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In this paper, optimal tracking control for nonzero-sum games of multi-player continuous-time nonlinear
systems is investigated by using a novel reinforcement learning scheme. Based on the multi-player non-
linear systems and reference signal, we firstly formulate the tracking problem by constructing an aug-
mented multi-player nonlinear systems. The optimal tracking control problem for nonzero-sum games
of original multi-player nonlinear systems is thus transformed into solving the coupled Hamilton–
Jacobi equations of the augmented multi-player nonlinear systems. The novel neural networks (NNs) –
based online reinforcement learning (RL) method can learn the solution to coupled Hamilton–Jacobi
equations in a forward-in-time manner without requiring any value, policy iterations. In order to relax
the dependence of the traditional reinforcement learning method on Persistence of Excitation (PE) con-
ditions, historical data from a period of time has been collected to design NNs tuning laws. The drift
dynamic of the augmented system is not required in our scheme. The Uniformly Ultimately
Boundedness (UUB) of NNs weight errors and closed-loop augmented system states are rigorous proved.
Numerical simulation examples are given to demonstrate the effectiveness of our proposed scheme.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

With the development of artificial intelligence, game theory has
played an important role in many fields, such as economics [1,2],
multi-agent collision avoidance [3], network security [4,5], cyber-
physical security [6–8]. The study of nonzero-sum game theory
can be originally traced back to [9]. Game theory provides an ideal
environment to investigate multi-player optimal decision and con-
trol problems [10–13]. In a multi-player nonzero-sum game, each
player chooses an optimal control input to minimize indepen-
dently its own performance objective, which depends on the
actions of itself and all the other players [14]. The set of the optimal
control inputs corresponds to the Nash equilibrium. The Nash equi-
librium solution for nonlinear systems game can be obtained by
solving coupled Hamilton–Jacobi equations, and they get reduced
to solve coupled algebraic Riccati equations for linear systems
game. However, as we all know, owing to the nonlinear nature
and the coupling of players, it is extremely difficult to solve
coupled Hamilton–Jacobi equations or coupled algebraic Riccati
equations. Therefore, many approximation-based intelligent
methods are developed to tackle multi-player non-zero-sum games.

Reinforcement learning is a biologically inspired approximate
intelligent method and can handle optimization problems with
model uncertainty or unknown dynamics, adaptive dynamic pro-
gramming [15–19] or approximate dynamic programming (ADP)
[20,21] also belongs to the category of reinforcement learning,
which overcomes the disadvantage of traditional dynamic pro-
gramming, such as the curse of modeling and the curse of dimen-
sionality [22–24].

Reinforcement learning-basedmulti-player nonzero-sumgames
have been of considerable interest to the control system community
during the past fewdecades. In [25], the near-Nash equilibriumcon-
trol strategies are investigated for a class of discrete-time nonlinear
systems subjected to the round-robin protocol. The authors in [26]
develop a novel Q-learning algorithm to solve the problem of
N-player non-zero sum Nash games of unknown continuous-time
linear systems. In [27], the authors present an online policy
iteration-based reinforcement learning algorithm to solve the
continuous-time multi-player nonzero-sum game for nonlinear
and linear systems. Data-driven reinforcement learning methods
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areproposed to solve thediscrete-timenonzero-sumgames for non-
linear systems [28,29] and continuous-time nonzero-sumgames for
nonlinear systems [30,31]. A novel actor-critic-identifier structure
reinforcement learning method is used to approximate N-player
nonzero sum game solutions for uncertain continuous-time nonlin-
ear systems in [32]. A novel policy iteration-based ADP method is
proposed to tackle the cooperative game issue of discrete-time
multi-player systems with control input constraints in [33]. The
authors of [34] present an off-policy integral reinforcement learning
method to solve nonzero sum games for unknown continuous-time
nonlinear systems. In [35,14], optimal control of nonzero-sumgame
systems with unknown Dynamics is well tackled via ADP method.
The authors of [36] develop a single-network ADP scheme to solve
the nonzero-sum differential games of continuous-time nonlinear
systems. It is easy to see that all of the above studies are about opti-
mal control of multi-player nonzero-sum games. And the RL meth-
ods in these studies are mostly based on policy iterations or value
iterations. As we all know, policy iterations usually require initial
admissible control, while value iterations generally converge very
slowly. Moreover, the existing reinforcement learning methods
require PE conditions for an initial period of time. These characteris-
tics limit the online practical application of these existing RL meth-
ods. In addition, RL methods have been widely used to tackle the
multi-player nonzero-sumgame and optimal tracking control prob-
lem, such as H1 optimal tracking control for linear discrete-time
systems [37], optimal tracking control of nonlinear partially-
unknown systems[38,39], optimal tracking control for nonlinear
discrete-time MIMO systems [40], but few results consider solving
the optimal tracking control for nonzero-sum games of multi-
player systems. However, the optimal tracking control problem
based on multiplayer non-zero-sum game has its theoretical and
application value [2]. In [41], optimal tracking problem based on
multiplayer non-zero-sum games for discrete-time linear systems
is addressedbyusing amodel-free off-policy reinforcement learning
algorithm. Studying the optimal tracking control for nonzero-sum
games of multi-player systems is actually solving the coupled
Hamilton–Jacobi equations. As we all know, it is extremely difficult
or impossible to obtain the analytical solution of the coupledHamil-
ton–Jacobi equations.

