
Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Automated clash resolution for reinforcement steel design in concrete
frames via Q-learning and Building Information Modeling
Jiepeng Liua,c, Pengkun Liua,2,∗, Liang Fengb,1,∗∗, Wenbo Wub, Dongsheng Lia, Y. Frank Chena
a School of Civil Engineering, Chongqing University, Chongqing, China
b College of Computer Science, Chongqing University, Chongqing, China
c Chongqing University Industrial Technology Research Institute, Chongqing University, Chongqing, China

A R T I C L E I N F O

Keywords:
Building Information Modeling
Reinforcement learning
Multi-agent
Q-learning
Rebar design
Clash resolution
Reinforced concrete frame

A B S T R A C T

The design of reinforcing steel bars (rebars) is critical to reinforced concrete (RC) structures. Generally, a good
number of rebars are required by a design code, particularly at member connections. As such, rebar clashes (i.e.,
collisions and congestions) would be inevitable. It would be impractical, labor-intensive, and error-prone to
avoid all possible clashes manually or even using standard design software. The building information modeling
(BIM) technology has been utilized by the present architecture, engineering, and construction (ACE) industry for
clash-free rebar designs. However, most existing BIM-based approaches offer the clash resolution strategy for
moving components with an optimization algorithm, and are only applicable to the RC structures with regular
shapes. In particular, the optimized path of rebars cannot be adjusted to avoid the obstacles, thus limiting the
practical applications. Furthermore, most existing studies lack the learning from design code and constructibility
constraints to realize automatic and intelligent arrangement and adjustment of rebars for avoiding the obstacles
encountered in complex RC joints and frame structures. Considering these shortcomings, the authors have re-
cently proposed an immediate reward-based multi-agent reinforcement learning (MARL) system with BIM, to-
wards automatic clash-free rebar designs of RC joints without clashes. However, as the immediate reward is
required in the MARL system for guiding the learning of a rebar design, it will not succeed in clash-free rebar
designs of complex RC structures where immediate reward is often unavailable. In this study, this study further
extends the previous work with Q-learning (a model-free reinforcement learning algorithm) for more realistic
path planning considering both immediate and delayed rewards in clash-free rebar designs for real-world RC
structures. In particular, the rebar design problem is treated as a path-planning problem of multi-agent system,
where each rebar is deemed as an intelligence reinforcement learning agent. Next, by employing the Q-learning
as the reinforcement learning engine, the particular form of state, action, and immediate and delayed rewards
for the reinforcement MARL for automatic rebar designs considering more actual constructible constraints and
design codes can be developed. Comprehensive experiments on three typical beam-column joints and a two-story
RC building frame were conducted to evaluate the efficiency of the proposed method. The study results of paths
of rebar designs, success rates, and average time confirm that the proposed framework with MARL and BIM is
effective and efficient.

1. Introduction

Recently, building information modeling (BIM) has been widely
used to reduce the errors in the building life cycles [1], to prevent
construction wastes [2], and to improve the communication efficiency
for all stakeholders [3] in the Architecture, Engineering, and

Construction (AEC) industry [4]. Specifically, BIM has changed con-
struction work routines by spawning new job positions and re-
organizing work procedures. Furthermore, a Construction project con-
sists of thousands of components that spatially depend on each other.
One of the key activities during design is to coordinate the layout of
these components. Among many complex activities, BIM has been
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increasingly used for design coordination and one of its most widely
used applications is clash detection and resolution.

Clash detection and resolution for reinforcing steel bars (rebars)
design are critical to reinforced concrete (RC) structures. According to
the Chinese design codes for RC members (GB50010-2010 [5], and GB
50011-2010[6]), the rebar design must meet the seismic and bearing
capacity requirements of RC members. Besides, the rebar design has to
be safe, constructible and cost-effective. Rebars are usually populated at
member joints and must meet the restrictive code requirements. It
would be impractical, labor-intensive and error-prone for a designer to
avoid all collisions (hard clash) or congestions (soft clash) of rebars by
manually using a trial-and-error approach, even with the aid of com-
puter software [7, 8]. Ideally, any potential spatial clash of rebars can
be identified and resolved before construction execution. However,
current computer software including Autodesk Robot Structural Ana-
lysis Professional [9], CSI ETABS [10], PKPM [11], and YJK [12] can
only calculate the rebar areas based on the rebar design. They all re-
quire a large amount of manpower to arrange the rebars to avoid spatial
clashes as required by the design code GB50010-2010 [5]. Moreover,
although some clash detection computer programs like Autodesk Na-
visworks Manage [13] and Solibri Model Checker [14] realize the de-
tection and visualization of the clash members [15], they mainly focus
on the clash identifications of structural members beyond the design
stage. They cannot automatically avoid rebars clashes and offer an
implementation resolution for the automatic arrangement of clash-free
rebars.

