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Abstract

A partially observable stochastic game (POSG) is a general model for multiagent de-

cision making under uncertainty. Perkins’ Monte Carlo exploring starts for partially

observable Markov decision process (POMDP) (MCES-P) integrates Monte Carlo ex-

ploring starts (MCES) into a local search of the policy space to offer an elegant template

for model-free reinforcement learning in POSGs. However, multiagent reinforcement

learning in POSGs is tremendously more complex than in single agent settings due to

the heterogeneity of agents and discrepancy of their goals. In this article, we generalize

reinforcement learning under partial observability to self-interested and cooperative

multiagent settings under the POSG umbrella. We present three new templates for

multiagent reinforcement learning in POSGs. MCES for interactive POMDP (MCES-

IP) extends MCES-P by maintaining predictions of the other agent’s actions based on

dynamic beliefs over models. MCES for multiagent POMDP (MCES-MP) generalizes

MCES-P to the canonical multiagent POMDP framework, with a single policy mapping

joint observations of all agents to joint actions. Finally, MCES for factored-reward

multiagent POMDP (MCES-FMP) has each agent individually mapping joint obser-

vations to their own action. We use probabilistic approximate locally optimal (PALO)

bounds to analyze sample complexity, thereby instantiating these templates to PALO

learning. We promote sample efficiency by including a policy space pruning technique

and evaluate the approaches on six benchmark domains as well as compare with the

state-of-the-art techniques, which demonstrates that MCES-IP and MCES-FMP yield

improved policies with fewer samples compared to the previous baselines.

Keywords: multiagent systems, reinforcement learning, POMDP, POSG

1. Introduction

Reinforcement learning (RL) in a multiagent system is a difficult problem, especially

in a partially observable setting. A key difficulty is that the agents’ strategic interests are
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crucially reliant on the payoff structure of the underlying game, and typically no single

algorithm performs best across all types of games. In the past, this has necessitated the

concept of “targeted optimality” [1], where a learning algorithm targets certain subsets

of scenarios to learn (near)-optimally. However, much of the prior work on multiagent

learning has focused on settings that allow agents to observe the global state perfectly,

and in some cases, to even observe each others’ actions. As real-world applications,

such as in robotics, become adept at handling large amounts of observational data that

are often noisy and incomplete, it is becoming increasingly imperative to relax these

assumptions. Thus in this article, we are interested in partially observable settings where

agents do not observe each others’ actions perfectly and noisily observe states.

Action-value based reinforcement learning algorithms such as Sarsa [2] and Q-

learning [3] represent some of the best performing RL methods in single-agent settings

modeled by the Markov decision process (MDP). Sutton and Barto [2] introduced a

refinement to Monte Carlo Q-learning allowing the agent to start with a random state-

action pair, and called it Monte Carlo Exploring Starts (MCES). If the state is partially

observable, the agent may simply use its current observation as the state of a MDP but

the learning may not converge. More preferably, the agent conditions its learning on the

recent history of observations in a partially observable MDP (POMDP). A T-step policy

is a mapping from observation histories of length up to T to an action. Perkins’ Monte

Carlo exploring starts for POMDP (MCES-P) [4] obtains action-value for a policy from

sampled trajectories, and uses it to determine whether a transformed policy in the local

neighborhood of the current policy is better. Here, MCES-P transforms the policy at a

randomly chosen pair of observation sequence and action to obtain a locally transformed

policy. This less explored avenue has the strong benefit of directly searching a discrete

space of policies and does not require the convergence of action-values for each state

before the policy is obtained. Perkins’ elegant and transparent approach serves as the

basis for our learning algorithms in multiagent settings presented in this article.

While general multiagent settings are most realistically modeled as partially ob-

servable stochastic games (POSGs) [5], it is convenient to consider two popular sub-

categories under POSGs: self-interested and strictly cooperative settings, the former

encompassing adversarial as well as non-adversarial, non-cooperative settings. Coop-

erative scenarios are usually modeled as decentralized POMDPs [6] and multiagent

POMDPs [7] (MPOMDPs can be seen as a type of decentralized POMDP where the

agents communicate their observations to each other perfectly), which offer agents

opportunities for learning collaboratively, leading to specialized learning algorithms. On

the other hand, self-interested settings may lack such opportunities because agents can-

not make assumptions about the disposition of other agents. In such cases, agents must

act in an individually rational manner, and the learning problem could be approached

from an egocentric, self-interested perspective. An interactive POMDP (I-POMDP) [8]

is an appropriate model for such scenarios. Consequently, we seek learning algorithms

for these two subcategories and their appropriate models.

We introduce three RL templates for settings challenged by partial observability and

multiple agents, all of which generalize Perkins’ MCES-P algorithm.

• MCES for interactive POMDP (MCES-IP) that aims to learn a policy for a self-

interested agent acting and planning in an I-POMDP setting shared with other agents.
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• MCES for MPOMDPs (MCES-MP) that generalizes MCES-P to canonical MPOMDPs

with a focus on heterogeneous teams. Such teams are comprised of agents with differ-

ing rewards cooperating toward a common goal. It learns a single policy mapping

joint observations of all agents to joint actions.

• MCES for factored-reward MPOMDPs (MCES-FMP) with each agent individually

mapping joint observations to their own action.

• We instantiate these templates with probably approximately locally optimal (PALO)

bounds to provide statistical guarantees of ǫ-local optimality that relate with sample

complexity. While these guarantees do not relate to global optimality of the learning,

nevertheless they provide a useful theoretical footing for RL for POSGs.

• We present and exploit a parameterized policy search space pruning technique, trading

statistical guarantees from PALO bounds for a reduction in the computational burden.

We empirically demonstrate using six problem domains that MCES-IP and MCES-

FMP using the derived sample complexities arrive at improved local optima relative to

relevant baselines and competing methods under similar conditions. Our experiments

also demonstrate that MCES-FMP is a significant improvement over MCES-MP for

cooperative domains converging to drastically improved policies under similar sample

complexities. These new templates and their instantiations not only offer RL with

reduced model requirements in the context of distinct POSG settings but they also

represent the first methods that relate sample bounds to (local) optimality for RL in

popular competitive and cooperative multiagent contexts.

The rest of this article is organized as follows. We discuss the related work in

Section 2. Section 3 briefly reviews POSGs and the interactive POMDP framework,

both of which serves as background for the new methods. Our main contributions start

in Section 4 which presents the MCES-P and MCES-IP templates for self-interested

POSGs and their PALO instances. Section 5 then introduces the MCES-MP and MCES-

FMP templates along with their PALO instances for POSGs that model heterogeneous

teams. To promote efficiency, we show how the policy search space can be pruned

in Section 6; this technique can be utilized in conjunction with all the presented RL

methods. Our evaluation domains, baselines, experiments, and their results are discussed

in Section 7. We conclude this article with some remarks and future directions in

Section 8. The appendix gives the proofs of all the theorems mentioned in the article.

A portion of this article was previously published in the conference proceedings of

AAMAS 2016 [9]. This article expands on the conference paper in several ways. In

addition to an expanded exposition with illustrations, the article includes (i) a key new

contribution toward model-free reinforcement learning with sample complexity bounds

in cooperative settings in Section 5, which presents two new algorithms that generalize

MCES-P, and (ii) associated experiments and analyses on three new problem domains

evaluating the performances of the new algorithms in comparison to three new baselines.

2. Related Work

Several approaches exist for optimizing behavior in uncertain environments with or

without the presence of other agents. In the single-agent context, partially observable
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Markov decision processes (POMDP) [10] consider optimal outcomes to observations

given an explicit model of the environment. In multiagent settings, interactive POMDPs

(I-POMDP) [8] and decentralized POMDPs (DEC-POMDP) [6] tackle self-interested

and cooperative settings, respectively, by considering the effect of other agents and

their actions on the state of the multiagent problem [11]. Solution methods have so

far predominantly relied on explicit models of the mechanics of the environment and

the opponent. Methods for RL in these multiagent settings have been surprisingly few,

despite the fact that noisy sensors on robots often present a partially observable problem.

Early model-free approaches for multiagent problems have been explored in both

noncooperative and cooperative settings. A Bayes-Adaptive I-POMDP [12] maintains

a vector of latent models of environment mechanics and updates its belief over these

models online interleaved with actions. Effectively, it casts model-free learning as

planning over an infinite space. Along similar lines, Hoang and Low [13] show how

a flat Dirichlet multinomial distribution may be utilized to represent the posterior in

interactive Bayes-optimal RL by an agent interacting with other self-interested agents.

Differing from our context here, the state is assumed to be perfectly observable.

In cooperative contexts, Monte Carlo Q-Alternating (MCQ-Alt) [14] approximates

the dynamics of an environment in the presence of another cooperating agent following

a fixed policy. After arriving at a locally optimal policy, the agent fixes its own policy

and the other agent then learns. The non-learning agents in the first round use a different

learning approach to acquire their initial policies [15]. Regardless of the qualitiy of these

initial policies, the alternating best-reponse learning of MCQ-Alt converges to near-

optimal policies in benchmark domains. However, in addition to requiring turn-taking,

the experiences of the non-learning agents are wasted in this approach. Another related

approach overcomes these limitations by allowing agents to learn simultaneously [16],

but assumes that agents can perfectly observe hidden information during the training

phase. In contrast, our algorithms do not have any of these limitations.

In the context of MPOMDPs, a model-based RL technique which offers the previous

best performance is the Bayes-adaptive factored-value POMCP (BA-FV-POMCP) [17].

This method interleaves Bayesian model building with POMCP-based planning to solve

MPOMDPs. The model is built using transition and observation count vectors and

updated as additional transitions and observations are explored. The learned model is

utilized at the beginning of an episode to build the simulator required by the POMCP

rollouts. While potentially scalable to large MPOMDPs, POMCP’s performance is

contingent on the veracity of the learned model. But, count data based models often

require a very large number of samples for reasonable accuracy in complex domains as

our experiments demonstrate.

Distributed gradient descent (DGD) method [5] performs the same gradient-descent

algorithm in parallel for each agent’s local policy. The policy learning and control is

distributed among independent agents who are not aware of each others’ actions as long

as agents learn simultaneously. DGD is only guaranteed to find local optima in the space

of factored policies, however, it will not always converge to a Nash equilibrium.

A deep learning based approach for multi-task multiagent reinforcement learning

under partial observability [18] conducts single task specialization, and subsequently

unifies task-specific deep recurrent Q-Nets (DRQNs) into a joint policy that performs

well in all tasks. It combines hysteretic learners, DRQNs, concurrent experience replay
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trajectories (CERTs), and distillation. However, the training process requires a very

large number of epochs (each epoch entails a simulation of the problem), about 105

even for a 2-agent toy problem.

Another deep learning algorithm is the multiagent deep deterministic policy gradient

(MADDPG) [19]. It is a multiagent actor-critic method that utilizes a decentralized

actor and a centralized critic with extra information about the policies of other agents.

The assumption of knowing other agents’ policies can be relaxed by inferring policies

of other agents using maximum likelihood estimation on other agents’ actions. A

more recent deep multiagent reinforcement learning algorithm, called “learning with

opponent learning awareness” (LOLA) [20], was designed to handle non-stationarity

arising naturally in multiagent learning, by allowing agents to observe (or estimate via

maximum likelihood opponent modeling) the network parameters of other agents. In

particular, a LOLA agent explicitly accounts for how its change of parameters will affect

the value function of other agents and incorporates the effect in its own value function.

Thus a LOLA agent is able to actively influence the future policy updates of other LOLA

agents. However, the performance of the opponent modeling version was significantly

worse. Furthermore, both MADDPG and LOLA were only evaluated in repeated games

although they may be applied to POSGs. RL from hierarchical critics [21] is another

deep multiagent RL method. Every agent has its own local critic, and there is also a

global critic. Each agent passes its own value function to the learning manager, which

compares all agents’ value functions and the global critic’s value function, then returns

maximum value function to each agent for advantage calculation. This method can only

be used in cooperative setting, and agents need to share their value functions.

Egorov et al. [22] discusses three neural network based approaches to multiagent

cooperative learning. While the centralized approach utilizes a centralized learner to

manage learning, the concurrent method allocates a neural net to each agent but with

no coordination among them and learns local policies. However, the best performing

approach adds parameter sharing between these concurrent nets thereby facilitating

coordination through sharing of experiences. The latter method scales to large mul-

tiagent control tasks with dozens of agents through curriculum learning, which adds

a considerable amount of training time depending on the complexity of the problem

domain. Curriculum learning is modeled on the idea that learning benefits when samples

are presented in order of increasing difficulty. It is difficult to define a curriculum

for many complex problems, and unrealistic for many real-world applications due to

the very large sample requirements. These sample-intensive approaches contrast with

our orthogonal focus on rigorous sample bounds for RL that is cognizant of the fact

that sample generation in multiagent systems is not easy. Furthermore, agents in these

approaches are homogeneous and tasks for a heterogeneous team of agents is identified

as an avenue of future work in these approaches.

3. Background

In this section, we discuss the most relevant background for our proposed approach.

We first introduce a general model of multiagent interactions, POSGs, which encom-

passes all special cases addressed in this paper. Then, we briefly review the well-known

I-POMDP framework for modeling self-interested interactions in Section 3.2.
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3.1. Partially Observable Stochastic Games

A partially observable stochastic game (POSG) is a general model of multiagent

interactions under noise, uncertainty, and incomplete observations. Formally, a POSG is

a tuple 〈I, S, A,Ω, T, O,R〉, where,

• I = {1, ..., Z} is the set of Z agents;

• S is the set of states;

• A = A1 × ...×An, is the set of joint actions where A1, A2, . . . , AZ are the sets of

the individual agent’s actions. A joint action is then, ā = 〈a1, ..., aZ〉;
• Ω = Ω1 × ... × ΩZ , is the set of joint observations where Ω1, Ω2, . . . , ΩZ are the

sets of individual agent’s observations. A joint observation is ō = 〈o1, ..., oZ〉;
• T : S × A × S 7→ [0, 1] is the transition function that determines how the state

evolves. It maps an origin state, a joint action, and an arrival state to a probability;

• O : S ×A× Ω 7→ [0, 1] is the observation function that gives the informativeness of

the observations toward the state. It maps an observation, the arrival state, and a joint

action to a probability;

• Ri : S ×A 7→ R is the reward function of the ith agent, i = 1, . . . , Z.

A game can have finite or infinite stages, where the number of stages is called

the horizon of the game. At each stage, all agents simultaneously select an action

and receive a reward and an observation, transitioning to the next state (following

transition function T ) that defines the next state of the game. The objective of a self-

interested agent is to maximize the expected sum of rewards it receives over the horizon

of the game. Whether agents compete or cooperate in seeking reward depends on

their reward functions. For instance, purely competitive settings are characterized by

reward functions where
∑

iRi(s,~a) is a constant for all s,~a. That is, an agent’s reward

cannot be improved without reducing another agent’s reward. On the other hand, purely

cooperative settings have R1(s,~a) = R2(s,~a) = . . . = Rn(s,~a) for all s,~a, i.e., all

agents’ rewards coincide leading to identical interest for the agents. A POMDP is a

special case of a POSG with a single controller, i.e., a single-agent POSG, which retains

the characteristic of a decision process under uncertainty, but is no longer a game.