Therefore, this paper develops a new reinforcement learning
method without requiring any value, policy iterations to deal with
the optimal tracking control for non-zero-sum games of multi-
player nonlinear systems. The main innovations of this note are
summarized in the following five aspects.

1) To our best knowledge, optimal tracking control for multi-
player non-zero-sum games for nonlinear systems may be the
first to be studied.
2) A novel NNs-based online reinforcement learning scheme is
proposed to approximately solve the coupled Hamilton–Jacobi
equations of augmented continuous-time multi-player systems.
In our scheme, historical data from a period of time has been
collected to relax the traditional PE condition and the stability
of systems is considered during the learning. A new NNs weight
tuning laws is thus proposed.
3) The optimal solution of coupled Hamilton–Jacobi equations
are learned in a forward-in-time manner instead of traditional
value iterations or policy iterations manners. So our designed
scheme can be thus better applied online.
4) The system drift dynamics is not required in our developed
scheme. That is to say, our proposed scheme allows the multi-
player nonlinear systems to be partially unknown.
5) The UUB of NNs weight errors and closed-loop augmented
system states are rigorous proved. The value functions and
the control inputs for players are also proved to be converged
to approximately optimal value functions and optimal control
inputs with a small bounded error.

The structure of this note is described as follows. In Section 2,
we introduce the problem formulation. In Section 3, a NNs-based
online reinforcement learning scheme is presented to solve the
coupled Hamilton–Jacobi equations of augmented multi-player
systems. In Section 4, the stability and convergence of our scheme
are provided by Lyapunov approach. Simulation studies on linear
systems and nonlinear systems are given to demonstrate the effec-
tiveness of our design scheme in Section 5. Section 6 concludes this
note and gives the direction of future research.

2. Problem formulation

Consider the following N-player continuous-time nonlinear sys-
tems game

_x tð Þ ¼ f x tð Þð Þ þ
XN
j¼1

gj x tð Þð Þuj tð Þ ð1Þ

where x tð Þ 2 Rn is the measurable system states, uj tð Þ 2 Rmj is each
control input or player, f xð Þ 2 Rn is the system drift dynamics,
gj xð Þ 2 Rn�mj are the system input dynamics.

Assumption 1. f xð Þ; gj xð Þ is locally Lipschitz and f 0ð Þ ¼ 0.

f xð Þk k 6 bf xk k; gj xð Þ�� �� 6 bgj, where bf and bgj are constants.

The desired reference signal is generated by the following con-
tinuous bounded Lipschitz command

_r tð Þ ¼ f d r tð Þð Þ ð2Þ
where r tð Þ 2 Rn is the reference signal and the reference signal
needs only to be stable in the sense of Lyapunov, not necessarily
asymptotically stable.

The objective of this paper is to find an N-tuple of optimal con-

trol inputs u�
1;u

�
2; . . . ;u

�
N

� �
with i 2 N̂ ¼ 1;2; . . . ;Nf g so as to make

x tð Þ follow the reference signal r tð Þ in an optimal manner which
can minimize a predefined cost function for each player i.

In order to achieve tracking of the reference signal, define the
tracking error as follow

er tð Þ ¼ x tð Þ � r tð Þ ð3Þ
The infinite-horizon predefined cost function associated with

each player i (i 2 N̂) are given as follow

Ji er 0ð Þ;u1;u2; . . . ;uNð Þ

¼ R1
0 e�c s�tð Þ eTr sð ÞQier sð Þ þ

XN
j¼1

uT
j sð ÞRijuj sð Þ

 !
ds

¼ R1
0 e�c s�tð ÞUi er sð Þ;u1 sð Þ;u2 sð Þ; . . . ;uN sð Þð Þds

ð4Þ

where Qi ¼ QT
i P 0; Rii ¼ RT

ii > 0; Rij ¼ RT
ij P 0; c is discount factor.

According to (3), the tracking error dynamic can be rewritten as

_er tð Þ ¼ f er tð Þ þ r tð Þð Þ þ
XN
j¼1

gj er tð Þ þ r tð Þð Þuj tð Þ � f d r tð Þð Þ ð5Þ

Then, we can define the augmented state n ¼ eTr rT
� �T 2 R2n,

and the augmented system dynamics comprised of (2) and (5)
can be thus written as

_n tð Þ ¼ F n tð Þð Þ þ
XN
j¼1

Gj n tð Þð Þuj tð Þ ð6Þ
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where F n tð Þð Þ ¼ f er þ rð Þ � f d rð Þ
f d rð Þ
� �

and Gj n tð Þð Þ ¼ gj er þ rð Þ
0

� �
.