With the popularization of BIM, the use of three-dimensional (3D)
models to detect clashes is attracting wide attention due to the ad-
vantage of BIM such as high efficiency in spatial processing and vi-
sualization. BIM technology allows us to represent the rebar details
digitally and transfer the detailed information to a structural analysis
software [4]. However, existing BIM software packages do not provide
automated resolution for rebar clashes. In the last decades, various
researchers have tried to solve the issues of the clash detection and
resolution with the aid of BIM technology, such as improving modeling
accuracy or reorganizing model structure from modeling aspects [16,
17], improving clash detection algorithms [4, 18-20], and using his-
torical data to improve clash detection from a knowledge management
perspective [15, 21, 22]. The main drawbacks of existing approaches
can be summarized as follows: (1) Due to the complex rebars as re-
quired by a design code, constructible constraints and design code re-
quirements cannot be intelligently learned and stored; and (2) Most
previous studies lack the automatic and intelligent arrangement and
adjustment of rebars for avoiding the obstacles in real-world complex
RC joints and frame structures.

In machine learning, Reinforcement Learning (RL) algorithms have
achieved many important achievements in the field of complex adap-
tive systems such as mobile robot path planning [23]. Reinforcement
learning (RL) creates an autonomous agent that learns and then adjusts
its behavior through the action feedback (punishment and reward) from
the environment, instead of explicit teaching. Following the framework
of a Markov decision process (MDP), a RL agent performs learning
through the cycle of sense, action, and learning. Furthermore, Q-
Learning is a model-free reinforcement learning algorithm. The goal of
Q-learning is to learn a policy, which tells an agent what action to take
under different circumstances. “Q” denotes the function that returns the
reward used to provide the reinforcement and stands for the “quality”
of an action taken in a given state.

Recently, inspired by the similarity between the path planning of
multi-agents and the arrangement of rebars, the authors have proposed
a framework towards automatic clash-free rebar designs of RC joints
using the multi-agent reinforcement learning (MARL) system and BIM.
Each agent has a FALCON (fusion architecture for learning, cognition,
and navigation) [24] RL architecture with immediate rewards. Fur-
thermore, the clash detection and resolution problems for rebar designs
can be treated as a path planning of multi-agents in order to achieve an

automatic arrangement and adjustment of rebars to avoid obstacles.
The authors previous work has progressed to achieve a clash-free rebar
design in RC beam-column joints and one-story frames. However, it
should be noted that the RL engine of FALCON [24] relies on the im-
mediate reward obtained after performing each action. Since targets of
agents may be blocked or invisible in the real world, it is unrealistic to
obtain immediate reward after taking each action. Due to the huge
search space of real complex RC members and the complicated rebar
arrangement details, MARL may fail to find a feasible solution where
the immediate reward is often not available for clash-free rebar designs.

With the above issues in mind, in this study, the authors further
extend their work with Q-learning for path planning considering both
immediate and delayed rewards for more realistic rebar designs ac-
cording to more complex physical constraints and design codes of RC
structures. The inadequacy of relying on immediate rewards in
FALCON [24] may lead to the failure of finding feasible solutions for
rebar design in real-world complex RC structures. By using Q-learning,
the extended framework is able to overcome the inadequacy and
achieve stable performance in a much faster pace than FALCON [24].
The specific objectives of this study are (1) to overcome the inadequacy
of relying on immediate rewards and failing to find feasible solutions
for real-world complex RC structures; (2) by employing the Q-learning
method as the RL engine, to design the particular form of state, action,
and rewards for the reinforcement MARL according to physical con-
straints; (3) to simulate and validate the clash-free rebar design results
of the proposed MARL on a two-story RC building frame.

The following of this paper is organized as follows: Section 2 pro-
vides a brief review of related works in the literature. Section 3 presents
the problem formulation of rebar design in RC frames and the moti-
vation of the proposed RL for rebar design. The rebar spacing demand
for RC members and the framework via the proposed MARL with BIM
are also discussed in this section. Section 4 provides the details of sol-
ving the path planning problem for rebar designs via MARL. Section 5
reports the experiments and discuss the simulation results. Conclusions
and future work are discussed in Section 6.