3.2. Interactive POMDPs

Interactive POMDPs [8] generalize POMDPs to self-interested multiagent settings.

They model the subjective perspective of a self-interested agent situated in a POSG. In

a setting shared by two intentional agents i and j, agent i’s I-POMDP with l levels of

nesting is defined by the tuple:

I-POMDPi,l
∆
= 〈ISi,l, A, Ti,Ωi, Oi, Ri〉

• ISi,l is the set of interactive states defined as, ISi,l = S ×Mj,l−1, where Mj,l−1 =
{Θj,l−1 ∪ SMj}, for l ≥ 1, and ISi,0 = S, where S is the set of physical states.

Θj,l−1 is the set of computable, intentional models ascribed to agent j : θj,l−1 =

〈bj,l−1, θ̂j,l−1〉, where bj,l−1 is agent j’s level l− 1 belief, bj,l−1 ∈ △(ISj,l−1), and

θ̂j,l−1 = 〈A, Tj ,Ωj , Oj , Rj〉, is j’s frame. Here, j is assumed to be Bayes-rational.
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• A = Ai ×Aj is the set of joint actions of all agents.

• Ti : S ×A× S 7→ [0, 1] is the transition model.

• Ωi is the set of observations for agent i.

• Oi : S ×A× Ωi 7→ [0, 1] is the observation function.

• Ri : S ×A 7→ R is the reward function for agent i.
Agent i’s belief over its interactive states is a sufficient statistic for its observation

history. Generalizing the belief update from POMDP to I-POMDP is not trivial because

physical state transitions depend on actions performed by both agents. The prediction

of the transition has to be made based on the probabilities of various actions of the other

agent. In order to predict the next physical state, i must update its beliefs about j’s

model based on its anticipation of how j updates its belief. Agent i’s belief update at

time step t is defined by:

bti,l(i, s
t) =β

∑

ist−1
bt−1
i,l (ist−1)

∑

a
t−1
j

P (at−1
j |θt−1

j,l−1)Ti(s
t−1, at−1, st)

×Oi(s
t, at−1, zti)

∑

zt
j

P (btj,l−1|bt−1
j,l−1, a

t−1
j , ztj)Oj(s

t, at−1, ztj) (1)

where β is a normalizing factor and P (at−1
j |θt−1

j,l−1) is the probability that at−1
j is

Bayes-rational for an agent modeled by θt−1
j,l−1.

Given the generalized belief update, solution to an I-POMDP is a policy, analogous

to a POMDP. Using the Bellman equation, each belief state in an I-POMDP has a value

which is the maximum reward the agent can expect starting from that belief state and

over the future. Agent i’s optimal action for a belief state is an element of the set of

actions that optimize the value at that belief for a finite or infinite horizon.

4. Self-Interested RL in POSGs

A key measure of performance for an RL agent is the number of environment

interactions needed before its behavior policy meets certain performance criteria. This

measure is often referred to as sample complexity. Our goal is to design model-free RL

algorithms with performance guarantees in terms of sample complexity.

The literature on theoretically well-founded, model-free RL in partially observable

multiagent settings is relatively sparse compared to single agent settings. In our review

of the related literature, we did not find any algorithm for model-free RL that specifically

targets POSGs with self-interested agents, although several algorithms exist that can be

trivially extended to POSGs by considering states as observations. These algorithms,

discussed in Section 2, are often designed for (or evaluated in) fully observable or

repeated game settings. They are unlikely to perform well when extended to POSGs,

since partial observability introduces the need to either maintain observation histories

or explicitly incorporate and update beliefs. Both of these choices introduce additional

complexity as well as impact performance, but they are omitted in such algorithms. The

infinite regional policy representation (iRPR) [23] performs model-free exploration of

nonparametric policies for POMDPs. While iRPR allows an unbounded number of

states, its convergence is sample-intensive requiring 103 samples even for the simple
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1D-maze domain; this makes it a poor departure point. Additionally, parameters must

be manually configured to achieve optima.

Perkins’ MCES-P [4] offers a template for online model-free RL in single agent

settings in a way that differs substantially from traditional model-free methods such as

Q-learning. At its core, it hill climbs the space of neighboring policies, which draws

comparisons to policy iteration rather than the value iteration of Q-learning. Perkins also

notes a particular instantiation of MCES-P that utilizes Hoeffding’s inequality to ensure

that a sufficient number of samples are taken so that a given difference in action-value

is observed with at least some probability. This instantiation is theoretically founded

on Greiner’s probably approximately locally optimal (PALO) learning system [24].

Subsequently, MCES-P offers an appealing template for generalizing to multiagent

settings with the potential to fill this wide gap. While we initially focus on learning

by self-interested agents situated in a multiagent setting in this section, MCES-P is

sufficiently generic for an extension to learning the joint policies of multiple agents in

cooperative settings as well, which we discuss in Section 5.

We begin by discussing the consequence of a straightforward and naive extension of

MCES-P to self-interested multiagent settings. This is followed by a more sophisticated

generalization that models the other interacting agents.

4.1. A Naive Extension of MCES-P

Perkins’ MCES-P template [4] may be utilized almost as is in a multiagent set-

ting. Therefore, we begin by exploring this approach followed by presenting a new

generalization of MCES-P that improves on it significantly. Toward this end, we re-

produce Perkins’ algorithm in Algorithm 1. A random observation sequence, ~o, and

the corresponding action are picked, then the latter replaces the previous action at ~o
thereby transforming the policy. 1 Let πi be the initial seed policy and πi ← (~oi, ai) be

this policy but transformed to perform action ai on observing ~oi; the latter denotes a

neighboring policy. Q-values are maintained to estimate the values of the policies, with

and without this transformation. Since the values of these policies only differ in the

reward sequence following the observation of ~oi, the sum of rewards from only this part

of a trajectory τ , denoted as Rpost−~oi(τ), contribute to Q (see line 7 of Algorithm 1).

Parameter α is an averaging learning rate, α(m, c) = 1
c+1 , where m is the number

of transformations taken so far and c the count of updates to the Q-function. In this

instance, m does not affect the learning rate. Subsequently, MCES-P proceeds by

randomly picking an observation sequence at which to transform a policy, sufficiently

simulating the original and transformed policies and updating their Q-values with new

information for comparison. The transformed policy is adopted if its Q-value exceeds

that of the original by ǫ both updated across k samples. The algorithm terminates in the

absence of policy transformations for some time.

In instantiating the template for PALO bounds, we assume that the other agent is

guided by a fixed policy or a fixed distribution over policies (i.e., mixed strategy). This

1Perkins’ MCES-P curbs the policies to actions contingent on a single observation, ie.,
memory-less policies. Therefore, it initially picks a single observation and action only. We extend
the algorithm here to consider a sequence of observations for better performance.
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Algorithm 1 MCES-P in Multiagent Settings

Require: Q-value table initialized to all 0s; initial policy πi that is greedy w.r.t. Q-

values; learning rate schedule α; horizon T ; and error ǫ
1: c~oi,ai

← 0 for all ~oi and ai
2: m← 0
3: repeat

4: Pick some observation history ~oi and action ai
5: Modify πi to πi ← (~oi, ai)
6: Generate trajectory τ of length T in the multiagent setting according to πi ←

(~oi, ai) (this involves simulating the policies of other agents as well)

7: Qπi←~oi,ai
← (1− α(m, c~oi,ai

)) Qπi←~oi,ai
+ α(m, c~oi,ai

) Rpost−~oi(τ)
8: c~oi,ai

← c~oi,ai
+ 1

9: if maxa′
i
Qπi←~oi,a

′
i
−Qπi > ǫ(m, c~oi,ai

, c~oi,πi(~oi)) then

10: πi(~oi)← a′i where a′i ∈ arg maxQπi←~oi,a
′
i

11: m← m+ 1
12: for all ~oi, ai do

13: c~oi,ai
← 0

14: until termination

ensures that the sampling distribution is fixed and Hoeffding’s inequality continues to

apply. We point out that this assumption differentiates our problem from the traditional

multiagent RL [25] where all agents are learning simultaneously and therefore the

learning problem is not stationary.

Given the above, MCES-P-PALO in multiagent settings may face the same four

types of errors due to sampling as those faced in single agent settings (see proof

of Proposition 1 in Appendix). However, the error due to sampling and the sam-

ple complexity differ because of the presence of other agents. The size of the pol-

icy neighborhood N of agent i increases to O(|A| |Ω|
T−1

|Ω|−1 ) due to our consideration

of the observation history. Let Λ(πi, π
′
i) be the upper bound on the range of the

difference between the action-values of πi and some other policy π′i. For simplic-

ity of presentation, we consider one other agent j in the environment. Let Ri,max

now be defined as, Ri,max , maxs,ai,aj
Ri(s, ai, aj) and analogously for Ri,min

, mins,ai,aj
Ri(s, ai, aj). Let T̃ be a set of sampled trajectories. Then, we get,

Λ(πi, π
′
i) , max

T̃
(Qπi

−Qπ′
i
)−min

T̃
(Qπi

−Qπ′
i
)

≤
∑T−1

t=0
{(Ri,max −Ri,min)− (Ri,min −Ri,max)}

=
∑T−1

t=0
2(Ri,max −Ri,min) = 2T (Ri,max −Ri,min) (2)

Consequently, the threshold for comparison at stage m becomes:

ǫ(m, p, q) =











Λ(πi, π
′
i)
√

1
2p ln

2(km−1)N
δm

if p = q < km
ǫ
2 if p = q ≥ km
+∞ otherwise

(3)
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and the sample complexity is:

km ←
⌈

2

(

Λ

ǫ

)2

ln
2N

δm

⌉

(4)

while the probability δm remains the same as in Section 3. Notice that in so called

“neutral settings” where agent i’s reward does not depend on j’s action (although the

state is still impacted by j’s action) Ri,max and Ri,min collapse into Rmax and Rmin,

respectively causing no change in the PALO bounds from Perkins [4]. However, in

competitive settings Ri,max is often greater than Rmax whereas Ri,min tends to be

smaller than its counterpart due to which the sample complexity is higher or the error is

greater for the same number of samples.

MCES-P-PALO terminates if there has been no policy change when km samples

are reached or if no neighboring policy exceeds the current policy in action value by

more than ǫ− Λ(πi, π
′
i) ·
√

1
2p ln

2(km−1)N
δm

for lesser samples.

Proposition 1 shows that MCES-P-PALO in partially observable multiagent settings

will terminate and converge to an ǫ-locally optimal policy.

Proposition 1 (Local optimality of MCES-P-PALO).

Instantiation MCES-P-PALO incrementally produces a series of policies π1
i , π2

i , . . . ,

πn
i , such that each πn+1

i is a local neighbor of πn
i and with probability at least 1− δ:

1. Each policy πn+1
i has an expected value strictly greater than its predecessor, πm

i

where 1 ≤ n ≤ m− 1;

2. Final policy πm
i returned by MCES-P-PALO is ǫ-locally optimal such that there

is no neighbor of πm
i given our transformation procedure whose expected value

exceeds that of πm
i by more than ǫ.

Moreover, MCES-P-PALO will terminate with probability 1 if N is finite.

The full proof of this proposition is given in the Appendix. It presents four types of

errors that are possible due to sampling. As part of the proof, the expressions for

ǫ(m, p, q), km and δm given previously are also established.

4.2. Modeling Other Agents: MCES-IP

While Proposition 1 is appealing, a limitation of MCES-P-PALO is that the required

sample size is very large. For example, for an ǫ of 0.05 and probability δ = 0.1

the required sample size km is 320,200 for the small two-agent competitive Tiger

problem [8]. Can we significantly reduce this alarming sample complexity and if so

what is the trade-off?

A key insight may allow us to mitigate the sample complexity: If we can predict

the other agent’s actions, then we may simply optimize in that specific context. Toward

this, we partially relax the model-free characteristic of the RL to obtain savings in

samples. We may divide agent i’s observations into those that are public and those

that are private. The former type is public signals that are shared between agents while

the latter are signals privately observed by an agent. This division is without loss of
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generality because the set of public observations may be empty if agents have private

observations only and the set of private observations is empty if only public observations

are obtained.

Next, let the private monitoring at time t convey information to the agent about the

other agent’s action at t − 1 albeit noisily while the public signal provides uncertain

information about the common state of the system. We argue that this specificity is often

seen in multiagent problems. For example, agents in the multiagent Tiger problem hear

growls that inform about the location of the tiger and each agent may also hear a creak

from the left or right, or do not hear a creak indicating the door, if any, that was opened

by the other agent. As a final step, we depart from the completely model-free setting

of MCES-P and let a joint private observation function that models the information

content of private observations only be common knowledge. The agents are not aware

of any other model parameters.

Given the setup above, an agent in the MCES for interactive POMDP (MCES-IP)

template starts with a prior distribution over possible models of the other agent and

updates the prior as it receives private observations. As the agent acts and observes,

a sequence of beliefs are obtained and the agent utilizes both sequences: observation

sequence and belief sequence to decide on an action. We show the MCES-IP template

in Algorithm 2.

Algorithm 2 MCES-IP

Require: Q-value table initialized to all 0s; initial policy, πi, that is greedy w.r.t. Q-values; prior

on set of models Mj ; learning rate schedule α; horizon T ; and error ǫ

1: c
~aj

~oi,ai
← 0

2: m← 0
3: repeat

4: Pick some observation history, ~oi, and ai

5: Modify πi to πi ← (~oi, ai)
6: Generate trajectory τ of length T according to πi ← (~oi, ai) (requires simulating other

agents’ policies)

7: Generate belief sequence~bi based on τ using Eq. 5

8: Obtain most probable action sequence ~aj from~bi

9: Q
~aj

πi←~oi,ai
← (1− α(m, c

~aj

~oi,ai
)) ·Q~aj

πi←~oi,ai
+ α(m, c

~aj

~oi,ai
) ·Rpost−~oi(τ)

10: c
~aj

~oi,ai
← c

~aj

~oi,ai
+ 1

11: if maxa′
i
Q

~aj

πi←~oi,a
′
i
−Q

~aj
πi > ǫ~aj (m, c

~aj

~oi,ai
, c

~aj

~oi,πi(~oi)
) then

12: πi(~oi)← a′i where a′i ∈ argmaxa′
i
Q

~aj

πi←~oi,a
′
i

13: m← m+ 1
14: for all ~oi, ai,~aj do

15: c
~aj

~oi,ai
← 0

16: until termination

MCES-IP generally follows the procedure of MCES-P. It builds on the latter by

additionally generating a belief sequence ~bi using the actions and observations in a

trajectory (line 7); each belief is a distribution over a pre-defined set of models of the

other agent. As the space of possible belief sequences is continuous, MCES-IP picks
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the most-probable model from each belief and the corresponding predicted action, to

obtain a corresponding action sequence ~aj (line 8). Q-values and update counts are

now indexed using this action sequence (lines 9-10). In this way, action values of

policies are specific to predicted actions of the other agent, which allow a more informed

probabilistic hill climbing in multiagent settings.