Assumption 2. F nð Þk k 6 bF nk k; Gj nð Þ�� �� 6 bGj, where bF and bGj are
constants.

The infinite-horizon predefined cost function corresponding to

(6) associated with each player i (i 2 N̂) are defined as follow

Ji n 0ð Þ;u1;u2; . . . ;uNð Þ

¼ R1
0 e�c s�tð Þ nT sð ÞQin sð Þ þ

XN
j¼1

uT
j sð ÞRijuj sð Þ

 !
ds

¼ R1
0 e�c s�tð ÞUi n sð Þ;u1 sð Þ;u2 sð Þ; . . . ; uN sð Þð Þds

ð7Þ

where �Qi ¼ Qi 0n�n

0n�n 0n�n

� �
., Rii ¼ RT

ii > 0;Rij ¼ RT
ij P 0.

Remark 1. Obviously, the cost function (7) is identical to the cost
function (4). Therefore, the optimal tracking control for nonzero-
sum games of (1) can be obtained by solving the optimal control
for nonzero-sum games of (6).
Definition 1. [27] (Admissible control). For i 2 N̂, the feedback con-
trol input ui is admissible with respect to (7) on a compact set
X 2 Rn, if ui is continuous on X;ui 0ð Þ ¼ 0;ui stabilizes (6) on X,
and (7) is finite 8x0 2 X.

Given an admissible feedback control input ui with i 2 N̂, the
value functions are defined as

Vi n;u1;u2; . . . ;uNð Þ

¼ R1
t e�c s�tð Þ nTQinþ

XN
j¼1

uT
j Rijuj

 !
ds

¼ R1
t e�c s�tð ÞUi n;u1; u2; . . . ;uNð Þds

ð8Þ

Definition 2. [10] A N-tuple of control inputs u�
1;u

�
2; � � � ;u�

N

� �
with

i 2 N̂ is said to constitute a Nash equilibrium solution for an N-
player game, if the N inequalities in the following are satisfied

J�i ¼ Ji u�
1;u

�
2; . . . ;u

�
N

	 

6 Ji u�

1;u
�
2; . . . ;ui; . . . ;u�

N

	 
 ð9Þ

Assume that value functions (8) are continuously differentiable,

for i 2 N̂. We use Leibniz’s rule to differentiate Vi along the aug-
mented system dynamics (6). The infinitesimal version of (8) are
thus obtained as

0 ¼ Ui n;u1;u2; . . . ;uNð Þ � cVi þrVT
i F nð Þ þ

XN
j¼1

Gj nð Þuj

 !
ð10Þ

where Vi 0ð Þ ¼ 0;rVi ¼ @Vi
@n ;rVT

i denotes the transpose of rVi.
Define the Hamiltonian functions as

Hi n;rVi;u1;u2; . . . ;uNð Þ ¼ Ui n;u1;u2; . . . ; uNð Þ

�cVi þrVT
i F nð Þ þ

XN
j¼1

Gj nð Þuj

 !
; i 2 N̂

ð11Þ

According to the stationarity conditions @Hi
@ui

¼ 0 [27], for i 2 N̂,

the associated state feedback control inputs can be given by
ui nð Þ ¼ �1
2
R�1
ii GT

i nð ÞrVi; i 2 N̂ ð12Þ
By substituting (12) into (10), the coupled Hamilton–Jacobi
equations of augmented multi-player nonlinear systems (6) can
be thus obtained as

0 ¼ rVT
i F nð Þ þ nTQin� cVi

� 1
2rVT

i

XN
j¼1

Gj nð ÞR�1
jj GT

j nð ÞrVj

ð13Þ

þ 1
4

XN
j¼1

rVT
j Gj nð ÞR�T

jj RijR
�1
jj GT

j rVj;Vi 0ð Þ ¼ 0 ð14Þ
Now, it is easy to see that optimal tracking control for the
continuous-time multi-player non-zero sum game is transformed
to solve the coupled Hamilton–Jacobi equations of augmented
multi-player nonlinear systems (6). However, due to the nonlin-
ear nature, the coupled Hamilton–Jacobi equations can not gener-
ally be solved directly. In the rest of this note, we will be
committed to solving the coupled Hamilton–Jacobi equations of
augmented multi-player nonlinear systems via reinforcement
learning.

3. NNs-based online reinforcement learning scheme

In this section, we will present a novel NNs-based online rein-
forcement learning scheme to tackle the coupled Hamilton–Jacobi
equations of augmented multi-player nonlinear systems.

In line with the Weierstrass high-order approximation theorem

[42,43], using a single-layer NNs, for each i 2 N̂, the value function
Vi and rVi can be approximately represented as
Vi nð Þ ¼ WT
i ui nð Þ þ di nð Þ ð15Þ

rVi nð Þ ¼ rui nð ÞTWi þrdi nð Þ ð16Þ
where ui nð Þ are suitable linearly independent basis function
vector including L items. di nð Þ are the approximate errors.
Wi 2 RL�1 are the ideal weight parameter vector.

rui nð Þ ¼ @ui nð Þ
@n ;rdi nð Þ ¼ @di nð Þ

@n .