2. Preliminary

Concerning the clash problem of rebar designs of RC joints in 3-D
space, Section 2.1 presents the research background about the clash
identification and resolution problem. Section 2.2 describes the in-
troduction of RL, and Section 2.3 introduces the robot navigation task
in RL.

2.1. Research background

In order to expand the capacity of BIM technology for the clash
detection and resolution of automated designs, Zhang and Hu [19]
proposed a new approach for conflict and safety analysis during con-
struction through the integration of construction simulation, four-di-
mensional construction management, and safety analysis. However,
their approach does not offer implementation details for solving cla-
shes. With the work breakdown structures, Gijezen [17] improved the
efficiency of the clash detection process. Helm et al. [16] classified
clash detections into four classes: (1) shapes comparison, (2) axis-
aligned bounding boxes comparison, (3) ray-triangle intersection, and
(4) industry foundation classes (IFC) structure method. However, all of
these methods focused only on clash detection with no resolution of-
fered. Park [20] developed a BIM-based simulator to determine the
sequence of rebar placement and the clashes of rebars were identified
using a previously-developed application programming interface pre-
viously. When the distance between the center lines of the rebars was
smaller than the rebar diameter, the collision was automatically iden-
tified. Nevertheless, previous studies focus on the simulation of the
rebar placement sequence, and slove the spatial clash problem manu-
ally. Moreover, Wang and Leite et al. [15] developed a knowledge

J. Liu, et al. Automation in Construction 112 (2020) 103062

2



representation for conflicting spatial coordinates of MEP systems,
which includes description, context, evaluation and management de-
tails. However, the developed representation pattern provides only
documentation to store the clash-based information with no clash re-
solution strategy at all for identifying clashes. Radke et al. [18] pro-
posed an automated identification and resolution for mechanical,
electrical and plumbing (MEP) systems, where the offered resolution is
to move one of the two clash entities to solve spatial conflicts. However,
design constraints are not verified after moving one object. Besides,
their resolution method is manual and is limited to certain types of
clashes. Mangal and Cheng [4] proposed a framework based on the BIM
and GA to realize rebar designs, which can avoid the clashes at RC
beam-column joints. When the total number of rebars at a RC beam-
column joint exceeds the maximum allowed number allowed in both
directions (x and y) as specified in BS8110 [25], the clashes were
identified. However, the proposed framework only offers the clash re-
solution strategy for moving components by GA and is applicable to
regular-shaped RC structures only. In particular, the optimized path of
rebars is not adjustable to avoid the obstacles, thus limiting its practical
applications. The above-mentioned studies use the conventional
methods of moving one of the two clash entities to solve spatial clashes
by optimization methods with no implementation details for solving
clashes offered. Moreover, to the best knowledge of the authors, no
study has been done to investigate the full automation in the identifi-
cation and resolution of rebar clashes of real complex RC joints and
frame structures. Previous studies also lack the function of intelligent
and gradual learning and the implementation of design codes and
constructible constraints of rebars.

Therefore, the objective of the current research is to develop a
framework based on Q-learning and BIM for achieving automatic rebar
designs of actual complex RC frames. Furthermore, the clash detection
and resolution problem of rebar designs can be treated as a path
planning of multi-agents in order to achieve the automatic arrange-
ments and adjustment of rebars to avoid obstacles.

2.2. Reinforcement learning

Reinforcement learning (RL) [26] is a natural learning paradigm to
both single-agent and multiple-agent (Fig. 1). It creates an autonomous
agent that learns and then adjusts its behavior through the action
feedback (penalty and reward) from the environment, instead of ex-
plicit teaching. Following the framework of a Markov decision process
(MDP), a RL agent performs learning through the cycle of sense, action,
and learning [26]. In each cycle, the agent obtains the sensory input
from its environment representing the current state (S) [24]. Depending
on the current state, its knowledge, and goals, the system selects and
performs the most appropriate action (A) [24]. Through receiving the
feedback in terms of rewards (R) from the environment, the agent
learns to adjust its behavior in the motivation of receiving positive
rewards and avoid penalties in the future. Classical approaches of the
RL involve learning one or both of the following functions, namely,
policy function, which maps each state to a desired action and value
function, which associates each pair of state and action to a utility

value [27]. A popularly used method for learning value function is Q-
learning [28, 29], which is a temporal-difference (TD) method to esti-
mate the accumulative future rewards (or costs) of performing an action
in a given state. It is important to note that how to turn a real-world
environment into the digital environment with clear reward signals is a
key point to carry out RL.