Belief sequence,~bi, is generated as follows. A trajectory τi is {a0i , r0i , 〈o1, ω1
i 〉, a1i , r1i ,

〈o2, ω2
i 〉, a2i , r2i , . . . , 〈oT−1, ωT−1

i 〉, aT−1
i , rT−1

i }. Notice that each observation in the

trajectory is composed of public and private signals; denote ~oi , 〈~o, ~ωi〉. Let M t
j be

a discrete set of j’s models at time step t, where mt
j ∈ M t

j is: mt
j , 〈ht

j , πj〉, ht
j is

j’s action-observation history of length t which when given as input to j’s policy πj

produces the predicted action at time t. Agent i’s belief bi is a distribution over Mj

updated based on i’s action and observation as given below:

b′i(m
t+1
j |ati, ot+1, ωt+1

i , bi) =
∑

mt
j∈M

t
j

bi(m
t
j)
∑

at
j∈Aj

Pr(atj |mt
j)

×Oi(ω
t+1
i |ati, atj) δK(ht+1

j ,APPEND(ht
j , a

t
j , o

t+1)) (5)

As a part of updating its belief, i must first update its models of j and in particular, the

action-observation history contained in each model using the predicted action atj and

public observation ot+1; this is performed by APPEND. Kronecker delta function, δK ,

is 1 if an updated model matches the one in mt+1
j otherwise it is 0. Private observation

function Oi is the marginal of the joint, and it allows using the private signal to weight

predicted actions and by backward inference the models that generated the actions. This

likelihood is then propagated forward to the updated model, mt+1
j . As such, Eq. 5 is a

sophisticated Bayesian belief update.

A sequence of beliefs ~bi is then generated by updating the uniform prior with

the action-observation pairs in a trajectory using Eq. 5; thus the length of this se-

quence is T . We may pick the most probable model from each belief in the sequence,

argmaxmj
bi(mj), and get the model-predicted action, argmaxaj

Pr(aj |mj), to ob-

tain the action sequence ~aj .

We instantiate Algorithm 2 to obtain MCES-IP with PALO bounds, which we

denote as MCES-IP-PALO. For this, we assume that the error is due to sampling

trajectories only and that the monitoring is perfect, i.e., private signals perfectly reveal

j’s action. We discuss the effect on the bounds due to observation noise later in this

section.

For a given error ǫ and probability δ let,

ǫ~aj (m, p, q) =











Λ~aj (πi, π
′
i)
√

1
2p ln

2(km−1)N
δm

if p = q < km
ǫ
2 if p = q ≥ km
+∞ otherwise

(6)

where

km =

⌈

2
(Λ~aj (πi, π

′
i))

2

ǫ2
ln

2N

δm

⌉

and δm =
6δ

m2π2
(7)

Here, Λ~aj (πi, π
′
i) is an upper bound on the range of the difference in action-values

between two policies given j’s action sequence is ~aj . Note that km is polynomial in
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problem parameters, since ln(N) is linear in T , the problem horizon. This leads to a

polynomial sample complexity per transform. Let R
aj

i,max = maxs,ai
Ri(s, ai, aj) and

analogously for R
aj

i,min; these specific values are assumed to be known. Then, we get:

Λ~aj (πi, π
′
i) = max

T̃

(

Q~aj
πi
−Q

~aj

π′
i

)

−min
T̃

(

Q~aj
πi
−Q

~aj

π′
i

)

≤
∑

t∈T

(

R
at
j

i,max −R
at
j

i,min

)

−
(

R
at
j

i,min −R
at
j

i,max

)

=
∑

t∈T

2

(

R
at
j

i,max −R
at
j

i,min

)

(8)

The following key proposition indicates the benefit of predicting the other agent’s

actions on sample complexity albeit at the expense of the belief update run time.

Proposition 2 (Reduced sample complexity). For any predicted action sequence, ~aj ,

Λ~aj (πi, π
′
i) ≤ Λ(πi, π

′
i)

where Eqs. 2 and 8 define Λ(πi, π
′
i) and Λ~aj (πi, π

′
i), respectively. The proof of this

proposition is straightforward and is given in the Appendix. Subsequently, Proposition 2

entails that the sample size bound km for MCES-IP-PALO is also less than or equal

to the corresponding sample size bound for MCES-P-PALO. The effect is significant

because km grows quadratically with Λ. On the other hand, the Q-values table for

MCES-IP-PALO expands significantly with up to
|Ω|T−1
|Ω|−1 values for each i’s policy or

its transformation. As such, the reduced sample bound of MCES-IP-PALO must be

less by a factor of
|Ω|T−1
|Ω|−1 in the worst case to be effective. This is often the case as we

demonstrate for the two-agent Tiger problem where km for MCES-IP-PALO is as low

as 106,822 that is almost three times less than that for MCES-P-PALO.

If private signals provide perfect information about j’s actions, then MCES-IP-

PALO terminates when,

Q
~aj

πi←~oi,a
′
i
< Q~aj

πi
+ ǫ− ǫ~aj (m, c

~aj

~oi,ai
, c

~aj

~oi,πi(~oi)
)

for all ~oi, a
′
i 6= πi(~oi), and we have encountered at most

|Ω|T−1
|Ω|−1 many distinct ~aj in the

trajectories for each ~oi, a
′
i pair. Under the same assumption of perfect monitoring, for

the comparison threshold, sample bound and probability as defined above, we obtain

the following theorem for MCES-IP-PALO.

Proposition 3 (Local optimality under perfect monitoring). Template MCES-IP-PALO

under perfect monitoring incrementally produces a series of policies π1
i , π2

i , . . . , πm
i ,

such that each πq+1
i is a local neighbor of πq

i and with probability at least 1− δ:

1. Each policy πq+1
i has an expected value strictly greater than its predecessor, πq

i

where 1 ≤ q ≤ m− 1;
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2. Final policy, πm
i returned by MCES-IP-PALO is ǫ-locally optimal such that there

is no neighbor of πm
i given our transformation procedure whose expected value

exceeds that of πm
i by more than ǫ.

Moreover, MCES-IP-PALO terminates with probability 1 if N is finite.

The proof of this proposition proceeds analogously to the proof for Proposition 1, with

Λ replaced with Λ~aj .

We can generalize the above results on MCES-IP-PALO for the case of imperfect

monitoring – when the probability of error in estimating ~aj is known, say δe. In this

case, the agent may place Q-samples in the wrong Q~aj bins (see line 9 of Algorithm

2), leading to non-identically distributed samples in a bin. Fortunately, given δe we

may generalize Proposition 3 to the case of independent but non-identically distributed

samples using a more general form of Hoeffding’s inequality. Analogously to Eq. 8, let

Λ̄~aj be an upper bound on the range of differences in action-values for all j’s action

sequences that are different from ~aj . Then for the case of p = q < km, we redefine

ǫ~aj (m, p, q) as,

ǫ~aj (m, p, q) =
√

(1− δe)(Λ~aj )2 + δe(Λ̄~aj )2

√

1

2p
ln

2(km − 1)N

δm
(9)

where km is redefined as

km =

⌈

2((1− δe)(Λ
~aj )2 + δe(Λ̄

~aj )2)

ǫ2
ln

2N

δm

⌉

(10)

Algorithm 2 requires a slight modification for this case. For convenience, let

ζ~aj = maxa′
i
Q

~aj

πi←~oi,a
′
i
−Q

~aj
πi . Then, line 11 of Algorithm 2 changes to the following:

(1− δe)ζ
~aj + δeζ̄

~a′
j > (1− δe)ǫ

~aj + δeǭ
~a′
j

The implicit assumption above is that when Q~aj receives a wrong sample meant for

bin ~a′j , the action sequence is equally likely to be any ~a′j 6= ~aj . Therefore, ζ̄~a
′
j is the

mean of ζ~a
′
j for all ~a′j 6= ~aj seen so far, and analogously ǭ~a

′
j is also the mean. Notice

that insisting on the test of line 11 for every ~aj before the current policy is changed,

would be a stronger form of this test, and hence also sufficient. Finally, we note that

when δe = 0, we recover MCES-IP-PALO for perfect monitoring as a special case of

this setting.

Clearly, the above approach is only useful if we can estimate the error due to

imperfect monitoring, δe. Direct comparison with the perfect monitoring case suggests

that one possible way to estimate it could exploit domain knowledge, if available, of

how much the private observations are decorrelated from the other agents’ actions.

5. RL for Cooperative POSGs

Next, we turn our attention to partially observable multiagent settings where the

agents must coordinate to achieve the maximum reward. Such settings may be viewed as
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POSGs with a single (shared) reward function for the collection of agents (or analogously,

each agent having the same reward function as others). We introduce two model-free

RL approaches for cooperative settings. Both generalize the MCES-P template.

5.1. Heterogeneous team

We further focus on a system of n heterogeneous agents cooperating toward a

common goal. Specifically, {R1,R2, . . . ,Rn} is the collection of agent’s reward

functions, which may differ; this defines the heterogeneity. Here, Ri : S × A 7→ R,

i ∈ I is an agent’s reward function, which maps state and joint action to value. An

agent’s rewardRi is decomposed into local costs (Ri), predicated on the joint physical

state and individual action, and the global reward (RG), a mapping from the joint state

and joint action, as shown below.

Ri(s,~a) = Ri(s, ai) +RG(s,~a) (11)

Local costs may be unique to each agent and provide a way to model the diversity be-

tween agents in heterogeneous teams. For example, the global reward in the multi-robot

alignment problem illustrated in Fig. 3 is 100 when the robots are aligned, otherwise

-1. The local component differs between robots with the more sophisticated platform

incurring a cost of 2 for turning and 1 for emitting infrared and a higher probability

to make a successful turn while it costs 3 for the other robot to do either and a lower

probability to make a turn.

A trajectory of T steps in this factored reward setting is τ=(~a0,~r0, ~o1,~a1,~r1, . . . , ~oT−1,
~aT−1,~rT−1). Here, ~a, ~r and ~o are vectors of all agents’ actions, rewards and observa-

tions, respectively. An agent’s reward in ~r, denoted by ri, is a tuple of the local costs

and global rewards received by i based on the components in Eq. 11, and analogously

for others. Since agents are cooperative, we focus on centralized learning, where our

objective is to optimize a measure of joint rewards based on Eq. 11.

5.2. Joint Policy Iteration

The class of factored reward settings with agents that cooperate may be cast into the

well-known framework of multiagent POMDPs (MPOMDPs) [7] — another special case

of POSGs. MPOMDPs generalize POMDPs to multiple agents; actions and observations

in an MPOMDP are a joint of the individual agent actions and observations. Importantly,

the output is a single policy that maps joint observation sequences to joint actions. We

define the MPOMDP below.

MPOMDP
∆
= 〈I, S, A,Ω, T, O,R〉

• I = {1, ..., Z} is the set of Z interacting agents;

• S is the set of physical states;

• A = A1 × ...×AZ , is the set of joint actions where A1, A2, . . . , AZ are the sets of

each agent’s actions. A joint action is then, ~a = {a1, ..., aZ};
• Ω = Ω1 × ... × ΩZ , is the set of joint observations where Ω1, Ω2, . . . , ΩZ are the

sets of each agent’s observations. A joint observation is ~o = {o1, ..., oZ};
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Algorithm 3 MCES-MP

Require: Q-value table initialized to all 0s, and initial joint policy, π, that is greedy

w.r.t Q-values; learning rate schedule α; error ǫ; and horizon T
1: Initialize count c~o,~a ← 0 for all ~o and ~a
2: m← 0
3: repeat

4: Pick joint observation history ~o and joint action ~a
5: Set π to π ← (~o,~a)
6: Generate trajectory τ of length T online by simulating transformed joint policy

π ← (~o,~a)
7: Qπ←(~o,~a) ← (1− α(m, c~o,~a)) ·Qπ←(~o,~a) + α(m, c~o,~a) · Rpost−~o(τ)
8: c~o,~a ← c~o,~a + 1
9: if max~a′ Qπ←(~o,~a′) > Qπ + ǫ(m, c~o,~a, c~o,π(~o)) then

10: π(~o)← ~a′ where ~a′ ← argmaxQπ←(~o,~a′)

11: m← m+ 1
12: Reset c~o,~a ← 0 for all ~o and ~a
13: until termination

• T : S × A × S → [0, 1] is the transition function that determines how the state

evolves. It maps an origin state, a joint action, and an arrival state to a probability;

• O : Ω× S ×A→ [0, 1] is the observation function that gives the informativeness of

the observations toward the state. It maps an observation, the arrival state, and a joint

action to a probability;

• R : S ×A→ R. While the factored-reward setting also includes the individual costs

of each agent’s actions, we obtain the single reward function that is needed as follows.

As a special case of POSGs with cooperative agents, an MPOMDP replaces the

POSG’s individual reward functions by a single shared reward function,R(s,~a). In the

factored reward setting introduced above, this joint reward function can be stated as:

R(s,~a) =
∑

i∈I
Ri(s, ai) +RG(s,~a) (12)

Equation 12 characterizes the cumulative team reward, and represents the potential

function of the cooperative game with individual heterogeneous rewards [26], where

Ri(s, ai) is the individual payoff of agent i, and RG(s,~a) is the positive externality

from cooperating.

Algorithm 3, which we call MCES for MPOMDPs (MCES-MP), straightforwardly

generalizes MCES-P. It modifies MCES-P in several ways. Line 4 picks joints instead

of individual observations and actions. In line 5, π ← (~o,~a) denotes the transformed

policy that prescribes ~a on encountering observation sequence ~o. The trajectory τ in

line 6 is as described in the previous subsection. Line 6 updates the Q-value by Rpost−~o

with α as defined in Section 4.1. To defineRpost−~o(τ) in line 7, we begin by defining

potentialR(τ) asR(τ) =
∑T−1

t=0 γt
∑

i∈I r
t
i + rtG, where rti and rtG are the local and

global components of the reward ri at time t received by i. Rpost−~o(τ) is then the

portion ofR(τ) that succeeds joint observation ~o.

We may instantiate the MCES-MP template using PALO bounds to obtain an algo-

rithm MCES-MP-PALO that can be implemented similarly to the PALO instantiation of
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MCES-P. A key difference from MCES-P is that the policy maps joints observations to

joint actions, due to which the size of the local policy neighborhood NMP is significantly

larger. Specifically,

NMP =
∏

i∈I

|Ai|
(

∏

i∈I |Ωi|T − 1
∏

i∈I |Ωi| − 1
− 1

)

. (13)

The other difference is in the maximal range of action-values of a policy π and its

transformation π′, denoted as Λ(π, π′) previously. We now utilize the maximum and

minimum values of the reward function defined in Eq. 12 in the computation of Λ in

Eq. 2. Given these changes, the definitions of km and ǫ(m, p, q) as in Eqs. 4 and 3

modify to accommodate them, and the algorithm terminates similarly. MCES-MP-

PALO may terminate early similarly to MCES-P. Note again, that km is polynomial in

problem parameters, particularly T and n, the problem horizon and number of agents,

leading to polynomial sample complexity per transform.