Assumption 3. ui nð Þ;rui nð Þ; di nð Þ and rdi nð Þ are bounded such
that ui nð Þ�� �� 6 bui

; rui nð Þ�� �� 6 brui
; di nð Þk k 6 bdi and

rdi nð Þk k 6 brdi .

By substituting (15) and (16) into (14), and noting (12) and
making some mathematical transformation, approximation-based
coupled Hamilton–Jacobi equations can be obtained as follow

0 ¼ nTQin� 1
2W

T
i rui

XN
j¼1

Gj nð ÞR�1
jj GT

j nð ÞruT
j Wj

þ 1
4

XN
j¼1

WT
j rujGj xð ÞR�T

jj RijR
�1
jj GT

j nð ÞruT
j Wj

ð17Þ

þWT
i ruiF nð Þ � cWT

i ui nð Þ þ dHJi;Vi 0ð Þ ¼ 0 ð18Þ
where the coupled Hamilton–Jacobi approximation error dHJi owing
to the function approximate error is represented as
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dHJi ¼ rdTi F nð Þ � cdi nð Þ � 1
2rdTi

XN
j¼1

GjR
�1
jj GT

j rdj

� 1
2rdTi

XN
j¼1

GjR
�1
jj GT

j ruT
j Wj

� 1
2ruT

i Wi

XN
j¼1

GjR
�1
jj GT

j rdj

þ 1
4

XN
j¼1

rdTj GjR
�T
jj RijR

�1
ij GT

j ruT
j Wj

þ 1
4

XN
j¼1

rdTj GjR
�T
jj RijR

�1
ij GT

j rdj

ð19Þ

þ 1
4

XN
j¼1

WT
j rujGjR

�T
jj RijR

�1
jj GT

j rdj ð20Þ

The authors of [43,44] have concluded that the dHJi is bounded
on a compact set for fixed L, i.e. dHJi

�� �� 6 bdHJi .
However, the ideal weight parameter vectors Wi is unknown,

therefore, (15) and (16) can be approximated as followsbV i nð Þ ¼ ŴT
i ui nð Þ ð21Þ

rV̂ i ¼ rui nð ÞTŴi ð22Þ
where Ŵi is the estimation value of Wi.

The control inputs can be thus represented as

ui nð Þ ¼ �1
2
R�1
ii GT

i ru nð ÞTcWi ð23Þ

By substituting (21)–(23) into (11), we can obtain the approxi-
mate Hamiltonian as follow

bHi n;cWi

� �
¼ nTQ in� 1

2
cWT

i rui

XN
j¼1

Gj xð ÞR�1
jj GT

j nð ÞruT
j
cWj

þ 1
4

XN
j¼1

cWT
j rujGj xð ÞR�T

jj RijR
�1
jj GT

j nð ÞruT
j
cWj

�ccWT
i ui nð Þ þ cWT

i ruiF nð Þ

ð24Þ

Inspired by [45,46], Ŵi is tuned to minimize bHi n;cWi

� �
and we

choose the error functions as follow

Ei ¼ 1
2
dTbHi

dbHi
ð25Þ

where dbHi
¼ R t

t�DT
bHi n;cWi

� �
ds;DT > 0 is the sampling time.

Remark 2. Choosing bHi n;cWi

� �
as the goal of minimization does

not guarantee the closed-loop stability of the system (6) during the
learning process, so we need additional consider its stability in the
tuning laws [46].

Inspired by [45], in order to minimize the error functions (25)
and guarantee the closed-loop stability of the system (6) simulta-
neously, we introduce the following tuning laws
_cWi ¼ �a1iji

jT
i
jiþ1ð Þ2

R t
t�DT nTQ in� ccWT

i ui nð Þ
hn

þ 1
4

XN
j¼1

cWT
j rujGjR

�T
jj RijR

�1
jj GjruT

j
cWj

#
dsþ Dui

cWi

)

� 1
2b n; ûið Þq1i

XN
j¼1

ruj xð ÞGjR
�1
jj GT

j n

ð26Þ
where a1i and q1i are constant parameters that need to be designed,

8i 2 N̂.
The first item of (26) can be obtained by applying gradient des-

cent in (25), and using the chain rule and normalizing [47]. The
second item of (26) is used to guarantee the stability of the
closed-loop system, which is defined as
b n; ûið Þ ¼ 0; if n tð ÞTn tð Þ � n t � DTð ÞTn t � DTð Þ 6 0
1; else