2.3. Robot navigation task with reinforcement learning

The robot navigation task [24, 27, 30] is a term used in robotics for
the process of breaking down the desired movement task into discrete
motions that satisfy movement constraints and possibly optimize some
aspects of the movement. In the navigation task, several unmanned
robots are tasked to navigate towards a randomly defined target safely,
and across a field that is filled with randomly scattered obstacles. At
present, in light of its strength, RL algorithms have achieved many
important achievements in the field of mobile robot path planning [23].

The traditional approaches for robot navigation task, such as
Voronoi diagram [31], A* algorithm [32], Dijkstra algorithm [33],
Particle Swarm Optimization (PSO) [34], Ant Colony Optimization
(ACO) [35], Simulated Annealing (SA) [36], and Genetic Algorithm
(GA) [37] have several drawbacks including the high time complexity
in high dimensions, making them practically inefficient [38]. To over-
come the weakness, the first FALCON (Fusion Architecture for
Learning, Cognition, and Navigation) system [30] was developed to
learn a policy directly by creating category nodes, each associating a
current state with a desirable action. As the FALCON relies on the
availability of immediate feedback, it is not applicable to problems in
which the reward of an action is only known several steps after the
action is performed. To overcome this inadequacy, TD-FALCON [27]
system using the TD learning method with Q-learning can be con-
sidered, which is effective in learning with both immediate and delayed
rewards and achieve a stable performance in a much faster pace than
FALCON.

3. Proposed method and framework

In order to solve the rebars clash problems of RC joints in a 3-D
space, this section describes an approach of treating the code-specified
rebar designs as a multi-agent path planning. The formulation of multi-
agent path planning for rebar clashes at RC beam-column joints is also
presented in Section 3.1. Section 3.2 presents the formulation of a grid
environment for the rebar spacing requirements for RC members, (e.g.,
RC beams and RC columns) as specified in GB50010-2010 [5].
Section 3.3 presents the proposed framework via the MARL system with
BIM for clash-free rebar designs.

3.1. Formulating rebar designs as path planning considering both immediate
and delayed rewards of multi-agent for RC members

A MARL system can be used as an efficient and effective tool for
solving the path planning problem [39]. To overcome the inadequacy of
relying on immediate rewards and the failure of finding feasible solu-
tions in real complex RC structures, the clash-free of rebar designs is
modeled as a more realistic path planning problem of multi-agents
considering both immediate and delayed rewards. In fact, it is more
realistic to consider both immediate and delayed rewards since targets
of agents may be blocked or invisible in the real world. It can be further
modeled with a team of agents tasked to navigate from origins towards
defined targets safely, while crossing a RC beam-column joint which is
filled with the obstacles as shown in Fig. 2. In a 2-D environment,
agents can choose three actions to avoid obstacles like forward move,
right and left, while in the 3-D environment, there are two additional
actions: up and down to ensure the traces of agents can be transformed
into practical rebar designs. The RC beam-column joint with the rebar
arrangement is gradually filled with obstacles which are the 3-DFig. 1. Basic module of reinforcement learning.
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coordinates of the rebars generated in the previous steps. With the
proposed MARL, the 3-D coordinates of the clash-free rebar designs are
then obtained by collecting the traces of the agents.

Specifically, the rebar design process of a RC beam-column joint is
divided into three phases as illustrated in Fig. 2: (1) In the first phase,
the longitudinal rebars in a column (gray line) are regarded as a group
of agents from the origins navigating to the targets across the column
and beam-column joints in a 3-D environment and there are no other
rebar obstacles at the joint area in this phase; (2) In the second phase,
the x-direction longitudinal rebars (green line) in a beam are regarded
as a group of agents, and the rebars in the column including long-
itudinal and shear rebars are regarded as obstacles; (3) In the third
phase, the y-direction longitudinal rebars in a beam (blue line) are
regarded as a group of agents and the rebars in the column and x-di-
rection beam are regarded as obstacles.

3.2. Formulating grid environment for rebar spacing requirements in RC
members

3.2.1. Grid environment transformation for RC joints
To carrying out the MARL system, RC members have to be trans-

formed into a suitable digital environment. Moreover, the BIM models
of RC members are transformed into grid environments approximating
the geometry of the RC members with known boundary conditions, as
shown in Fig. 3. The origins of agents in each mission are decided by
Sht,max and Sht,min (Sht being the horizontal spacing of longitudinal ten-
sion rebars). Meanwhile, the targets of agents in each mission are
decided by Shc,max and Shc,min (Shc being the horizontal spacing of
longitudinal compression rebars), as described in Section 3.2.2.