Proposition 4 (Local optimality for MPOMDPs). With probability 1− δ,

MCES-MP-PALO iterates over a series of policies mapping joint observations to joint

actions, π1, π2, . . . , πm, such that the transformed policy πn+1 dominates the previous

policy πn in value for all agents and terminates to an ǫ-locally optimal policy πm, where

no neighbor dominates the converged policy by more than ǫ.

The proof of this theorem follows from Greiner [24] in a straightforward way.

5.3. Joint Transformation of Individual Policies

Motivated by previous approaches in multiagent planning that divide the joint-

policy search space into individual agent policy search spaces with a coordination

mechanism [27, 28], our second method seeks to learn a vector of policies, one for

each agent. A policy πi for an agent i in this vector maps joint observations of all

agents to the action prescribed for i. It does not require combining the rewards as in

Eq. 12; rather it continues to utilize each agent’s separate reward signal ri obtained

fromRi. The model-free RL is outlined in Algorithm 4, and we refer to it as MCES for

factored-reward MPOMDPs (MCES-FMP). Agents simultaneously act in a sequential

environment with private observations that are conveyed exactly and perfectly to the

centralized learner, and the centralized learner communicates the joint observations to

each agent in the field. Agents perform their actions based on the joint observation

sequence as prescribed by their respective policies. The entire trajectory of T time steps

is then sent back to the learning algorithm.

Similar to MCES-MP, we begin by picking a joint observation history ~o and action

~a either randomly or in an iterated manner. However, it uses these to transform each

agent’s current policy by setting the action at ~o with its action in ~a (line 4). MCES-FMP

maintains the Q-value for each agent’s transformed policy (line 7) additionally indexed

by the joint of other agents’ actions picked for ~o. This ensures consistent updates of

Q-values for the same set of joint actions, and thus the multiagent policy vector. As such,

it maintains as many Q-functions as the number of agents and combinations of other
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agents’ actions picked for ~o in the worst case, i.e., O(ZAZ−1). To obtainRi,post−~o(τ)

in line 7 note that, Ri(τ) =
∑T−1

t=0 γt(rti + rtG). Then, Ri,post−~o(τ) is simply the

portion ofRi(τ) that obtains after sequence ~o in the trajectory. Finally, the conjunction

on line 9 ensures that all transformations are accepted together or none are.

Algorithm 4 MCES-FMP

Require: Q-value tables initialized to all 0s, and initial profile of agent policies,

{πi}Zi=1, that are greedy w.r.t. Q-values; learning rate schedule α; error ǫ; and

horizon T
1: Initialize ci~o,ai

← 0 for all ~o, ai, and i ∈ I, m← 0
2: repeat

3: Pick joint observation history ~o and joint action ~a
4: Set πi to neighboring policy πi ← (~o, ai) for all i ∈ I
5: Generate trajectory τ of length T online by obtaining each agent’s action using

its transformed policy πi ← (~o, ai) for each i ∈ I
6: for all i ∈ I do

7: Q
~a−i

πi←(~o,ai)
← (1− α(m, ci~o,ai

)) ·Qa−i

πi←(~o,ai)
+ α(m, ci~o,ai

) · Ri,post−~o(τ)

8: ci~o,ai
← ci~o,ai

+ 1

9: if
∧

i∈I

(

max
a′
i
∈Ai

Q
~a−i

πi←(~o,a′
i
)
> Q

~a−i
πi + ǫ(n, ci~o,ai

, ci~o,πi(~o)
)

)

then

10: πi(~o)← a′i where a′i ← argmaxQ
a−i

π←(~o,a′
i)
∀i ∈ I

11: m← m+ 1
12: Reset ci~o,ai

← 0 for all ~o, ai, and i ∈ I
13: until termination

An implication of line 9 is that if any agent receives a worse individual cost, despite

the cumulative reward being better, MCES-FMP will not transform. While this may

preclude higher team rewards in interim steps, the benefit is that MCES-FMP targets

policies with higher joint values and takes larger steps in its search. Consequently,

MCES-MP could approach the same local optima in policies as MCES-FMP, but may

follow a different path as we demonstrate in Section 7.

When instantiated with PALO bounds (MCES-FMP-PALO), the policy decompo-

sition approach provides significant sample complexity reductions. This is primarily

because of a much reduced local neighborhood, where the first factor involving actions

is not exponential in the number of agents (c.f. Eq. 13):

NFMP = |Ai|
(

∏

i∈I |Ωi|T − 1
∏

i∈I |Ωi| − 1
− 1

)

. (14)

The conjunction on line 9 of MCES-FMP-PALO redefines Eqs. 3 and 4 as,

ǫ∗(m, p) =
Λ(πi, π

′
i)√

2p

√

ln
2Z
√

(4Z − 2)(km − 1)NFMP

2Z
√
δm

. (15)
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km =

⌈

2

(

Λ(πi, π
′
i)

ǫ

)2

ln

(

2Z
√
4Z − 2NFMP

2Z
√
δm

)

⌉

(16)

Here, the maximum range of action values Λ(πi, π
′
i) is computed analogously to Eq. 2

with the change that we utilize the maximum and minimum values of the reward function

in Eq. 11. This range could get much narrower in comparison to the maximum range

for MCES-MP-PALO because the rewards for the latter are a sum of all local costs. Of

course, this benefits the sample bound km. Note again that km is a polynomial, leading

to a polynomial sample complexity per transform.

Proposition 5. The sample bound for MCES-FMP-PALO given in Eq. 16 is less than

the sample bound for MCES-MP-PALO if the following holds for all agents:

ln

(

2Z
√
4Z − 2 NFMP

2Z
√
δm

)

<

(

1 +

∑

i∈Ī Ri,max

Ri,max +RG,max

)2

ln
2NMP

δm

(17)

where Ī is the set of all agents other than agent i.

Proposition 5 is derived by simplifying the condition when the sample bound for

MCES-FMP-PALO (Eq. 16) is smaller than that of MCES-MP-PALO (Eq. 4 with Λ =
Λ(π, π′) and N = NMP ). MCES-FMP-PALO may terminate early if no neighboring

policy exceeds the current value by ǫ− ǫ∗(m, p). Its behavior is characterized by the

following proposition.

Proposition 6 (Local optimality of factored policy). With probability 1− δ, MCES-

FMP iterates over a joint set of individual policies mapping joint observations to

individual actions π1, π2, . . . , πm where every individual policy in the set πn+1 =
〈π1, π2, . . . , πZ〉 in the neighborhood of πn dominates each agent’s previous policy

in value and terminates to an ǫ-locally optimal set of policies πm. Here no neighbor

for any agent dominates the converged policy by more than ǫ without another agent

receiving a worse reward.

In proving Proposition 6, the space of errors increases multiplicatively with the num-

ber of agents. In MCES-P, the agent may make two categories of errors: transforming

or terminating erroneously due to noisy samples of the local neighborhood. In MCES-

FMP, one or more agents may individually make these errors, growing the number of

errors by 2Z. The neighborhoods are factored into Z individual neighborhoods. These

observations and the values in Eqs. 16 and 15 result in the bound δ. Exhaustive proofs

of Propositions 5 and 6 are included in the supplementary material.

In summary, MCES-MP explores policies which map joint observations to joint

actions, aggregating all local costs with the global reward. MCES-FMP explores the set

of independent policies mapping joint observations to individual actions, where agents

receive their own local cost with the global reward. The latter yields reduced sample

complexity when instantiated with PALO guarantees.
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6. Pruning Policy Search Space

Propositions 1, 3, 4, and 6 require exploring all local transformations of a policy for

establishing local optimality. However, some of these transformations modify actions in

response to observation sequences that are not likely to occur. Yet, we are required to

obtain km samples of trajectories from real environments involving such observation

sequences or establish a significant difference in action-values for fewer numbers of

such samples. This contributes significantly to the empirical sample complexity of the

algorithms as we noticed in our experiments. Subsequently, we seek ways to remove

such rare observation sequences from consideration thereby pruning the policy search

space. As these sequences are relatively much less likely they also contribute less to the

expected value of a policy, but not considering them nonetheless introduces regret that

we seek to compute.

Algorithm 5 MCES-IP Prune

Require: Q-value table initialized to all 0s; initial policy, πi, that is greedy w.r.t. Q-values; prior

on set of models Mj ; learning rate schedule α; horizon T ; error ǫ; and regret bound φ

1: c
~aj

~oi,ai
← 0, c~oi ← 0 for all ~oi, ai, and aj

2: m← 0
3: P ← ∅
4: repeat

5: Pick some observation history ~oi and action ai

6: c~oi ← c~oi + 1
7: if ~oi /∈ P then

8: Modify πi to πi ← (~oi, ai)
9: else

10: Go to line 5

11: Generate trajectory τ of length T according to πi ← (~oi, ai)

12: Generate belief sequence~bi based on τ using Eq. 5

13: Obtain most probable action sequence ~aj from~bi

14: Q
~aj

πi←~oi,ai
← (1− α(m, c

~aj

~oi,ai
)) ·Q~aj

πi←~oi,ai
+ α(m, c

~aj

~oi,ai
) ·Rpost−~oi(τ)

15: c
~aj

~oi,ai
← c

~aj

~oi,ai
+ 1

16: if maxa′
i
Q

~aj

πi←~oi,a
′
i
≥ Q

~aj
πi + ǫ~aj (m, c

~aj

~oi,ai
, c

~aj

~oi,πi(~oi)
) then

17: πi(~oi)← a′i
18: m← m+ 1
19: for all ~oi, ai,~aj do

20: c
~aj

~oi,ai
← 0

21: if
∑

~oi∈P∪~oi

¯regret~oi ≤ φ+ ρ(
∑

~oi
c~oi) then

22: P ← P ∪ ~oi
23: until termination

Ignoring a different action at some observation sequence ~oi is regrettable because

we are foregoing the possibility of improving the expected value of i’s policy. Of course,

a less likely observation sequence may not add much to the expected value of the current

policy. Nevertheless, let φ be a user-defined bound on allowable regret. By avoiding

transforming on ~oi, we are foregoing at most the largest post-~oi rewards; specifically
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this regret is upper bounded by maxτ Rpost−~oi(τ) − minτ Rpost−~oi(τ). Regret on the

expected value of the policy is bounded by

regret~oi ≤ Pr(~oi;πi, πj)
(

max
τ

Rpost−~oi(τ)−min
τ

Rpost−~oi(τ)
)

= Pr(~oi;πi, πj) (T − len(~oi)) (Ri,max −Ri,min) (18)

Here, Pr(~oi;πi, πj) is the likelihood of the observation sequence ~oi whose compu-

tation depends on the actions prescribed by both agents’ policies, state transition and

observation functions; rewards Ri,max and Ri,min are as defined previously. As the

regret cannot exceed T (Ri,max − Ri,min), we may normalize the regret to obtain a

proportion between 0 and 1 as, ¯regret~oi =
regret~oi

T (Ri,max−Ri,min)
.

Of course, not knowing πj and the model parameters implies that we cannot compute

Pr(~oi;πi, πj) exactly. Hence, we settle for a crude approximation where Pr(~oi;πi, πj)
is estimated by the fraction of times ~oi occurs in the km or more samples generated

so far. This requires keeping a count of each observation sequence encountered in the

trajectories.

Let P be the set of i’s observation sequences that will be avoided. If a bound φ on

the normalized regret is given by the user, we may obtain P in a straightforward way:

Sort the set of all observation sequences of all lengths by their frequency of occurrence

in ascending order. Then, add a sequence into P beginning with the least frequent and

moving up the ordering such that,
∑

~oi∈P
¯regret~oi ≤ φ. Consequently, a bound that

is looser would allow disregarding more observation sequences to meet it and thereby

prune a larger portion of the search space. Alternately, the sorting is not necessary and

we may simply pick an observation sequence at random and check if adding it to P
would cause the cumulative normalized regret to exceed φ.

The pruning mechanism described previously may be easily incorporated into

MCES-P, -IP, -MP, and -FMP templates. Algorithm 5 outlines how it may be utilized

with MCES-IP. Two additions can be observed. Lines 7-10 make a determination

if the current ~oi is in the set P of sequences that will not be considered (initialized

to the empty set), and if not policy πi is locally transformed at ~oi. Lines 21-22 add

the observation sequence ~oi into set P if the cumulative normalized regret due to all

observation sequences in P including ~oi remains less than or equal to given bound

φ+ ρ(
∑

~oi
c~oi), where

ρ(c) =

{

0 c ≥ k
+∞ otherwise

(19)

Thus, P remains empty unless a reasonable number of samples are obtained to

sufficiently approximate Pr(~oi;πi, πj). In the case of MCES-IP-PALO instantiation

of the template, k could be simply set to the derived sample bound km

2 . We ensure

that sufficient samples containing ~o, c~o, are obtained before its regret is considered by

defining ρ(c~o) as 0 if c~o ≥ km

2 and +∞ otherwise. Then, ρ is simply added to φ. The

pruning mechanism shows a promising improvement as shown in Section 7. It improves

the scalability of all methods by drastically reducing the search space.
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7. Experiments

We implement MCES-IP-PALO, MCES-MP-PALO, and MCES-FMP-PALO

to obtain converged policies for three self-interested multiagent domains and four

cooperative multiagent domains. These domains range from being small to among the

largest in the literature that have been utilized for evaluating multiagent RL. We discuss

these domains below followed by analyzing the performance of the methods.

7.1. Problem Domain Specifications

Our first self-interested domain is the competitive, multiagent version of the Tiger

problem [8]. Our second domain is a 3×2 autonomous unmanned aerial vehicle (AUAV)

reconnaissance domain [29] shown in Fig. 1. Each agent has 3 actions: the AUAV may

move left, right, or up, and the fugitive may move left, right, or down. Both agents

receive 1 of 4 noisy public observations, representing whether both agents are East

or West of each other, North or South of each other, in the same sector, or none of

these. The subject agent, which is the AUAV, additionally receives 1 of 3 noisy private

observations each correlated with an action the opponent takes. A third domain is

the money laundering (ML) problem [30] where a blue team seeks to confiscate illicit

money that the opponent red team is laundering. The red team can move money from

the initial state to a series of placement states (banks and insurance), to layering states

(offshore accounts and shell companies), to integration states (casinos and real estate),

and to the safe clean pot. The blue team may place a sensor at each of these locations or

confiscate the illicit funds. Each agent receives a noisy public observation indicating

whether the money and sensor are in the same location, in the same laundering state, or

neither. Blue team also receives a noisy observation of the last action of the red team.

Figure 1: At the beginning of every round, the AUAV is positioned in the bottom-left

sector and the fugitive is positioned in the top-right sector. All sectors in the leftmost

column are considered safe.

For cooperative domains, our first domain is the well-known team Tiger problem

with 2 agents [31]. We expand this domain to include factored rewards: the global

reward corresponds to the original reward function, and additionally each agent i ∈ N

incurs a cost of i for opening a door. The second domain is the 3-agent Firefighting

(Fig. 2a) previously introduced for evaluating cooperative decentralized planning [17]

using 4 houses with a maximum fire intensity of 3. Agents incur two local costs: the

distance between houses if they move (distance/(10− i)) and the fire intensity of the
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target (fh/(10− i)). Our third domain is the 2- and 4-agent robot alignment problem

(Fig. 3) [16] where each agent has two states and four states respectively. Robots incur

local costs on turning (−2 − i) and emitting IR (−1 − i). Our final domain is the

Mars Rovers (Fig. 2b) [32] where two agents conduct experiments at four possible sites

by choosing to drill or sample. In order to receive the maximum reward, two of the

sites require both agents to drill at the same time. Agents incur local costs on moving

(−1 − i), sampling at right sites (2 − i), sampling at wrong sites (1 − i), one agent

drilling at right sites (2 − i), both agent drilling at right sites (4 − i), and drilling at

wrong sites (−10− i).