(

where

ji ¼
R t
t�DT rui nð Þ F nð Þ þ

XN
j¼1

Gjûj

" #
ds

¼ R t
t�DT rui nð Þ _nds

¼ R t
t�DT d ui nð Þð Þ

¼ ui n tð Þð Þ �ui n t � DTð Þð Þ
¼ Dui n tð Þð Þ
In order to ensure the convergence of Ŵi, inspired by [48,49],
we introduce a concurrent learning technique to modify the tuning
laws (26). The concurrent learning technique needs the stored his-

tory data and current data to tune Ŵi simultaneously. Then, define
the approximate Hamiltonian at the past history time tk using the

current weight’s estimation Ŵi as bHk
i n tkð Þ; ûið Þ; k ¼ 1; . . . ; l. Use the

same derivation as (26), we can obtain the following tuning laws at
the past history time tk
_cWi tkð Þ¼ �a1ijk
i

jkT
i
jk
i
þ1ð Þ2

R tk
tk�DT nTQ in�ccWT

i ui nð Þ
hn

þ1
4

XN
j¼1

cWT
j rujGjR

�T
jj RijR

�1
jj GjruT

j
cWj

#
dsþDui tkð ÞcWi

)

�1
2b x tkð Þ; ûið Þq1i

XN
j¼1

ruj nkð ÞGj n tkð Þð ÞR�1
jj GT

j n tkð Þð Þn tkð Þ

ð27Þ

where

b n tkð Þ; ûið Þ

¼
0; if n tkð ÞTn tkð Þ � n tk � DTð ÞTn tk � DTð Þ 6 0
1; else

8><>:
and

jk
i ¼ R tk

tk�DT rui nð Þ F nð Þ þ
XN
j¼1

Gjûj

" #
ds

¼ R tk
tk�DT rui nð Þ _nds

¼ R tk
tk�DT d ui nð Þð Þ

¼ ui n tkð Þð Þ �ui n tk � DTð Þð Þ
¼ Dui tkð Þ

Now, the modified weight tuning laws for Ŵi can be given as
follow
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_cWi ¼ �a1iji

jT
i
jiþ1ð Þ2

R t
t�DT nTQ in� ccWT

i ui nð Þ
hn

þ 1
4

XN
j¼1

cWT
j rujGjR

�T
jj RijR

�1
jj GjruT

j
cWj

#
dsþ Dui

cWi

)

� 1
2 b n; ûið Þq1i

XN
j¼1

ruj nð ÞGjR
�1
jj GT

j n

þ
Xl

k¼1

�a1ijk
i

jkT
i
jk
i
þ1ð Þ2

R tk
tk�DT nTQin� ccWT

i ui nð Þ
hn

þ 1
4

XN
j¼1

cWT
j rujGjR

�T
jj RijR

�1
jj GjruT

j
cWj

#
dsþ Dui tkð ÞcWi

)

� 1
2 b n tkð Þ; ûið Þq1i

XN
j¼1

ruj tkð ÞGj n tkð Þð ÞR�1
jj GT

j n tkð Þð Þn tkð Þ
+

ð28Þ

According to ji and jk
i , we have

Dui nð ÞTcWi

¼ R t
t�Dt

cWT
i rui nð Þ F nð Þ � 1

2

XN
j¼1

GjR
�1
jj GT

j ruj nð ÞTcWi

" #
ds

ð29Þ

Dui tkð ÞTcWi

¼ R tk
tk�Dt

cWT
i rui nð Þ F nð Þ � 1

2

XN
j¼1

GjR
�1
jj GT

j ruj nð ÞTcWi

" #
ds

ð30Þ

Define the estimation error of weight tuning laws Ŵi asfWi ¼ Wi �cWi, then
_fWi ¼ � _cWi. Therefore, according to (28), the

weight estimation error dynamics can be represented as

_fWi tð Þ ¼ �a1i �ji�jT
i þ

Xl

k¼1

�jk
i
�jkT
i

 !fWi tð Þ

þa1i
�ji
pi
dHi þ a1i

Xl

k¼1

�jk
i

pk
i
dHk

i

ð31Þ

where �ji ¼ ji
jT
i
jiþ1 ;

�jk
i ¼

jk
i

1þjkT
i
jk
i
; pi ¼ jT

i ji þ 1;pk
i ¼ jkT

i jk
i þ 1 and

dHi ¼
R t
t�DT

"
nTQ in� ccWT

i ui nð Þ þ cWT
i ruiF nð Þ

� 1
2
WT

i rui

XN
j¼1

Gj nð ÞR�1
jj GT

j nð ÞruT
j Wj

þ 1
4

XN
j¼1

WT
j rujGj nð ÞR�T

jj RijR
�1
jj GT

j nð ÞruT
j Wj

#
ds

dHk
i
¼ R tk

tk�DT

"
nT �Qin� ccWT

i ui nð Þ þ cWT
i ruiF nð Þ

� 1
2
WT

i rui

XN
j¼1

Gj nð ÞR�1
jj GT

j nð ÞruT
j Wj

þ 1
4

XN
j¼1

WT
j rujGj nð ÞR�T

jj RijR
�1
jj GT

j nð ÞruT
j Wj

#
ds

Assumption 4. Assume that dHi and dHk
i
are bounded such that

dHik k 6 bdHimax ; dHk
i

��� ��� 6 bd
Hk
i
max

.