Di is the dimension of a single square grid in a mesh environment,
determined by:

=D max d and d( )i c t (1)

where dc is the diameter of longitudinal compression rebars in a column
or beam, and dt is the diameter of longitudinal tension rebars in a
column or beam. In order to ensure the accuracy of the grid environ-
ment transformation for RC joints, make sure each rebar in the range of
the grid and decide the dimension of a single grid in the mesh en-
vironment of the RC joints, the dimension of a single square grid must

be larger than the maximum diameter of the rebar.
Therefore, the size of grid environment Sz depends on Di and the

dimension of RC members, namely

=Sz floor D Di( / ) (2)

where D is the dimension of RC members (length/width/height), Di is
the dimension of a single square grid in a mesh environment and floor()
denotes the integer rounding down function for limiting the range of Sz.

3.2.2. Rebar spacing requirements for RC beams
According to Chinese design code GB5001-2010 [5], the three main

considered variables (Fig. 4) during the rebar design of RC members are
(1) the cross-sectional area of longitudinal tension rebars (As), (2) the
cross-sectional area of longitudinal compression rebars (As′), and (3) the
cross-sectional area of stirrups (Asv), which depend on several para-
meters [4].

To pour concrete easily and ensure the compactness of concrete
around rebars, the spacings between longitudinal rebars are determined
as per the provisions of GB50010-2010 [5], as shown in Fig. 5, where
Shc ≥ 30 and ≥ 1.5dc,max and Sht ≥ 25 and ≥ dt,max. Furthermore,
when the layers of longitudinal tension rebars are more than two, Svt

being the vertical rebars spacing should be as such: Svt ≥ 25 and ≥
dt,max [5].

As is the total cross-sectional area of tension rebars provided at a
section, as given by Eq. (3).

=
=

A
d
4s

i

N
t i

1

,
2t

(3)

where dt,i is the diameter of tension rebars i in an RC member; and Nt is
the total number of tension rebars (nt,min ≤ Nt ≤ nt,max).

=n b c
S

2
t min

ht max
,

, (4)

=n b c
S

2
t max

ht min
,

, (5)

where b is the width of RC beam, c is the concrete cover and Sht,max and
Sht,min are respectively the maximum and minimum spacings between

Fig. 2. Problem formulation for RC beam-column joints.
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tension rebars. Moreover, the Sht,max and Sht,min values are used in MARL
to decide the origins and targets of agents in each mission.

Similar to As, As′ represents the total cross-sectional area of com-
pressive rebars provided at a section, as given by Eq. (6).

=
=

A
d
4s

i

N
c i

1

,
2c

(6)

where Nc is the total number of compressive rebars (nc,min ≤ Nc ≤
nc,max) and dc,i is the diameter of compressive rebars i in an RC member.

=n b c
S

2
c min

hc max
,

, (7)

=n b c
S

2
c max

hc min
,

, (8)

where Shc,max and Shc,min are the maximum and minimum spacings be-
tween compressive rebars, respectively. Furthermore, the Shc,max and
Shc,min are used in MARL to decide origins and targets of agents in each
mission.

3.2.3. Rebar spacing requirements for RC columns
Due to length limitations and the determination of the three main

considered variables for RC column designs similar to that of RC beam
designs, the rebar spacing requirements are briefly described in Fig. 6.
The spacing between longitudinal rebars Sh is determined according to
GB50010-2010 [5], as shown in Fig. 6, where 50mm ≤ Sh ≤ 300mm.
However, when the width of the column is more than 400 mm, the
spacing of longitudinal rebars (Sh) has to be kept under 200 mm [5].

3.3. Framework for path planning problem of clash-free rebar designs

The framework via the MARL system with BIM for clash-free rebar
designs is based on a framework presented by Mangal and Cheng [4], as
it was proposed for automated rebar optimization for RC frames. The
framework consists of 4 modules (Fig. 7) : (1) BIM Model Information
Extraction, (2) Structural Type Analysis, (3) Structural Analysis, and (4)
Multi-Agent Reinforcement Learning (MARL) System. BIM Model

Fig. 3. Grid environment transformation for RC joints.

Fig. 4. Three main considered variables during rebar designs in an RC beam.

Fig. 5. Illustration of rebars spacing, origins and targets of agents and trans-
formation to grid environment for an RC beam.