(a) (b)

Figure 2: (a) Illustration of an optimal policy on the firefighting domain. Agents incur

two local costs: the distance between houses if they move (distance/(10− i)) and the

fire intensity of the target (fh/(10 − i)). (b) The Mars Rover domain in which the

top-right and bottom-left sites require both agents to drill at the same time. Agents

receive (−10− i) for drilling at other sites. The agents receive (2− i) if sampling at

top-left and bottom-right site respectively. Otherwise, they only receive (1− i).

Figure 3: Illustration of a converged policy on the two-robot alignment problem yielding

a trajectory from time step 0 to 3 where the robots align. Rewards r0 and r1 are local

costs while rG is the global team reward. Actions prescribed by the joint policy are

mentioned below each robot.

Table 1 summarizes the statistics and parameter settings of all our domains. By

setting δ to 0.1, all values are obtained at 99% confidence bounds. Convergence for

larger domains is slightly more relaxed with ǫ = 0.1. We set a generous time limit of 10

hours for MCES-P, MCES-IP, MCES-MP, and MCES-FMP on a standard PC (RHEL

6 Linux with 2.80 GHz Intel Xeon processor and 6 GB of main memory). This limit

gives sufficient time to allow learning high-valued policies. Within this time, we sought

to obtain the highest-valued converged policies from the all methods for smallest φ.

In the non-cooperative domains, each agent has a 15% chance of receiving a noisy

public and private observation. The opponent in competitive games follows a single
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Domain Specifications Opt. Value

Multiagent Tiger

(Competitive)

ǫ = 0.05, δ = 0.1, φ = 0.15, T = 5, 6,

|S| = 2, |Ω| = 2, |Ai| = 3, |Aj | = 3, |Πj | = 14 4.35, 6.72

3×2 AUAV

ǫ = 0.1, δ = 0.1, φ = 0.2, T = 3,

|S| = 36, |Ω| = 4, |Ai| = 3, |Aj | = 3, |Πj | = 4 14.42

Money Laundering

ǫ = 0.1, δ = 0.15, φ = 0.2, T = 3,

|S| = 99, |Ω| = 4, |Ai| = 4, |Aj | = 5, |Πj | = 8 17.53

Multiagent Tiger

(Cooperative)

ǫ = 0.1, δ = 0.1, φ = 0.1, T = 5, 6,

|Ω| = 2, |Ai| = 3, |Aj | = 3 25.64, 32.11

Firefighting

ǫ = 0.1, δ = 0.1, φ = 0.15, T = 3, 4,

|S| = 755, |Ω| = 2, |Ai| = 4, |Aj | = 5 -5.94, -4.83

Robot Alignment

ǫ = 0.1, δ = 0.1, φ = 0.15, T = 4,

|S| = 4, 16, |Ω| = 2, |Ai| = 4, |Aj | = 5 14.39, 24.72

Mars Rovers

ǫ = 0.1, δ = 0.1, φ = 0.15, T = 4,

|S| = 256, |Ω| = 8, |Ai| = 6, |Aj | = 6 20.19

Table 1: Parameter configurations with optimal policy values for the problem domains.

The top three are competitive while the bottom four are cooperative. Notice that the

domains range from having just two states (Tiger) to 755 (Firefighting).

policy (stationary environment) or fixed distribution over multiple policies (nonstationary

environment). We simulate i’s policies with opponent j following either a single policy

or a mixture of two policies. These policies are picked from a predefined set Πj . As per

the policy space specified in Table 1, 105 games of the multiagent Tiger problem, 9 of

the 3×2 AUAV problem, and 13 of ML comprise the data set.

7.2. Experiment Results

Monotonicity. First, we show that all four methods demonstrate the PALO guarantee of

monotonically increasing in value across successive transformations. Figure 4 illustrates

the average values from three runs for these methods with ǫ = 0. Different runs

undergo varying number of transformations with some policies not transforming at all

because they are ǫ-locally optimal initially itself. As shown in Fig. 4, each successive

transformation results in a higher value and in no case is the final policy lower in value

than the initial policy, as we should expect. In every case, MCES-P-PALO requires

more samples to transform than MCES-IP-PALO and MCES-MP-PALO requires more

samples to transform than MCES-FMP-PALO.

Competitive baselines. Table 2 lists the mean of the sample bound km across the differ-

ent stages m over all runs and the mean of the actual number of samples used, k+m, over

all runs that were utilized by MCES-P-PALO and MCES-IP-PALO in competitive Tiger

domain. k+m is dominated by the samples that did not contribute because they lacked

the observation sequence under consideration. We also compare MCES-P-PALO and

MCES-IP-PALO with multiagent deep deterministic policy gradient (MADDPG) [19],

which utilizes deep neural net representations, for completeness. MADDPG is a policy

gradient based actor-critic method where the critic is assumed to have access to the

other agent’s policy as discussed in Section 2. However, to ensure a fair comparison,

the MADDPG agent receives a private observation that noisily reveals information

about the other agent’s action to the critic. The numbers of samples used for training
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Figure 4: ‘Samples’ on the x-axis are the number of environmental interactions that the

learner has experienced, and ‘Policy Value’ on the y-axis refers to the expected value of

the policy learned with that number of samples. (left) Example policy transformation

paths with intermediate values for single and mixed strategy opponents in the competitive

Tiger. The bottom transformation paths are for an opponent with a mixed strategy.

(right) Example policy transformation paths with intermediate values in the cooperative

tiger (top) and robot alignment problem (bottom). Here, ǫ = 0 for all methods.

T
Initial Final

Samples Transforms k+
mdeviation % deviation %

MCES-P

Single 5 56.09 19.20 83,663 ± 62 12 ± 1.4 89,430

Mixed 5 56.09 25.24 102,002 ± 66 11 ± 1.4 113,901

Single 6 43.95 16.01 234,752 ± 159 21 ± 1.2 249,029

Mixed 6 43.95 21.84 292,778 ± 121 23 ± 1.4 314,920

MCES-IP

Single 5 56.09 6.79 29,351 ± 85 18 ± 1.2 78,932

Mixed 5 56.09 19.44 34,640 ± 89 17 ± 1.4 79,171

Single 6 43.95 3.96 73,927 ± 105 26 ± 1.4 150,342

Mixed 6 43.95 15.41 104,357 ± 113 24 ± 1.2 159,556

MADDPG

Single 5 56.09 15.19 30,000 – –

Mixed 5 56.09 26.85 35,000 – –

Single 6 43.95 11.29 75,000 – –

Mixed 6 43.95 19.98 100,000 – –

Table 2: Mean effective sample size and theoretical bound across the stages for the

competitive Tiger problem, stratified over method and whether the opponent follows a

single policy or a mixed set of policies. Deviations are shown as percentages relative

to the known optimal policy values (lower is better). Pruning parameter φ is set to 0.1

for both methods. Initial policies are randomly generated, but competing methods use

the same set of initial policies (hence the identical initial values). Lowest deviations for

each setting among all methods are highlighted. ‘ – ’ denotes not applicable.

25



Initial Final
Samples Transforms k+

mdeviation % deviation %

MCES-P
Single 70.25 17.96 32,397 ± 2,816 13 ± 0.4 91,443

Mixed 70.25 23.79 42,126 ± 1,689 13 ± 1.1 96,328

MCES-IP
Single 70.25 9.29 6,437 ± 68 17 ± 1.3 20,397

Mixed 70.25 15.46 19,499 ± 1,304 18 ± 0.7 22,763

Table 3: Mean effective sample size and theoretical bound across the stages for the

competitive 3 × 2 AUAV problem, stratified over method and whether the opponent

follows a single policy or a mixed set of policies. Deviations are shown as percentages

relative to the known optimal policy values. Pruning parameter φ is set to 0.1 for both

methods. Initial policies are randomly generated, but competing methods use the same

set of initial policies (hence the identical initial values)

Initial Final
Samples Transforms k+

mdeviation % deviation %

MCES-P
Single 71.88 15.35 20,717 ± 2,418 8 ± 0.9 23,726

Mixed 71.88 24.24 20,247 ± 4,974 9 ± 0.8 35,612

MCES-IP
Single 71.88 7.64 1,947 ± 330 12 ± 0.9 24,172

Mixed 71.88 14.32 3,174 ± 536 13 ± 1.1 24,347

Table 4: Mean effective sample size and theoretical bound across the stages for the com-

petitive Money Laundering problem, stratified over method and whether the opponent

follows a single policy or a mixed set of policies. Deviations are shown as percentages

relative to the known optimal policy values. Pruning parameter φ is set to 0.1 for both

methods. Initial policies are randomly generated, but competing methods use the same

set of initial policies (hence the identical initial values)

MADDPG are limited to match that used by MCES-IP-PALO during learning. Notice

that the performance of this agent improves on MCES-P-PALO, as it considers the

other agent’s actions in its learning, but does not reach the quality of policies obtained

by MCES-IP-PALO – it needs far more (about three times as many) samples to do

so. Table 3 and Table 4 lists the mean of effective sample size and theoretical bound

across the stages over all runs in 3× 2 AUAV domain and Money Laundering domain.

Pruning parameter φ is set to 0.1 for both methods. In validation of our theoretical result,

MCES-IP-PALO requires remarkably fewer samples to transform per action sequence,

about a quarter in Tiger and 3×2 AUAV, and nearly a tenth in ML. Additionally, the

bound on km is also significantly less compared to the bound for MCES-P-PALO. Due

to stochasticity in the simulations and finite sampling bounds, MCES-P-PALO and

MCES-IP-PALO may deviate in transformation paths. However, in over 80% of the

runs, both result in the same converged policy with MCES-IP-PALO converging on

average under half the number of samples taken by MCES-P-PALO.

Cooperative baselines. We compare our method with a model-based RL technique for

MPOMDPs, which offers the previous best solution. Bayes-adaptive factored-value

POMCP (BA-FV-POMCP) [17] interleaves Bayesian model building with POMCP-
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based planning to solve MPOMDPs. It uses the learned model obtained from the updated

transition and observation count vectors at the beginning of an episode to build the

simulator required by the POMCP rollouts. Another baseline we used for comparison is

the direct cross-entropy policy search method [33] (DICEPS). It directly searches the

space of joint policies. By adjusting some parameters, DICEPS allows us to directly

control the number of sample used in each run. This feature is useful in comparing its

performance with competing methods that use roughly the same number of samples.

We also compare our methods with MADDPG on the tiger domain for completeness.

We use approximately the same number of samples as MCES-MP-PALO and MCES-

FMP-PALO to train MADDPG, and the critic receives a private observation that noisily

reveals information about other agent’s actions.

We empirically validate the drastically reduced number of samples required by

MCES-FMP-PALO compared to MCES-MP-PALO. Additionally, the sample counts

of the two methods are compared with those used by BA-FV-POMCP. As the simulations

in BA-FV-POMCP are performed using the built model, we limit our attention to the

number of samples utilized for model building. We report on the values of the converged

joint policies for all four methods while allowing MCES-MP-PALO, BA-FV-POMCP,

and DICEPS to use a similar number of samples as MCES-FMP-PALO. As a baseline,

we implemented an algorithm that uses the single-agent MCES-P for learning the

policy of each agent individually, but agents are still situated in the multiagent setting.

Trajectories are generated by jointly performing the actions from each agent’s policy,

and each agent’s individual reward is utilized for computing the action-value of the

policy. To permit comparison, values of policies from all methods were computed

similarly: the policies were simulated and local rewards of all agents were summed and

added to the global reward; this was accumulated across all steps in the trajectory.

T
Initial Final

Samples (km) Transforms k+
m φ

deviation % deviation %

MCES-FMP
5 908.11 2.08 32,594 ± 227 37 ± 1.1 79,482 0.1

6 971.38 1.83 67,914 ± 104 59 ± 1.2 144,582 0.1

MCES-MP
5 908.11 8.23 33,985 ± 183 22 ± 1.4 80,484 0.1

6 971.38 7.54 69,904 ± 177 36 ± 1.7 143,883 0.1

MCES-P
5 908.11 42.36 33,584 ± 82 29 ± 1.4 81,488 0.1

6 971.38 14.14 68,391 ± 77 32 ± 1.6 144,505 0.1

BA FV-POMCP
5 908.11 34.63 32,993 ± 95 – – –

6 971.38 8.44 67,884 ± 63 – – –

DICEPS
5 908.11 12.55 35,000 – – –

6 971.38 9.76 70,000 – – –

MADDPG
5 908.11 33.04 35,000 – – –

6 971.38 7.15 70,000 – – –

Table 5: Average metrics with std. error over 5 runs on the cooperative Tiger domain

for all methods. Deviations are shown as percentages relative to the known optimal

policy values (lower is better). Initial policies are randomly generated, but all competing

methods use the same set of initial policies.
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A
Initial Final

Samples (km) Transforms k+
m φ

deviation % deviation %

MCES-FMP
2 1564.21 1.33 28,139 ± 31 16 ± 1.4 56,838 0.1

4 1095.15 1.71 39,256 ± 180 36.8 ± 0.4 84,651 0.1

MCES-MP
2 1564.21 5.19 29,124 ± 32 10 ± 1.2 59,242 0.2

4 1095.15 6.58 39,940 ± 101 33 ± 0.5 111,829 0.2

MCES-P
2 1564.21 20.34 26,564 ± 59 9 ± 0.3 70,962 0.3

4 1095.15 22.42 40,303 ± 64 17 ± 1.1 99,035 0.3

BA FV-POMCP
2 1564.21 15.68 26,169 ± 18 – – –

4 1095.15 16.29 40,040 ± 93 – – –

DICEPS
2 1564.21 4.22 35,000 – – –

4 1095.15 5.03 40,000 – – –

Table 6: Average metrics with std. error over 5 runs on cooperative 2-agent and 4-agent

Robot Alignment domain for all methods. Deviations are shown as percentages relative

to the known optimal policy values. Initial policies are randomly generated, but all

competing methods use the same set of initial policies.

H.
Initial Final

Samples (km) Transforms k+
m φ

deviation % deviation %

MCES-FMP
3 23.23 10.09 20,921 ± 93 3.4 ± 0.5 40,580 0.1

4 165.01 9.17 46,235 ± 95 40 ± 1.8 108,512 0.1

MCES-MP
3 76.77 58.33 21,940 ± 122 2.2 ± 0.4 53,904 0.2

4 165.01 56.09 48,216 ± 155 26 ± 1.2 121,507 0.2

MCES-P
3 76.77 69.3 29,437 ± 56 1.7 ± 0.4 60,966 0.3

4 165.01 67.38 45,991 ± 88 31 ± 1.3 120,883 0.3

BA FV-POMCP
3 76.77 60.53 20,962 ± 80 – – –

4 165.01 54.83 46,270 ± 84 – – –

DICEPS
3 76.77 49.56 25,000 – – –

4 165.01 34.01 50,000 – – –

Table 7: Average metrics with std. error over 5 runs on the cooperative Firefighting

domain for all methods. Deviations are shown as percentages relative to the known

optimal policy values. Initial policies are randomly generated, but all competing methods

use the same set of initial policies.