Remark 3. Let Xi ¼ �j1
i ; . . . ; �jl

i

� �
store the past time history data

and rank Xð Þ ¼ L and note that the number of sampled data in Xi

is a fixed value l > L.
Remark 4. Define Hi ¼ �ji�jT
i þ

Pl
k¼1�jk

i
�jkT
i , if Remark 3 is satisfied,

then Hi > 0.

So far, the NNs-based online reinforcement learning algorithm
is given in the following.

Algorithm 1. (NNs-based online reinforcement learning
algorithm)

Step 1: Initializaiton: initial n0, learning factors a1i and a2i,
basis function vector ui nð Þ, sampling time interval DT , NNs

initial weight cWi 0ð Þ;Qi;Rij for 8i; j 2 N, initial time t0, the
maximum running time of the algorithm tstop.

Step 2: Compute bV i t � DTð Þ; ûj t � DTð Þ and apply them to (6).

Then, update cWi tð Þ by (28) and compute bV i tð Þ; ûj tð Þ
according to cWi tð Þ.

Step 3: t ¼ t þ DT , repeat Step 2 until t P tstop orcWi t þ DTð Þ �cWi tð Þ
��� ��� 6 t, where t is a sufficiently small

positive constant.
Step 4: End.

Remark 5. In our proposed Algorithm 1, the drift dynamics F nð Þ of
systems (6) is not required.
4. The analysis of stability and convergence

In this section, the main results of this paper are summarized as
the following theorem.

Theorem 1. Consider the system dynamics (6) with the coupled
Hamilton–Jacobi Eqs. (14), let the control inputs be provided by (23).

Let the tuning laws for Ŵi be given by (28). The Remark 3 is satisfied.

Then, the closed-loop system states n and the NNs errors fWi are UUB

for a sufficiently large L. Moreover, the approximate cost function V̂ i

and control inputs ûi are converged to the optimal value, i.e.

V�
i � bV i

��� ��� < rVi
; u�

i � ûi
�� �� < rui ;rVi

;rui are small positive constants.

Proof: Choose the following Lyapunov function

L1 tð Þ ¼ 1
2

Z t

t�Dt
nTndsþ 1

2

XN
i¼1

fWT
i
fWi ð32Þ

The derivative of L tð Þ is given by

_L1 tð Þ ¼
Z t

t�Dt
nT _ndsþ

XN
i¼1

fWT
i
_fWi ð33Þ

When b n; ûj
	 
 ¼ 0, that is n tð ÞTn tð Þ � n t � DTð ÞTn t � DTð Þ 6 0, we

have the following relationship

1
2 n tð ÞTn tð Þ � n t � DTð ÞTn t � DTð Þ
� �

¼ R t
t�DT n

T _nds

¼ R t
t�DT n

T F nð Þ þ
XN
j¼1

Gj nð Þûj

 !
ds 6 0

ð34Þ

According to (34), where exists a positive constant v for the fol-
lowing relationship satisfied
Z t

t�DT
nT F nð Þ þ

XN
j¼1

Gj nð Þûj

 !
ds 6 �v

Z t

t�DT
nk kds ð35Þ
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By substituting (31) and (35) into (33), we have

_L1 tð Þ ¼ R t
t�DT n

T F nð Þ þ
XN
j¼1

Gj nð Þûj

 !
dsþ

XN
i¼1

fWT
i
_fWi

6 �v R t
t�DT nk kdsþ

XN
i¼1

�a1ifWT
i

�ji�jT
i þ

Xl

k¼1

�jk
i
�jkT
i

 !fWi

"

þ a1ifWT
i

�ji

pi
dHi þ a1ifWT

i

Xl

k¼1

�jk
i

pk
i

dHk
i

#

¼ �v
Z t

t�DT
nk kds�

XN
i¼1

a1i
fWT

i Hi
fWi

h i
þ
XN
i¼1

a1ifWT
i

�ji

pi
dHi þ a1ifWT

i

Xl

k¼1

�jk
i

pk
i

dHk
i

" #

¼ �1þ � � � þ 1
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{N

N
v
Z t

t�DT
nk kds

þ
XN
i¼1

fWT
i Hi

fW � 1þ a1ið ÞfWT
i Hi

fWi

h i
þ
XN
i¼1

a1ifWT
i

�ji

pi
dHi þ a1ifWT

i

Xl

k¼1

�jk
i

pk
i

dHk
i

" #
ð36Þ

The derivative of Lyapunov function _L tð Þ is negative provided
thatZ t

t�DT
nk kds P max

i2N
Nkmax Hið Þ

v
fWi

��� ���2� �
¼ bU1i ð37Þ

fWi

��� ���P
Na1i lþ 1ð ÞbdHi

1þ a1ið Þkmin Hið Þ ¼ U1i; i 2 N̂ ð38Þ

where kmax Hið Þ and kmin Hið Þ represent the maximum eigenvalue
and minimum eigenvalue of Hi, respectively.