Fig. 6. Illustration of rebars spacing, origins and targets of agents and trans-
formation to grid environment for an RC column.
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Extraction and Structural Analysis modules are clearly stated in [4].
The modules of Structural Type Analysis and MARL System, are ex-
plained in Sections 3.3 and 5, respectively. Each module is briefly de-
scribed as follows.

(1) BIM model information extraction: The detailed information
including behavior, physical and material characteristics [40] in BIM is
extracted for the next two modules consisting of structural stress ana-
lysis and structural type analysis. Behavior characteristics include the
loading information of RC members, physical characteristics include
the support conditions and geometry of RC members, and material
characteristics include the concrete grade and rebar strength.

The information extracted from the BIM model can be automatically
achieved by the application programming interface (API) [41] or Dy-
namo [42] in Autodesk Revit [41]. In the suggested process, the beam
or column model can be selected in quantities by the function node
named All Elements of Category in Dynamo [42] is shown in Fig. 8. And
by using a function node named Element.GetLocation and Ele-
ment.Parameters [42], the corresponding model information like cross-
sectional area, length, concrete cover, the start and end points of an RC
member can be transformed into common formats like extensible
markup language (XML), Microsoft Excel or CSV by Dynamo for further
analysis. As for the single beam-column joint, the program takes within
one second to transform the information into CSV file. And the in-
formation extraction of two-story RC frames in the study takes a few

seconds like 5–6 s to complete the transformation.
(2) Structural type analysis: Different types of beams, columns, and

member connections at each level of RC frame are classified into typical
structural types, based on the orientation and interaction of RC beams
and columns. The classified structural types will further be transformed
to structural analysis.

The structural types are determined by the connection relationships
between the beams and columns calculated by the location points of RC
members. In particular, in the BIM Model Information Extraction
module, the location point of an RC member can be extracted from the
BIM model as shown in Fig. 8. Based on the location points, the in-
formation about the connection relationships between beams and col-
umns like the numbers of beams and columns connected to the points
can be calculated. Furthermore, according to the level of RC frame and
the connection relationships, the RC members are classified into typical
structural based on rules. For example, one column and three beam
connect on the same location point, then the joint on this point is T
beam-column joint. Using a machine learning classification algorithm
to realize the structural type analysis will much be beneficial for more
complex RC frames. Therefore, extending the framework including
classification algorithm will be considered in the future work.

Various kinds of structural types of beams, columns, beam-column
joints and beam-girder joints in a RC frame are shown in Fig. 9.
Structural type analysis was carried out to classify the type of RC
member in a given RC frame. A total of 15 different structural types of
RC members were considered in the proposed BIM-based framework for
clash-free rebar designs. The considered RC frame was divided into
separate floors. In each separated floor, RC beams, columns and their
connections were taken into consideration in the proposed framework.

(3) Structural analysis: The extracted information is input into the
structural analysis software PKPM [11] to calculate bending moments,
shearing forces, axial forces and torsional moments of the RC members
according to the design specifications, such as GB 50010-2010 [5] and
GB 50011-2010 [6]. The number of longitudinal rebars and stirrups
that meet the code-specified requirements will then be calculated.

(4) MARL system: With the number of longitudinal rebars and
stirrups, structural type, coordinates of RC members and geometric
details, the MARL will then generate the 3-D coordinate information of
the clash-free rebar designs. The design meets the rebar requirements

Fig. 7. Proposed BIM-based framework with multi-agent reinforcement learning (MARL) for clash-free rebar designs.

Fig. 8. BIM model information extraction by Dynamo.
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specified in the design codes [5, 6], such as the spacing, bent angle, and
hook demands. Specifically, the BIM model is set as the environment,
and grid environment transformation is the process of extracting the
information of physical characteristics (e.g., support conditions and
geometry of RC members) from the BIM model, as described in
Section 3.2. According to Q-learning [28, 29], the agent selects the
suitable action as described in Sections 4.1 to 4.3. Furthermore, as
described in Section 5, the paths of agents are converted to BIM gen-
erating clash-free rebar deign.

4. Proposed multi-agent reinforcement learning system for
solving rebar designs as path planning

By employing the Q-learning method as the RL engine, the parti-
cular forms of state, action and rewards are designed for the re-
inforcement MARL. Furthermore, the design of state, action and reward
must meet the physical constraints and design codes of rebar in order to
achieve more stable and efficient performance for rebar designs in
complex RC members.