Table 5 lists the metrics with the values averaged over 5 runs of MCES-MP-PALO,

MCES-FMP-PALO, competing methods BA FV-POMCP, DICEPS, MADDPG, and

baseline MCES-P-PALO for the cooperative Tiger domain. Tables 6, 7, and 8 lists these

metrics for the multi-robot alignment, firefighting, and Mars rover domains, respectively.

Note that the pruning parameter φ for MCES-MP-PALO and MCES-P-PALO are set

to a higher value than MCES-FMP-PALO to make all three methods converge within

the same amount of time. Each run starts at a differing initial policy that is generated

randomly. However, the same set of initial policies is used for all methods to ensure

a fair comparison. The reported km and k+m are averaged over the 5 runs. The φ that

led to convergence is also reported. Observe that MCES-FMP-PALO yields a joint

policy that is significantly better than the joint from MCES-MP-PALO, BA FV-POMCP,
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Initial Final
Samples (km) Transforms k+

m φ
deviation % deviation %

MCES-FMP 112.13 18.95 46,099 ± 102 46 ± 2.4 12,910 0.1

MCES-MP 112.13 52.52 48,513 ± 128 37 ± 1.1 132,009 0.2

MCES-P 112.13 68.6 48,920 ± 79 28 ± 1.3 134,643 0.3

BA FV-POMCP 112.13 46.64 51,131 ± 20 – – –

DICEPS 112.13 51.50 50,000 – – –

Table 8: Average metrics with std. error over 5 runs on cooperative Mars Rover domain

for all methods. Deviations are shown as percentages relative to the known optimal

policy values. Initial policies are randomly generated, but all competing methods use

the same set of initial policies.

DICEPS, and MADDPG for about the same numbers of contributing samples, km.

This holds for multiple problem domains and their configurations. Furthermore, the

policies generate coordination as is evident from the improvement over the MCES-

P baseline. Model-based RL is generally believed to be more sample efficient than

model-free methods, and Bayesian model-based RL essentially utilizes planning to

decide between gathering samples that contribute to model-building versus exploitation.

Nonetheless, MCES-FMP-PALO’s comprehensive improvements over BA FV-POMCP

is likely because policy iteration generally converges faster than value iteration [34] and

reasonably accurate models for the evaluated domains (starting from a uniform prior

over the models) may not be learned with the given number of samples. Along a similar

vein, MADDPG needs many more samples than those provided to reach the policies

obtained by MCES-MP-PALO despite being a policy search technique.

In Tables 2 – 8, the actual numbers of samples k+m reported for our proposed methods

may appear large for small problems, despite their theoretically polynomial sample

complexity per transform. It should be noted that the reported sample counts appear

large due to rejection sampling, where after selecting an (~o, a), the learning agent keeps

generating trajectories until it encounters a matching ~o. For observation histories ~o, many

(especially the longer ones) may have a very low likelihood of being sampled, leading

to many rejected samples. In fact, over 90% of the samples reported for MCES-IP,

MCES-MP and MCES-FMP, are rejected, and not used by these algorithms. Though

not used, we report these sample counts to give a complete picture and enable a fair

comparison with competing methods.

Impact of pruning. Observation sequence pruning plays a crucial role in improving the

scalability of all methods, dramatically reducing the search space and sample complexity

while minimizing the impact on incurred regret. We list the mean of the total k+m across

all observation sequences for both problem domains in Table 9, both with and without

pruning. As the policy search space for both MCES-MP and MCES-FMP is the

same, the regret due to pruning the search space does not depend on the method used.

Observation sequence pruning benefits both these methods equally in reducing the

policy search space as we demonstrate in Table 9.

Each neighborhood is calculated with a horizon of 3. For example, for the multiagent

Tiger problem, the size of the observation space per round is 6 (2 public × 3 private

observations) with 3 possible actions, resulting in a maximum neighborhood of 128.
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Method Domain Pruning Neighborhood k+
m

MCES-IP

Multiagent Tiger
With 26 624,057

Without 128 15,893,387

AUAV
With 32 624,057

Without 470 3,704,396

ML
With 76 2,259,860

Without 636 18,911,460

MCES-MP

Multiagent Tiger
With 46 2,540,664

Without 324 17,784,648

Firefighting
With 5,252 8,463,146

Without 36,864 59,242,922

Robot Alignment
With 5,252 1,694,019

Without 36,864 11,858,138

MCES-FMP

Multiagent Tiger
With 3 4,057,404

Without 18 28,401,834

Firefighting
With 26 10,129,201

Without 192 70,904,408

Robot Alignment
With 26 1,997,067

Without 192 13,979,472

Table 9: Neighborhood size and total km values for all the domains. Prunning parameter

φ is set to 0.15 for the competitive Tiger, Firefighting, Robot Alignment, and Mars

Rovers, 0.1 for cooperative Tiger, 0.2 for 3× 2 AUAV and Money Laundering. Note

that the total bound on samples reduces by almost an order of magnitude.

Given a regret bound of 0.15, 34 of 43 distinct observation sequences are eliminated on

average, resulting in a neighborhood of 26.

Characterizing local optima. Figure 5 illustrates the values of converged policies and

samples used for training with the regret φ varying from 0 to 0.2. Figure 5(left) shows a

converged value of 2.47 by MCES-IP-PALO for the Tiger problem without pruning

(φ = 0) and Figure 5(right) shows a converged value of 10.28 for the policy vector in

the absence of pruning in the team Tiger problem. This gradually drops as φ increases.

Expectedly, the number of used samples drops significantly as well. We stop further

increasing φ since the converged policies will be too far from optimal. With φ = 0,

both MCES-IP-PALO and MCES-FMP-PALO achieved near optimal policy values,

albeit with more samples. Figure 3 demonstrated a successful run on the particularly

challenging 2-robot Align as evidence of the good-quality policies learned by MCES-

FMP. The learned policy vector guides the two robots to a successful alignment.

8. Concluding Remarks

MCES-P offers elegant policy-based RL in the partially observable, single-agent

context. We generalized MCES-P to multiagent settings, introducing model-free learn-

ing by searching in the space of joint policies. The past decade’s success in developing

and scaling decision-theoretic planning for multiagent POMDPs has allowed attention to

shift to realistic multiagent contexts. But, planning requires model specifications, which
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Figure 5: (left) Illustration of MCES-IP with varying φ, including convergence to

near-optimal values with no pruning. Each data point averages 5 runs on Tiger T=3.

(right) Illustration of MCES-FMP with varying φ, including convergence to near-

optimal values with no pruning. Each data point averages 11 runs on team Tiger T=3.

Standard errors are very small.

are hard to build for real-world problems with no prior information. Consequently,

model-free reinforcement learning for these contexts has gained prominence.

We presented three templates for which PALO guarantees were established on the

local optimality of the converged policies. While these guarantees do not speak to

global optimality, nevertheless they offer a sound basis for the methods and guarantees

of global optimality tend to be rare among RL techniques. Empirical results on three

domains with differing numbers of agents comprehensively establish the competitive

performances of these first model-free RL techniques for POSGs that fill an important

gap in the literature on multiagent decision making.

In contrast to the original MCES-P template, our methods are more practicable

for real-world multiagent reinforcement learning problems due to the reduced sample

complexity. On the one hand, MCES-IP is suitable for competitive multiagent domains.

It requires the presence of a private observation function for the learning agent and learns

policies that map the agent’s individual observations to its actions. With action prediction

using beliefs over other agents’ models, MCES-IP dramatically reduces the sample

complexity of MCES-P-PALO with reductions on sample bounds and empirical sample

counts ranging between 50% to 75% less than MCES-P-PALO. With observation

sequence pruning, we further reduced over 80% samples required while introducing

a normalized regret of between 0.15 and 0.2. MCES-IP is still able to achieve the

same optima as MCES-P despite the fraction of samples required. On the other hand,

MCES-MP and MCES-FMP focus on cooperative multiagent domains and do not

require the presence of any model components. MCES-MP utilizes joint observations,

actions and rewards instead of individual observations, actions, and rewards in MCES-

P and MCES-IP. It explores policies which map joint observations to joint actions.
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MCES-FMP differs from MCES-MP in that it still utilizes each agent’s individual

rewards instead of joint rewards. It explores the set of independent policies mapping

joint observations to individual actions. All optima in MCES-MP are also optima in

MCES-FMP, as a reduced total reward reflects a decrease in individual reward for some

or all agents. However, a neighboring policy’s total reward may be higher if the cost

for one agent reduces more than that incurred by another agent. In this case, -FMP

will not transform while -MP will. Therefore, optima in -FMP may not be so for -MP.

Notwithstanding this, in practice, -FMP may route to this policy via a different path or

arrive at similarly-valued optima. While both methods search through the same joint

policy space, they differ in convergence criteria.

While the scalability of our method is fundamentally limited by the growth of NFMP

as the action and observation sets grow, it is noteworthy that the sample complexities

of our methods are polynomial in the problem parameters, per transform. When the

amount of useful interaction with the real environment is roughly equal, MCES-FMP

learns significantly better quality policies than those by previous best methods, while

being model-free and not requiring a simulator. Real-world interactions often dominate

learning time (consider a mobile robot collecting samples using typically slow actuators)

compared to interactions with a simulator. When judged from this holistic perspective,

this article significantly advances the frontier of multiagent learning systems.

Finally, we ask: does the cooperative RL generalize to settings where the agents are

structured into neighborhoods on a graph? Recall that both MCES-MP and MCES-

FMP target the MPOMDP model, where the learning is centralized. In this setting, all

agents pass their observations to the centralized learner. This is equivalent to agents

being aware of all other agents’ observations. Segmenting the cooperative agents

into neighborhoods limits information exchange between the agents, and MCES-MP

and MCES-FMP may not be applied where information exchange is limited among

agents. MCES-IP, however, is precisely meant for such general settings where agents’

observation exchanges are limited.

One line of further inquiry would be to mitigate the inflated actual sample complexity

due to rejection sampling. While pruning addresses this limitation to some extent, other

methods need to be investigated for deeper impact. It is noteworthy that the reason our

methods cannot avoid rejection sampling is that we only allow realistic interactions

between our learners and the environment, as opposed to having a greater control on

sampling using a simulator. If the learner had access to a simulator, then importance

sampling could be used [35] to significantly reduce the sample complexity in practice.

As another next step, we are studying recent advances in using deep recurrent RL

for POMDPs [36], and the challenges in generalizing the network and samples to the

exponentially-harder POSGs.

9. References

[1] R. Powers, Y. Shoham, T. Vu, A general criterion and an algorithmic framework

for learning in multi-agent systems, Machine Learning 67 (1) (2007) 45–76.

[2] R. S. Sutton, A. G. Barto, Introduction to reinforcement learning, MIT Press, 1998.

32



[3] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4) (1992) 279–292.

[4] T. J. Perkins, Reinforcement learning for pomdps based on action values and

stochastic optimization, in: Association for the Advancement of Artificial Intelli-

gence, 2002, pp. 199–204.

[5] L. Peshkin, K.-E. Kim, N. Meuleau, L. Kaelbling, Learning to cooperate via policy

search, in: Uncertainty in Artificial Intelligence, 2000, pp. 489–496.

[6] D. S. Bernstein, S. Zilberstein, N. Immerman, The complexity of decentralized

control of markov decision processes, in: Uncertainty in Artificial Intelligence,

2000, pp. 32–37.

[7] J. V. Messias, M. Spaan, P. U. Lima, Efficient offline communication policies for

factored multiagent POMDPs, in: Neural Information Processing Systems, 2011,

pp. 1917–1925.

[8] P. J. Gmytrasiewicz, P. Doshi, A framework for sequential planning in multiagent

settings, Journal of Artificial Intelligence Research 24 (2005) 49–79.

[9] R. Ceren, P. Doshi, B. Banerjee, Reinforcement learning in partially observable

multiagent settings: Monte carlo exploring policies with pac bounds, in: Interna-

tional Conference On Autonomous Agents and Multi-Agent Systems, 2016, pp.

530–538.

[10] L. P. Kaelbling, M. Littman, A. Cassandra, Planning and acting in partially observ-

able stochastic domains, Artificial Intelligence.

[11] P. Doshi, Decision making in complex multiagent contexts: A tale of two frame-

works, AI Magazing 4 (2012) 82.

[12] B. Ng, K. Boakye, C. Meyers, A. Wang, Bayes-adaptive interactive pomdps, in:

Association for the Advancement of Artificial Intelligence, 2012.

[13] T. N. Hoang, K. H. Low, A general framework for interacting bayes-optimally

with self-interested agents using arbitrary parametric model and model prior, in:

International Joint Conferences on Artificial Intelligence, 2013, pp. 1394–1400.

[14] B. Banerjee, J. Lyle, L. Kraemer, R. Yellamraju, Sample bounded distributed

reinforcement learning for decentralized pomdps., in: Association for the Ad-

vancement of Artificial Intelligence, 2012, pp. 1256–1262.

[15] L. Kraemer, B. Banerjee, Reinforcement learning of informed initial policies for

decentralized planning, Transactions on Autonomous and Adaptive Systems 9 (4)

(2014) 18.

[16] L. Kraemer, B. Banerjee, Multi-agent reinforcement learning as a rehearsal for

decentralized planning, Neurocomputing 190 (2016) 82–94.

33



[17] C. Amato, F. A. Oliehoek, Scalable planning and learning for multiagent pomdps,

in: Association for the Advancement of Artificial Intelligence, 2015, pp. 1995–

2002.

[18] S. Omidshafiei, J. Pazis, C. Amato, J. How, V. John, Deep decentralized multi-task

multi-agent rl under partial observability, in: International Conference on Machine

Learning, 2017.

[19] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mordatch, Multi-agent actor-

critic for mixed cooperative-competitive environments, in: Neural Information

Processing Systems, 2017, pp. 6382–6393.

[20] J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, I. Mordatch,

Learning with opponent-learning awareness, in: International Conference on

Autonomous Agents and MultiAgent Systems, 2018, pp. 122–130.

[21] Z. Cao, C.-T. Lin, Reinforcement Learning from Hierarchical Critics, arXiv e-

prints (2019) arXiv:1902.03079arXiv:1902.03079.

[22] J. Gupta, M. Egorov, M. Kochenderfer, Cooperative multi-agent control using

deep reinforcement learning, in: International Conference On Autonomous Agents

and Multi-Agent Systems, 2017, pp. 66–83.

[23] M. Liu, X. Liao, L. Carin, The infinite regionalized policy representation, in:

International Conference on Machine Learning, 2011, pp. 769–776.

[24] R. Greiner, Palo: A probabilistic hill-climbing algorithm, Artificial Intelligence

84 (1) (1996) 177–208.

