6224.

[27] H. Cuayáhuitl, D. Lee, S. Ryu, Y. Cho, S. Choi, S.R. Indurthi, S. Yu, H. Choi, I.
Hwang, J. Kim, Ensemble-based deep reinforcement learning for chatbots,
Neurocomputing 366 (2019) 118–130, https://doi.org/10.1016/j.
neucom.2019.08.007.

[28] F. Li, Q. Jiang, S. Zhang, M. Wei, R. Song, Robot skill acquisition in assembly
process using deep reinforcement learning, Neurocomputing 345 (2019) 92–
102, https://doi.org/10.1016/j.neucom.2019.01.087.

[29] M.P. Deisenroth, C.E. Rasmussen, Pilco: A model-based and data-efficient
approach to policy search., in: International Conference on International
Conference on Machine Learning, 2011.

http://refhub.elsevier.com/S0925-2312(20)31052-3/h0010
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0010
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0010
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0010
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0015
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0015
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0030
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0030
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0035
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0035
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0035
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0045
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0045
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0045
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0045
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0050
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0050
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0050
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0050
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0055
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0055
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0055
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0060
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0060
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0070
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0070
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0070
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0075
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0075
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0075
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0085
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0085
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0085
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0085
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0100
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0100
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0100
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0100
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0105
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0105
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0105
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0115
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0115
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0115
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0120
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0120
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0120
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0120
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0125
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0130
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0130
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0130
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0130
https://doi.org/10.1016/j.neucom.2019.08.007
https://doi.org/10.1016/j.neucom.2019.08.007
https://doi.org/10.1016/j.neucom.2019.01.087

J. Wu et al. / Neurocomputing 409 (2020) 381–393 393
[30] R.S. Sutton, Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming - machine learning proceedings
1990, in: Proc of International Conference on Machine Learning, 1990.

[31] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, P. Abbeel, Model-ensemble trust-
region policy optimization, International Conference on Learning
Representations(18’ICLR).

[32] B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, 2017.
[33] H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture search by

network transformation, in, in: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018, pp. 2787–2794.

[34] J. Schmidhuber, Reinforcement learning upside down: Don’t predict rewards –
just map them to actions, arXiv:1912.02875.

[35] X. Chang, Q. Tao, W. Gang, L. Tie-Yan, Reinforcement learning for learning rate
control, arXiv preprint arXiv:1705.11159.

[36] S. John, L. Sergey, A. Pieter, J. Michael I., M. Philipp, Trust region policy
optimization, International Conference on Machine Learning(15’ICML).

[37] H. Tuomas, Z. Aurick, H. Kristian, T. George, H. Sehoon, T. Jie, K. Vikash, Z.
Henry, G. Abhishek, A. Pieter, L. Sergey, Soft actor-critic algorithms and
applications, arXiv preprint arXiv:1812.05905.

[38] C. Tianqi, H. Tong, B. Michael, xgboost: Extreme gradient boosting, Available
from: https://github.com/dmlc/xgboost.

[39] S. John, W. Filip, D. Prafulla, R. Alec, K. Oleg, Proximal policy optimization
algorithms, arXiv preprint arXiv:1707.0634.

[40] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R.Y. Chen, C. Xi, T. Asfour, P.
Abbeel, M. Andrychowicz, Parameter space noise for exploration, International
Conference on Learning Representations(18’ICLR).

[41] J. Vanschoren, J.N. van Rijn, B. Bischl, L. Torgo, Openml: networked science in
machine learning, CoRR abs/1407.7722. arXiv:1407.7722.

[42] C. Yao, D. Cai, J. Bu, G. Chen, Pre-training the deep generative models with
adaptive hyperparameter optimization, Neurocomputing 247 (2017) 144–155,
https://doi.org/10.1016/j.neucom.2017.03.058.

[43] P. Fabian, V. Gael, G. Alexandre, M. Vincent, T. Bertrand, G. Olivier, B. Mathieu,
P. Peter, V.D. RonWeiss, V. Jake, P. Alexandre, C. David, B. Matthieu, P.
Matthieu, D. Edouard, Scikit-learn: Machine learning in python, J. Mach. Learn.
Res. (2011) 2825–2830.

[44] J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (2006) 1–30.

[45] Tensorflow, https://github.com/tensorflow/models/.
[46] L. Yann, B. Leon, B. Yoshua, H. Patrick, Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.
[47] H. Xiao, R. Kashif, V. Roland, Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747.
Jia Wu received the M.S. degree in Computer Science
from University of Electronic Science and Technology of
China in 2006 and the Ph.D. degree in Automation from
Université de Technologies Belfort-Montbéliard
(UTBM), France in 2011. She is currently an associate
professor with University of Electronic Science and
Technology of China. Her main research interests are
deep reinforcement learning, meta-learning and intel-
ligent transportation systems.
SenPeng Chen is currently a graduate student from
University of Electronic Science and Technology of
China. His main research are deep reinforcement
learning, meta-learning and data analysis.
XiYuan Liu is currently a graduate student from
University of Electronic Science and Technology of
China. His main research are deep reinforcement
learning, meta-learning and data analysis.

http://refhub.elsevier.com/S0925-2312(20)31052-3/h0165
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0165
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0165
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0165
https://doi.org/10.1016/j.neucom.2017.03.058
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0215
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0215
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0215
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0215
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0220
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0220
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0230
http://refhub.elsevier.com/S0925-2312(20)31052-3/h0230

	Efficient hyperparameter optimization through model-based reinforcement learning
	1 Introduction
	2 Related work
	2.1 HPO Problem
	2.2 Reinforcement learning

	3 HPO Based on RL
	3.1 Sequential decision problem
	3.2 MDP formulation
	3.3 Design of the agent
	3.4 Sampling from [$]{\cal{N}}(\mu , \sigma)[$]
	3.5 Training the agent

	4 Efficiency improving based on a model
	4.0.1 Structure and training of the model
	4.0.2 Controlling the model use

	5 Overall framework
	6 Experiments
	6.1 Datasets
	6.2 Comparison methods
	6.3 Evaluation criterion
	6.4 Experimental details
	6.5 Compare with other methods
	6.5.1 HPO for XGBoost classifier
	6.5.1.1 Search space
	6.5.1.2 Results

	6.5.2 HPO for convolutional neural network
	6.5.2.1 Search space
	6.5.2.2 Results

	6.6 Study of agent’s structure
	6.6.1 Experiments
	6.6.2 Results and analysis

	6.7 Effect of optimization order
	6.7.1 Experiments
	6.7.2 Results and analysis

	6.8 Effectiveness of the model
	6.8.1 Experiments
	6.8.2 Results and analysis

	6.9 Advantages of dynamical control of model use
	6.9.1 Experiments
	6.9.2 Results and analysis

	7 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