4.1. Neural network architecture of each agent

The architecture of each agent takes the form of TD-FALCON [27-
29], which has the three-channel neural network architecture, con-
sisting of three modules: (1) State, (2) Action, and (3) Reward (Fig. 10).
State module is a sensory field F c

1
1 for saving and representing current

agent states; Action module is a motor field F c
1

2 for representing
available actions and Reward module is a feedback (reward) field F c

1
3

for representing the internal states of an agent as well as the external
feedback from the environment. The architecture has a cognitive field
F2 where agents calculate the maximum expected future rewards for
action at each state, which encodes a relation among the patterns in the
three input channels.

4.1.1. State module
MARL involves multiple agents that start from one side of beams or

columns. All of these agents are equipped with a set of sonar sensors
that has a 180° forward view. Meanwhile, input attributes of sensory
(state) vector consist of obstacles detection, other agent positions de-
tection and the bearing of the target from the current position in this
mission, as shown in Fig. 11. In a discrete time step, the example of

input attributes for the agent are shown in Fig. 11. The states (input
attributes) shown denote that an agent detects an obstacle (path of
other agent) above itself, another agent diagonally to the left, and a
target diagonally to the right position. For each direction i of sonar
sensor, the sonar signal is calculated by Si = 1/di, where di is the dis-
tance in the i direction between the agent and an obstacle,which can be
paths of other agents, another agent, or the boundary of a RC member.
If Si is smaller than 1, Si will be set as 0. Therefore, without a priori
knowledge of the 3-D coordinate information of the obstacles and tar-
gets, each agent is equipped with a localized view of its environment.

4.1.2. Action module
In the MARL system, the agent can choose one of the five possible

actions (left, forward move, right, up and down) at each discrete time
step (Fig. 12).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 9. Various structural types in a RC frame: (a) single column; (b) single
beam; (c) L beam joint; (d) T beam joint; (e) + beam joint; (f) top floor single
beam joint; (g) top floor L joint; (h) top floor opposite joint; (i) top floor T joint;
(j) top floor + joint; (k) middle floor single beam joint; (l) middle floor L joint;
(m) middle floor opposite joint; (n) middle floor T joint; (o) middle floor +
joint.

Fig. 10. Neural network architecture of each agent.

Fig. 11. Example of states (input attributes) in 2D.

Fig. 12. Illustration of five possible actions in 3-D space.
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4.1.3. Reward module
In MARL, the design of reward, penalty and some specific strategies

are presented for build-ability constraints (Fig. 13). In the experiments,
it is not necessary that the agent receives immediate evaluation feed-
back from the environment for each action taken. Since in the realistic
world, it is difficult to reach the targets as they may be invisible or
blocked. The reward and penalty strategies are described in Table 1:

A reward of +1 is given when the agent reaches the target without
hitting obstacles or running out of time.

A reward of +0.4 is given when the agent takes action that can get
close to the target to encourage agents searching for defined targets.

A penalty of −1 is given when the agent hits an obstacle (paths of
other agents), collides with another agent or runs out of maximum time
in order to avoid rebar clashes.

A penalty of −1 is given when the agent moves into the specified
range (1.5 × rebar diameter) of paths or positions of other agents, thus
satisfying the rebar spacing demand.

A penalty of −0.5 is given when the agent takes actions including
left, right, up, and down in order to ensure that the agent moves as
straight as possible, therefore the layout of rebars is most likely to be a
straight line unless obstacles are encountered.

A reward of 0 is also assigned when the agent moves forward and
does not find the target in the maximum allowable time.

4.2. Q-learning algorithm in MARL

Algorithm 1. The Q learning algorithm

The thought of Q-learning [28, 29] with both immediate and de-
layed evaluative feedback is that agents evolve from learning by a se-
quence of trials and thereby adjust their behavior (Fig. 15). The Q
learning algorithm pseudo-code is summarized in Algorithm 1. Dif-
ferent aspects of Q-learning are described as follows:

Q-Table (“Q” for action-utility function) is a lookup table where
agents calculate the maximum expected future rewards for action at
each state as presented in Fig. 14. Basically, this table will guide agents
to the best action at each state. In terms of computation, this environ-
ment can be transformed into a table.

In the Q-Table, the columns will be the available actions and the
rows will be the states. Each Q-table score will be the maximum ex-
pected a future reward that the agent will get if it takes that action at
that state. In order to learn and improve each value of the Q-table in
each iteration during the iterative process, the Q-learning algorithm
[28, 29] is executed.