[25] Y. Shoham, K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-theoretic,

and Logical Foundations, Cambridge University Press, 2009.

[26] D. Monderer, L. Shapley, Potential games, Games and Economic Behavior.

[27] C. Amato, D. S. Bernstein, S. Zilberstein, Optimizing memory-bounded con-

trollers for decentralized pomdps, in: International Joint Conferences on Artificial

Intelligence, 2007, pp. 1–8.

[28] C. Guestrin, D. Koller, R. Parr, Multiagent planning with factored mdps., in:

Neural Information Processing Systems, Vol. 1, 2001, pp. 1523–1530.

[29] E. Sonu, P. Doshi, Generalized and bounded policy iteration for finitely-nested

interactive pomdps: Scaling up, in: International Conference On Autonomous

Agents and Multi-Agent Systems, 2012, pp. 1039–1048.

[30] B. Ng, C. Meyers, K. Boakye, J. Nitao, Towards applying interactive POMDPs

to real-world adversary modeling, in: Innovative Applications of Artificial Intelli-

gence, 2010, pp. 1814–1820.

34



[31] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, S. Marsella, Taming decentralized

pomdps: Towards efficient policy computation for multiagent settings, in: Interna-

tional Joint Conferences on Artificial Intelligence, 2003, pp. 705–711.

[32] C. Amato, S. Zilberstein, Achieving goals in decentralized pomdps, in: Interna-

tional Conference On Autonomous Agents and Multi-Agent Systems, 2009, pp.

593–600.

[33] F. Oliehoek, J. Kooij, N. Vlassis, The cross-entropy method for policy search in

decentralized pomdps, Informatica 32 (2008) 341–357.

[34] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall,

Egnlewood Cliffs, 2010.

[35] K. A. Ciosek, S. Whiteson, OFFER: Off-Environment Reinforcement Learning, in:

Association for the Advancement of Artificial Intelligence, 2017, pp. 1819–1825.

[36] M. J. Hausknecht, P. Stone, Deep recurrent q-learning for partially observable

mdps, CoRR abs/1507.06527. arXiv:1507.06527.

URL http://arxiv.org/abs/1507.06527

APPENDIX

In this section, we provide detailed proofs of the propositions introduced in the

article.

Proof of Proposition 1

Proof. MCES-P-PALO in the multiagent setting allows for a PALO-style guarantee

of ǫ-local optimality. To show that the total error for MCES-P-PALO is bounded by

the user-defined δ for a given ǫ, we must first define the types of errors that can occur

in selecting dominating neighboring policies and terminating when none is found after

sampling.

a After seeing n samples (where n < k), MCES-P-PALO selects some π′ ∈
neighbor(π), as π′ appears better than π, but, in fact, it is not better

b After seeing n samples (where n < k), MCES-P-PALO cannot find a π′ ∈
neighbor(π) where π′ is better than π, but, in fact, there is one that is much

better

c After seeing all k samples, MCES-P-PALO selects some π′ ∈ neighbor(π), as

π′ appears better than π, but, in fact, it is not better

d After seeing all k samples, MCES-P-PALO cannot find a π′ ∈ neighbor(π)
where π′ is better than π, but, in fact, there is one that is much better
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Recall ǫ and km for MCES-P in the multiagent setting are as follows.

ǫ∗(m, i, km) =
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i , π′i)√
2i
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2

(

Λ(πm
i , π′i)

ǫ

)2

ln
2
∑

πj
|N (πm
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First, we show the theoretical proof for MCES-P-PALO in the multiagent setting. That
is, considering an additional agent is interacting with the environment, MCES-P-PALO
holds with the following modifications.

an
m,πj

=Pr[∃π′i ∈ N (πm
i ) : (Qπ′

i −Qπm
i ) ≥ ǫ(m, c

π′
i

i , c
πm
i

i ) and Ri(π
′
i, πj) < Ri(π

m
i , πj)]

bnm,πj
=Pr[∃π′i ∈ N (πm

i ) : (Qπ′
i −Qπm

i ) < ǫ− ǫ(m, c
π′
i

i , c
πm
i

i ) and Ri(π
′
i, πj) > Ri(π

m
i , πj) + ǫ]

cm,πj =Pr[∃π′i ∈ N (πm
i ) : (Qπ′

i −Qπm
i ) ≥ ǫ

2
and Ri(π

′
i, πj) < Ri(π

m
i , πj)]

dm,πj =Pr[∃π′i ∈ N (πm
i ) : (Qπ′

i −Qπm
i ) <

ǫ

2
and Ri(π

′
i, πj) > Ri(π

m
i , πj) + ǫ]

We can represent each of the Pr[·] above as disjoint sets over neighbors and the other
agents’ policies. As an example, N<

i (πm
i ) = {πi ∈ N (πm)|Ri(π

′
i < Ri(π

m
i , πj)}.

Additionally, let Ri(πi, πj) be the true reward for agent i following policy πi when
agent j follows πj .
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Considering every possible π′ in πm’s neighborhood, assuming a fixed πj leads to the
summation:
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We reduce 20 by using ǫ when i = j < km. When we consider every possible πj , we

get the total sum probability of error for type a.
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As with anm, we consider every possible πj .

bnm =
∑

πj

bnm,πj
Pr(πj) ≤

1

|Πj |
∑

πj
|N (πm

i )|
∑

πj

|N>
i (πm

i )| δm|Πj |
2(km − 1)

The other two error types, where n = km, follow similarly, but substitute the current
km for n.
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Where 22 is obtained by substituting km with its derived value in 21 and reducing.
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The sum total of our error is as follows.

km−1
∑

n=1

[an
m + bnm] + cm + dm

=

km−1
∑

n=1

[

1

|Πj |
∑

πj
|N (πm

i )|
∑

πj

|N<
i (πm

i )| δm|Πj |
2(km − 1)

+
1

|Πj |
∑

πj
|N (πm

i )|
∑

πj

|N>
i (πm

i )| δm|Πj |
2(km − 1)

]

+
1

|Πj |
∑

πj
|N (πm

i )|
∑

πj

|N<
i (πm

i )|δm|Πj |
2

+
1

|Πj |
∑

πj
|N (πm

i )|
∑

πj

|N>
i (πm

i )|δm|Πj |
2

=
δm|Πj |

2|Πj |
∑

πj
|N (πm

i )|

(

km−1
∑

n=1

1

km − 1

[

∑

πj

|N<
i (πm

i )|+
∑

πj

|N>
i (πm

i )|
]

+
∑

πj

|N<
i (πm

i )|+
∑

πj

|N>
i (πm

i )|
)

=
δm

2
∑

πj
|N (πm

i )|

(

km−1
∑

n=1

1

km − 1

∑

πj

(|N<
i (πm

i )|+ |N>
i (πm

i )|) +
∑

πj

(|N<
i (πm

i )|+ |N>
i (πm

i )|)
)

≤ δm
2
∑

πj
|N (πm

i )|

(

km−1
∑

n=1

1

km − 1

∑

πj

|N (πm
i )|+

∑

πj

|N (πm
i )|
)

=
δm

2
∑

πj
|N (πm

i )| (km − 1)
1

km − 1
· 2
∑

πj

|N (πm
i )| = δm

It then follows that, over all possible transformations, the total error is bounded by δ.

∞
∑

m=1

δm =

∞
∑

m=1

6δ

m2π2
=

6δ

π2

∞
∑

m=1

1

m2
=

6δ

π2

π2

6
= δ

✷

Proof of Proposition 2

Proof. Consider the following expanded definition of the above proposition.

T
∑

t=0

[max
s
{R(atπ′

i
, atj , s)−R(at

πk
i
, atj , s)} −min

s
{R(atπ′

i
, atj , s)−R(at

πk
i
, atj , s)}] ≤

T
∑

t=0

[max
s,aj

{R(atπ′
i
, aj , s)−R(at

πk
i
, aj , s)} −min

s,aj

{R(atπ′
i
, aj , s)−R(at

πk
i
, aj , s)}]

(1) Assume mins = mins,aj
for all t ∈ T , resulting in the expression

T
∑

t=0
maxs{R(atπ′

i
, atj , s)−R(at

πk
i

, atj , s)} ≤
T
∑

t=0
maxs,aj

{R(atπ′
i
, aj , s)−R(at

πk
i

, aj , s)}.
It must be the case that the LHS must be at most equivalent to the RHS, as, if the

aj selected in the LHS is the maximal value, the maxs,aj
will select it. If the aj

selected on the LHS is not the maximal value for a given ai and s, the RHS must

then be greater.
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(2) Assume maxs = maxs,aj
for all t ∈ T , resulting in the expression

T
∑

t=0
mins{R(atπ′

i
, atj , s)−R(at

πk
i

, atj , s)} ≥
T
∑

t=0
[mins,aj

{R(atπ′
i
, aj , s)−R(at

πk
i

, aj , s)}].
Analogously to point 1, if the aj on the LHS is the minimal value, then the mins,aj

on the RHS must select it. If it is not, the RHS must be less.

Following point 1 and 2, since each component of the LHS must be bounded by

the equivalent component on the RHS, the LHS must be a smaller range than the RHS.

Therefore, Λ ~aj (π′i, π
m
i ) ≤ Λ(π′i, π

m
i , πj)

✷

Proof of Proposition 3

Proof. MCES-IP follows similarly from MCES-P-PALO in the multiagent setting, but

additionally predicates rewards on the belief of the other opponent. Since we include a

dimension over the belief vector, ǫ and km are augmented in the following fashion.

ǫ ∗ (m, i, km) =
Λ ~aj (πm

i , π′i)√
2i

√

ln
2(km − 1)

∑

πj
|N (πm

i )|
|Ωi|−T |Πj |δm

km =

⌈

2

(

Λ(πm
i , π′i)

ǫ

)2

ln
2|Ωi|T

∑

πj
|N (πm

i )|
|Πj |δm

⌉

The probability for error is categorized in the same way as MCES-P-PALO, with the
aforementioned change in the context of beliefs over opponent behavior included.

an
m,πj

= Pr[∃~bi∃π′i ∈ N (πm
i ) : (Q

π′
i

~bi
−Q

πm
i

~bi
) ≥ ǫ(m, c

π′
i,

~bi
i , c

πm
i ,~bi

i , km)

and Ri(π
′
i, πj) < Ri(π

m
i , πj)]

bnm,πj
= Pr[∃~bi∃π′i ∈ N (πm

i ) : (Q
π′
i

~bi
−Q

πm
i

~bi
) < ǫ− ǫ(m, c

π′
i,

~bi
i , c

πm
i ,~bi

i , km)

and Ri(π
′
i, πj) > Ri(π

m
i , πj) + ǫ]

cm,πj = Pr[∃~bi∃π′i ∈ N (πm
i ) : (Q

π′
i

~bi
−Q

πm
i

~bi
) ≥ ǫ

2
and Ri(π

′
i, πj) < Ri(π

m
i , πj)]

dm,πj = Pr[∃~bi∃π′i ∈ N (πm
i ) : (Q

π′
i

~bi
−Q

πm
i

~bi
) <

ǫ

2
and Ri(π

′
i, πj) > Ri(π

m
i , πj) + ǫ]

Similarly to MCES-P-PALO, we can convert this to a disjoint set of neighbors.

an
m,πj

= Pr[
∨

~bi

∨

π′
i
∈N<

i
(πm

i
)

(Q
π′
i

~bi
−Q

πm
i

~bi
) ≥ ǫ(m, c

π′
i,

~bi
i , c

πm
i ,~bi

i )]

bnm,πj
= Pr[

∨

~bi

∨

π′
i
∈N>

i
(πm

i
)

(Q
π′
i

~bi
−Q

πm
i

~bi
) < ǫ− ǫ(m, c

π′
i,

~bi
i , c

πm
i ,~bi

i )]

cm,πj = Pr[
∨

~bi

∨

π′
i
∈N<

i
(πm

i
)

(Q
π′
i

~bi
−Q

πm
i

~bi
) ≥ ǫ

2
] dm,πj = Pr[

∨

~bi

∨

π′
i
∈N>

i
(πm

i
)

(Q
π′
i

~bi
−Q

πm
i

~bi
) <

ǫ

2
]
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Here we will reintroduce Λ instead of the range present in MCES-P-PALO.

an
m,πj

= Pr[
∨

~bi

∨

π′
i
∈N<

i
(πm

i
)

(Q
π′
i

~bi
−Q

πm
i

~bi
) ≥ ǫ(m, c

π′
i,

~bi
i , c

πm
i ,~bi

i , km)]

≤
∑

~bi∈Bi

∑

π′
i
∈N (πm

i
)

Pr[(Q
π′
i

~bi
−Q

πm
i

~bi
) ≥ (Ri(π

′
i, πj)−Ri(π

m
i , πj)) + ǫ(m, c

π′
i,

~bi
i , cπ

m,~bi
i , km)]

≤
∑

|Ωi|T

∑

π′
i
∈N (πm

i
)

exp{−2i( ǫ(m, c
π′
i,

~bi
i , c

πm
i ,~bi

i )

Λ ~aj (πi, πj)
)2} = |Ωi|T |N<(πm

i )| δm|Πj |
2(km − 1)|Ωi|T

∑

πj
|N (πm

i )|

am,πj = |N<(πm
i )| δm|Πj |

2(km − 1)
∑

πj
|N (πm

i )|

When generalizing over all transformations, we get:

anm =
∑

πj

anm,πj
Pr(πj) ≤

1

|Πj |
∑

πj
|N (πm

i )|
∑

πj

|N<
i (πm

i )| δm|Πj |
2(km − 1)

Since MCES-IP reduces to the same error as MCES-P-PALO, using its unique ǫ and

km, we omit the rest of the proof and refer to the proof for Proposition 1.

✷

Proof of Equation (5)

Proof. For the probability of an individual observation sequence, Hoeffding’s inequality

bounds the probability of an error in sampling. Here, Pr(~o|πi) represents the sampled

likelihood of ~o occurring when agent i follows policy πi, and Pr∗(~o|πi is the true

probability. Let us first consider the case where |~o| = 1, or the observation sequence is

merely a single observation.

Pr(|Pr(~o|πi)− Pr∗(~o|πi)| >ǫprune) ≤ 2 exp{−2kmǫ2prune}
Since we want to bound the likelihood of any of the observation probabilities being in

error, and Pr(A ∨B ∨ . . .) ≤ a+ b+ . . . where Pr(A) ≤ a, Pr(B) ≤ b, . . ., then:

Pr

(

∑

~o∈Ω

|Pr(~o|πi)− Pr∗(~o|πi)| > |Ω|ǫprune
)

≤ 2|Ω|
exp{2kmǫ2prune}

Probabilities for observation sequences greater than length one involves a summation

over a larger set, represented by the Cartesian power of order length equal to the length

of the vector. Given some observation sequence length t,

Pr

(

∑

~o∈Ωt

|Pr(~o|πi)− Pr∗(~o|πi)| > |Ω|tǫprune
)

≤ 2|Ω|t
exp{2kmǫ2prune}

For any length of observation sequence, from 0 to the maximum length, T − 1,

Pr





T−1
∑

t=0

∑

~o∈Ωt

|Pr(~o|πi)− Pr∗(~o|πi)| > |Ω|
T − 1

|Ω| − 1
ǫprune



 ≤ 2(|Ω|T − 1)

(|Ω| − 1) exp{2kmǫ2prune}

✷
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Proof of Equation (12)

Proof. Pruning for MCES-IP follows similarly from MCES-P-PALO, except our prob-
abilities for observation sequences are based on predicted opponent action sequences
as well. This extra dimension increases the amount of observation sequence likelihood
probabilities that might be in error.