When b n; ûj
	 
 ¼ 1, we add Vi nð Þ � 0 to the Lyapunov function

(32) as follows

L1 tð Þ ¼ 1
2
q1in

Tnþ 1
2

XN
i¼1

fWT
i
fWi þ Vi nð Þ ð39Þ

where Vi nð Þ is a local smooth solution of the coupled Hamilton–
Jacobi Eqs. (14). Then, taking the derivative of (39) and noting (36)

_L1 tð Þ ¼ q1in
T _nþ

XN
i¼1

fWT
i
_fWi � nTQin�

XN
j¼1

uT
j Rijuj

6 q1ibF nk k2 þ
XN
i¼1

�a1ifWT
i Hi

fWi þ a1i
fWT

i
�ji
pi
dHi þ a1i

fWT
i

Xl

k¼1

�jk
i

pk
i
dHk

i

" #
�kmin Qi

� �
nk k2 � 1

2 q1ibrui
Kmin nk k

¼ q1ibF � kmin Qi

� �� �
nk k2

þ
XN
i¼1

�a1ifWT
i Hi

fWi þ a1i
fWT

i
�ji
pi
dHi þ a1i

fWT
i

Xl

k¼1

�jk
i

pk
i
dHk

i

" #

� 1
2 q1ibrui

Kmin nk k2 þ 1
2

� �2
� nk k2 � 1

4

� �
¼ q1ibF � kmin Qi

� �
þ 1

2 q1ibrui
Kmin

� �
nk k2

� 1
2 q1ibrui

Kmin nk k2 þ 1
2

� �2
þ 1

8 q1ibrui
KminXN

i¼1

�a1i
fWT

i Hi
fWi þ a1ifWT

i
�ji
pi
dHi þ a1ifWT

i

Xl

k¼1

�jk
i

pk
i
dHk

i

" #
6 q1ibF � kmin Qi

� �
þ 1

2 q1ibrui
Kmin

� �
nk k2

� 1
2 q1ibrui

Kmin nk k2 þ 1
2

� �2
þ 1

8 q1ibrui
KminXN

i¼1

�a1ifWT
i Hi

fWi þ a1i lþ 1ð Þbd
Hk
i

fWi tð Þ
� �

ð40Þ
where K ¼PN
j¼1GjR

�1
jj GT

j and assume that Kmin 6 Kk k 6 Kmax. The

derivative of Lyapunov function _L tð Þ is negative provided that

nk k2 P max
i2N

q1ibrui
Kmin

4 2kmin Qi

� �
� 2q1ibf þ q1ibrui

Kmin

� �
24 35 ¼ bU2i ð41Þ

fWi

��� ���P
lþ 1ð Þbd

Hk
i
max

kmin Hið Þ ¼ U2i; i 2 N̂ ð42Þ

and q1ibF � kmin
�Qi
	 
þ 1

2 q1ibrui
Kmin < 0. In summary,

nk k2 P max bU1i; bU2i

n o
; fWi

��� ���P max U1i;U2if g;8i 2 N̂. The UUB of

augmented system states and the NNs weight estimation error

are thus proved. V �
i � bV i

��� ���6 fWi

��� ��� ui nð Þk kþ di nð Þk k6max bU1i; bU2i

n o
bui

¼ rVi
; u�

j � ûj

��� ��� 6 1
2

fWi

��� ��� rui nð Þk k þ rdi nð Þk k
� �

kmin R�1
ii

� �
bGj

6
1
2

max U1i;U2if gbrui
þ brdi

	 

kmin R�1

ii

� �
bGj

¼ ruj .

The proof is thus complete.

5. Numerical simulation results

In this section, two simulation examples including linear sys-
tems and nonlinear systems are given to verify the effectiveness
of the proposed scheme.

Example 1. In this example, consider the following linear systems
with two players from [50]

_x ¼ 0 0
0 �1

� �
xþ 2

1

� �
u1 þ

1
1

� �
u2

The desired reference signal is generated by the following command

_r tð Þ ¼ 0 2
�2 0

� �
r tð Þ

Let the initial state x0 ¼ 1;�1½ �T ;r0 ¼ 0:5;�0:5½ �T ;Q1 ¼ diag 1;1½ �;
Q2 ¼ 1;�1;�1;5½ �. R11 ¼ R12 ¼ 2;R21 ¼ R22 ¼ 1;a11 ¼ a12 ¼ 50;q11 ¼
q12 ¼ 0:001. DT ¼ 0:05; c ¼ 0:5. For 8i ¼ 1;2, the NNs activation
functions are selected as

ui n tð Þð Þ ¼ e21; e1e2; e1r1; e1r2; e
2
2; e2r1; e2r2; r

2
1; r1r2; r

2
2

� �T
and the initial NNs weight vectors Ŵi are randomly taken from
interval �1 1½ �. Fig. 1 shows the evolution process of critic NNs

weights for first player, and its eventually converge to cW ¼ 3:3625;½
�0:2917; �3:0856; �1:4389; �1:5522; �1:8288; �1:1222; 0:2882;

0:4685; 0:5138�T . Fig. 2 shows the evolution process of critic NNs

weights for second player, and its eventually converge to cW ¼
�1:2073;1:5556;4:1568;�0:7976;2:3899;3:8432;0:7976;�0:3229;½
0:1958;�0:5487�T . The evolution of tracking errors are shown in
Fig. 3. The evolution of (x� r) between system states and reference
signal are depicted in Fig. 4 and Fig. 5. The actual trajectory and the
reference trajectory are displayed in Fig. 6. The optimal control inputs
are plotted in Fig. 7.
Example 2. In this example, consider the following nonlinear sys-
tems with two players from [27]

_x ¼ f xð Þ þ g xð Þu1 þ g xð Þu2

f xð Þ ¼
x2
� 1

2 x1 � x2 þ 1
4 x2 cos 2x1ð Þ þ 2ð Þ2 þ 1

4 x2 sin 4x21
	 
þ 2

	 
2264
375
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Fig. 2. The evolution process of critic NNs weights for second player.

Fig. 1. The evolution process of critic NNs weights for first player.
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Fig. 4. The evolution of (x1 � r1).
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Fig. 3. The evolution of tracking errors.
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Fig. 5. The evolution of (x2 � r2).
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Fig. 6. The actual trajectory and the reference trajectory.

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

-3

-2

-1

0

1

2

3
u

1
u

2

Fig. 7. The optimal control inputs.
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g1 xð Þ ¼ 0
cos 2x1ð Þ þ 2

� �

g2 xð Þ ¼ 0
sin 4x21
	 
þ 2

" #
The desired reference signal is generated by the following
command

_r tð Þ ¼ 0 1
�1 0

� �
r tð Þ

Let the initial state x0 ¼ 0:5;�0:5½ �T ; r0 ¼ 0:1;�0:1½ �T ;Q1 ¼ diag 2;2½ �;
Q2 ¼ diag 1;1½ �. R11 ¼ R12 ¼ 2; R21 ¼ R22 ¼ 1; a11 ¼ a12 ¼ 20; q11 ¼
q12 ¼ 0:01. DT ¼ 0:05; c ¼ 0:5. For 8i ¼ 1;2, the NNs activation
functions are selected as

ui n tð Þð Þ ¼ e21; e1e2; e1r1; e1r2; e
2
2; e2r1; e2r2; r

2
1; r1r2; r

2
2

� �T
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and the initial NNs weight vectors Ŵi are randomly taken from
interval �1 1½ �. Fig. 8 shows the evolution process of critic NNs

weights for first player, and its eventually converge to cW ¼
0:1057;0:4586;�0:9353;0:2288;0:7231;�0:4167;0:2924;�0:6151;½
�0:7539;�0:5889�T . Fig. 9 shows the evolution process of critic NNs

weights for second player, and its eventually converge to cW ¼
�0:7052;0:0481;�0:9140;0:2701;1:3626;0:6699;0:7884;�0:0018;½
0:0715;�0:1096�T . The evolution of tracking errors are shown in
Fig. 10. The evolution of (x� r) between system states and reference
signal are depicted in Fig. 11 and Fig. 12. The actual trajectory and
the reference trajectory are depicted in Fig. 13. The optimal control
inputs are plotted in Fig. 14.
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Fig. 9. The evolution process of critic NNs weights for second player.
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Fig. 10. The evolution of tracking errors.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

r
2

x
2

Fig. 12. The evolution of (x2 � r2).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Time (s)

-1

-0.5

0

0.5

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
110

Fig. 8. The evolution process of critic NNs weights for first player.

Fig. 11. The evolution of (x1 � r1).
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Fig. 13. The actual trajectory and the reference trajectory.
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Fig. 14. The optimal control inputs.
Through the simulation results of the above two examples, it is
obvious that the systems states can track the desired reference sig-
nal well using our designed scheme. Therefore, the effectiveness of
our proposed scheme is well demonstrated.
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6. Conclusions and future work

This paper proposes a novel NNs-based online reinforcement
learning computational intelligent scheme for optimal tracking
control of continuous-time multi-player non-zero-sum games. N
single-layer NNs are adopted to approximate the value function
for each player. To relax traditional PE conditions, historical data
from a period of time have been collected to design an adaptive
NNs tuning laws. The UUB of NNs weight errors and closed-loop
augmented system states are rigorously proved. The value function
and the control input for each player are also proved to be con-
verged to approximately optimal value function and optimal con-
trol input with a small bounded error. Finally, simulation studies
on linear systems and nonlinear systems verify the effectiveness
of our design scheme. In this paper, the system inputs dynamics
are required, we will investigate the optimal tracking control for
continuous-time multi-player non-zero-sum games with com-
pletely unknown system dynamics in future work.
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