Pr









T−1
∑

t=0

∑

~aj∈At

∑

~o∈Ωt

|Pr(~o|πi) − Pr
∗
(~o|πi)| >

|A|T |Ω|T − 1

|A||Ω| − 1
ǫprune



 ≤
2(|A|T |Ω|T − 1)

(|A||Ω| − 1) exp{2kmǫ2prune}

✷

Proof of Proposition 5

Proof. We delineate sample bound complexities for MCES-MP-PALO and MCES-
FMP-PALO as:

kMP
m =

⌈

2

(

Λ(π, π′)

ǫ

)2

ln
2NMP

δm

⌉

kFP
m =

⌈

2

(

Λ(πi, π
′
i)

ǫ

)2

ln

(

2Z
√
4Z − 2NFP

2Z
√
δm

)

⌉

We derive the condition by which MCES-FMP-PALO exhibits a smaller sample

complexity range via simple substitution of the inequality kFP
m < k.m

MP

ln

(

2Z
√
4Z − 2NFP

2Z
√
δm

)

<

(

Λ(π, π′)

Λ(πi, π′i)

)2

ln
2NMP

δm

π′ is the neighbor that satisfies maxπ′ Λ(π, π′). For MCESMP +PALO, when using Eq.

1 and 5, Λ(π, π′) = 2T
(
∑

i∈I Ri
max +RG

max

)

. MCES-FMP-PALO applies Eq. 1

to 7, defining Λ(πi, π
′
i) = 2T

(

Ri
max +RG

max

)

. Utilizing these definitions, we can see

that MCES-FMP-PALO will always have a smaller sample complexity km.

ln

(

2Z
√
4Z − 2NFP

2Z
√
δm

)

<

(

1 +

∑

i∈Ī Ri
max

Ri
max +RG

max

)2

ln
2NMP

δm

✷

Proof of Proposition 6

Proof. In this proof, we establish bounds for only two agents for the sake of brevity,

but it is straightforward to apply it to more agents. We useN (π) as a function to denote

the local neighborhood of policies that varies from π by a single action-observation pair.

In transformation, the following errors may occur:

(A) After seeing n < k samples, MCES-FMP-PALO transforms joint policy {πm
i , πm

j }
to neighboring joint policy {π′i, π′j} where π′i ∈ N (πm

i ) and π′j ∈ N (πm
i ), because

{π′i, π′j} appears to be better than {πm
i , πm

j }, but neither policy is an improvement

(B) As above, but either π′i or π′j is not an improvement, but not both

(C) After seeing n < k samples, MCES-FMP-PALO cannot find a better joint pol-

icy {π′i, π′j} where π′i ∈ N (πm
i ) and π′j ∈ N (πm

i ) that dominates joint policy

{πm
i , πm

j }, as all π′i and π′j appear worse than {πm
i , πm

j }, but in fact there is a better

joint policy
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(D) As above, but either π′i or π′j would dominate the joint policy

(E) After seeing k samples, MCES-FMP-PALO transforms joint policy {πm
i , πm

j } to

neighboring joint policy {π′i, π′j} where π′i ∈ N (πm
i ) and π′j ∈ N (πm

i ), because

{π′i, π′j} appears to be better than {πm
i , πm

j }, but neither policy is an improvement

(F) As above, but either π′i or π′j is not an improvement, but not both

(G) After seeing k samples, MCES-FMP-PALO cannot find a better joint policy {π′i, π′j}
where π′i ∈ N (πm

i ) and π′j ∈ N (πm
i ) that dominates joint policy {πm

i , πm
j }, as all

π′i and π′j appear worse than {πm
i , πm

j }, but in fact there is a better joint policy

(H) As above, but either π′i or π′j would dominate the joint policy

We apply the following to decide when to climb from one individual policy, π, to another,

π′.

ǫ(m, p, q) =







ǫ∗(m, p) if p = q < km
ǫ
2 if p = q = km
+∞ otherwise

where,

ǫ∗(m, p) = Λ(π, π′)

√

√

√

√

1

2p
ln

(

4
√

6(km − 1)N
4
√
δm

)

and,

km =

⌈

2(
Λ(π, π′)

ǫ
)2 ln(

4
√
6NFP

4
√
δm

)

⌉

Λ is defined by implementing Eq. 1 in 7 and N = |N (πm)| is the size of the local

neighborhood. Let ~π = 〈πi, πj〉. Let Ei[~π] represent the true value, as opposed to

empirically sampled value Q, of following a policy πi when the other agent is following

πj , and Ej [~π] analogously for the other agent. We can represent each of the previously

mentioned types of error in MCES-FMP-PALO with the following expressions.

anm = Pr[∃{π′i, π′j} ∈ N (πm
i )×N (πm

j ) : (Qπ′
i
−Qπm

i
) ≥ ǫ(m, c

π′
i

i , c
πm
i

i ),

(Qπ′
j
−Qπm

j
) ≥ ǫ(m, c

π′
j

j , c
πm
j

j ), and Ei[~π′] < Ei[~πm], Ej [~π′] < Ej [~πm]]

bnm = Pr[∃{π′i, π′j} ∈ N (πm
i )×N (πm

j ) : (Qπ′
i
−Qπm

i
) ≥ ǫ(m, c

π′
i

i , c
πm
i

i ),

(Qπ′
j
−Qπm

j
) ≥ ǫ(m, c

π′
j

j , c
πm
j

j ), and [(Ei[~π′] < Ei[~πm], Ej [~π′] > Ej [~πm] + ǫ)

or (Ei[~π′] > Ei[~πm] + ǫ, Ej [~π′] < Ej [~πm])]]
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cnm = Pr[∃{π′i, π′j} ∈ N (πm
i )×N (πm

j ) : (Qπ′
i
−Qπm

i
) < ǫ− ǫ(m, c

π′
i

i , c
πm
i

i ),

(Qπ′
j
−Qπm

j
) < ǫ− ǫ(m, c

π′
j

j , c
πm
j

j ), and Ei[~π′] > Ei[~πm] + ǫ, Ej [~π′] > Ej [~πm] + ǫ]

dn
m = Pr[∃{π′i, π′j} ∈ N (πm

i )×N (πm
j ) : (Qπ′

i
−Qπm

i
) < ǫ− ǫ(m, c

π′
i

i , c
πm
i

i ),

(Qπ′
j
−Qπm

j
) < ǫ− ǫ(m, c

π′
j

j , c
πm
j

j ), and [(Ei[~π′] > Ei[~πm] + ǫ, Ej [~π′] < C(πm
j ), πm

i )

or (Ei[~π′] < Ei[~πm], Ej [~π′] > Ej [~πm] + ǫ)]]

em = Pr[∃{π′i, π′j} ∈ N (πm
i )×N (πm

j ) : (Qπ′
i
−Qπm

i
) ≥ ǫ

2
, (Qπ′

j
−Qπm

j
) ≥ ǫ

2
,

and Ei[~π′] < Ei[~πm], Ej [~π′] < Ej [~πm]]

fm = Pr[∃{π′i, π′j} ∈ N (πm
i )×N (πm

j ) : (Qπ′
i
−Qπm

i
) ≥ ǫ

2
, (Qπ′

j
−Qπm

j
) ≥ ǫ

2
,

and [(Ei[~π′] < Ei[~πm], Ej [~π′] > Ej [~πm] + ǫ)

or (Ei[~π′] > Ei[~πm] + ǫ, Ej [~π′] < Ej [~πm])]]

gm = Pr[∃{π′i, π′j} ∈ N (πm
i )×N (πm

j ) : (Qπ′
i
−Qπm

i
) <

ǫ

2
, (Qπ′

j
−Qπm

j
) <

ǫ

2
,

and Ei[~π′] > Ei[~πm] + ǫ, Ej [~π′] > Ej [~πm] + ǫ]

hm = Pr[∃{π′i, π′j} ∈ N (πm
i )×N (πm

j ) : (Qπ′
i
−Qπm

i
) <

ǫ

2
, (Qπ′

j
−Qπm

j
) <

ǫ

2
,

and [(Ei[~π′] > Ei[~πm] + ǫ, Ej [~π′] < C(πm
j ), πm

i )

or (Ei[~π′] < Ei[~πm], Ej [~π′] > Ej [~πm] + ǫ)]]

We represent the existential quantifiers above as finite disjunctions over the elements
of the joint local neighborhood, N (~π). For the individual agent, considering a set of
neighboring policies that are truly worse than the current policy given the other agent
is fixed can be represented as: N<

i (~πm) = {π′i ∈ N (πm
i )|Ei[π′i, π

m
j ] < Ei[πm

i , πm
j ]},

and similarly for agent j. Subsequently, we represent the neighborhood of joint poli-
cies where both agents transformed policies are truly worse as N<<(~πm) = {~π′ ∈
N (~πm)|Ei[~π′] < Ei[~πm] ∧ Ej [~π′] < Ej [~πm]}. We omit the parameter as it is clear
from context, resulting in N<<. Note that |N<<| = |N<

i | · |N<
j |.

an
m ≤

∑

~π′∈N<<

Pr[(Qπ′
i
−Qπm

i
) ≥ ǫ(m, c

π′
i

j , c
πm
i

i ) ∧ (Qπ′
j
−Qπm

j
) ≥ ǫ(m, c

π′
j

j , c
πm
j

j )]

≤
∑

~π′∈N<<

Pr[(Qπ′
i
−Qπm

i
) ≥ (Ei[~π′]− Ei[~πm]) + ǫ(m, c

π′
i

i , c
πm
i

i )]·

Pr[(Qπ′
j
−Qπm

j
) ≥ (Ej [~π′]− Ej [~πm]) + ǫ(m, c

π′
j

j , c
πm
j

j )]
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≤
∑

~π′∈N<<

exp{−2p[( ǫ(m, c
π′
i

i , c
πm
i

i )

Λ(πi, π′i)
)2 + (

ǫ(m, c
π′
j

j , c
πm
j

j )

Λ(πj , π′j)
)2]} (23)

= |N<<|
√
δm√

6
√
km − 1|N (πm

i )|
·

√
δm√

6
√
km − 1|N (πm

j )|
=

|N<<|δm
6(km − 1)|N (~πm)|

Line 23 follows from Hoeffding’s Inequality, where (Qπ′
i
− Qπm

i
) is the sample

average approximating Ei[~π′]− Ei[~πm]. 23 is reduced when satisfying the condition

p = q < km. We can also express probabilities for sets of policies that are truly greater

as well, using N>
i (~πm) = {π′i ∈ N (πm

i )|C(π′i, π
m
j ) > C(πm

i , πm
j ) + ǫ}. Again, this

is written similarly for agent j. The joint notation follows identically as above. B is

then computed similarly, but the space of possible neighbors is over the union of N<>

and N><.

bnm ≤
(|N<>|+ |N><|)δm
6(km − 1)|N (~πm)|

C follows from A, but in the case where MCES-FMP-PALO terminates without
transformation.

cnm ≤
∑

~π′∈N>>

Pr[(Qπ′
i
−Qπm

i
) ≤ ǫ− ǫ(m, c

π′
i

i , c
πm
i

i ) ∧ (Qπ′
j
−Qπm

j
) ≤ ǫ− ǫ(m, c

π′
j

j , c
πm
j

j )]

≤
∑

~π′∈N>>

Pr[(Qπ′
i
−Qπm

i
) < (Ei[~π′]− Ei[~πm])− ǫ(m, c

π′
i

i , c
πm
i

i )]·

Pr[(Qπ′
j
−Qπm

j
) < (Ej [~π′]− Ej [~πm])− ǫ(m, c

π′
j

j , c
πm
j

j )] =
|N>>|δm

6(km − 1)|N (~πm)| (24)

Line 24 follows analogously from A. As with B, D just expands the neighborhood.

dnm ≤
(|N><|+ |N<>|)δm
6(km − 1)|N (~πm)|

We can bound at p = km samples in the same fashion.

em ≤
∑

~π′∈N<<

Pr[(Qπ′
i
−Qπm

i
) ≥ ǫ

2
∧ (Qπ′

j
−Qπm

j
) ≥ ǫ

2
]

≤
∑

~π′∈N<<

exp

{

−2km
[

(

ǫ/2

Λ(πi, π′i)

)2

+

(

ǫ/2

Λ(πj , π′j)

)2
]}

=
|N<<|δm
6|N (~πm)| (25)

where Line 25 is obtained by replacing km with its derived value. F is obtained as in
B with the reduction in Line 25.

fm ≤
∑

~π′∈N<>∪N><

Pr[(Qπ′
i
−Qπm

i
) ≥ ǫ

2
∧ (Qπ′

j
−Qπm

j
) ≥ ǫ

2
] ≤ (|N<>|+ |N><|)δm

6|N (~πm)|

G and H are solved in the same fashion as C and D.

gm ≤
∑

~π′∈N>>

Pr
[

(Qπ′
i
−Qπm

i
) <

ǫ

2
∧ (Qπ′

j
−Qπm

j
) <

ǫ

2

]

≤ |N>>|δm
6|N (~πm)|

hm ≤
∑

~π′∈N><∪N<>

Pr[(Qπ′
i
−Qπm

i
) <

ǫ

2
∧ (Qπ′

j
−Qπm

j
) <

ǫ

2
] ≤ (|N><|+ |N<>|)δm

6|N (~πm)|
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Then, the probability that MCES-FMP-PALO makes an error after n transformations:

km
∑

n=1

[an
m + bnm + cnm + dnm] + em + fm + gm + hm

≤ [
(km − 1)δm

6(km − 1)|N (~πm)| (|N
<<|+ |N<>|+ |N><|+ |N>>|+ |N><|+ |N<>|)]+

δm
6|N (~πm)| (|N

<<|+ |N<>|+ |N><|+ |N>>|+ |N><|+ |N<>|)

≤
[

δm
6|N (~πm)| (|N(~πm)|+ |N<>|+ |N><|)

]

+
δm

6|N (~πm)| (|N (~πm)|+ |N<>|+ |N><|)
(26)

≤ 2

[

δm
6|N (~πm)| (3|N(~πm)|

]

= δm (27)

Line 26 follows from the observations thatN ∗∗ = N ∗i ×N ∗j and |N<
i |+ |N>

i | ≤ |Ni|.
Line 27 follows from the observation that any product of subsets of N is bounded by
the entire set (e.g. |N<<

i | ≤ |N |). Then, over all mutations, δm is bound by δ.

∞
∑

m=1

[
k
∑

n=1

[an
m + bnm + cnm + dnm] + em + fm + gm + hm] ≤

∞
∑

m=1

δm =
∞
∑

m=1

6δ

m2π2
=

6δ

π2

π2

6
= δ

✷
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