4.2.1. Q-function
The Q-function [28, 29] requires two inputs: State (s) and Action

(a). It returns the expected future reward of that action at that state as:

= + + ++ + +Q s a E R R R s a( , ) ( | , )t t t t t t t1 2
2

3 (9)

where Qπ(st,at) is the Q-values for the state st given a particle action at, E
(Rt+1 + γRt+2 + γ2Rt+3 + ⋅⋅⋅) is the expected discounted cumulative
reward, and standat are respectively the given the state and action.

Q-function is a reader that scrolls through the Q-table to find the
line associated with the agent's state, and the column associated with
agent's action. It returns the Q-value from the matching cell, named as
“expected future reward”. Before agents explore the environment, the
Q-table gives the same arbitrarily fixed value (0 for most of the time).
As agents explore the environment, the Q-table will give agents a better
and better approximation by iteratively updating Q(s,a) using the
Bellman Equation shown in Eq. (10).

4.2.2. Initialize Q-values
A Q-table is first built with m columns (m = number of actions) and

n rows (n = number of states), and then initializes the values at 0. In
Fig. 14, agents have four actions (a=4) and sixty four states (s=64). So
a table is built with 4 columns and 64 rows (Fig. 14).

4.2.3. Choose and perform an action
Agents will choose an action (a) in the state (s) based on the Q-

Table. In Fig. 16, there are two actions for agents to choose from: down
or right. However, as mentioned earlier in Section 4.2.2, when the
episode initially starts, every Q-value is initialized as 0.

In the training process, there are two strategies namely exploration
and exploitation. Exploration is finding more information about the
environment and exploitation is exploiting known information to
maximize the reward. The goal of the agent is to maximize the expected
cumulative reward. However, agents may trap in local optimum and
fail to find a feasible solution. Therefore, in Q-learning, it uses the
epsilon greedy strategy as shown in Fig. 17. An exploration rate ϵ is
specified as the rate of steps that agents take actions randomly. At the

Fig. 13. Illustration of multi-agent path planning including reward, penalty and
mission endings for rebar designs.

Table 1
Reward and penalty strategies for agents.

Reward and penalty strategies

Reach targets without hitting obstacles +1.0
The distance between agents and targets decreases +0.4
Hit obstacles (paths of other agents) −1.0
Hit other agents −1.0
Within the range of other agents' paths −1.0
Run out of time −1.0
Take actions (left, right, up and down) −0.5
Take action (forward move) 0
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beginning of the mission, ϵ rate must be at its highest value, as agents
do not know anything about the values in Q-table, implying that agents
need to do a lot of exploration by randomly choosing their actions.
Therefore, a random number N is generated. If N > ϵ, agents will then
do the exploitation, meaning that agents use what is already known to
select the best action in each step. Else, agents will do the explorations.
The idea is that agents must have a big ϵ rate at the beginning of the
training of the Q-function. As the agents explore the environment, the ϵ
rate decreases and the agents start to exploit the environment. Then,
reduce ϵ rate progressively as the agent becomes more confident at
estimated Q-values.

Fig. 14. Illustration of the Q-Table.

Fig. 15. The Q-learning algorithm process.

Fig. 16. Illustration of updating Q-table.

Fig. 17. Illustration of exploration/exploitation trade-off.
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In Fig. 17, at the beginning of training, an agent has a higher ϵ rate
but knows nothing about the environment, the agent chooses a random
action from the right. The agent hits an obstacle and gets penalty -1
according to the reward and penalty system as described in Section 4.2.
According to the Bellman equation (Eq. (11)), the Q-values are updated
for being at the start and moving to the right getting collision as de-
scribed in Section 4.2.4.

4.2.4. Evaluate
Agents take the action (a) and then perform corresponding ob-

servation, the outcome state (s), and reward r. The function Q(s,a) is
updated by the Bellman equation:

= + +NewQ s a Q s a R s a maxQ s a Q s a( , ) ( , ) [ ( , ) ( , ) ( , )] (10)

where NewQ(s,a) is the new Q-value for state s and action a, Q(s,a) is the
current Q-value, α is a learning rate, R(s,a) is the reward by taking
action a at state s, γ is a discount rate, and maxQ′(s′,a′) is the maximum
expected future reward for given the new state s′ and all possible ac-
tions a′.

4.3. MARL system based on Q-learning

Algorithm 2. Pseudo Code of MARL System

The basic steps of the MARL system are outlined in Algorithm 2. In
the first step, a population of m agents is initialized. While mission
ending conditions are not satisfied, each agent will perform Q-Learning
algorithm until agents arrive the targets or agents fail in a mission. An
agent fails when hitting obstacles, exceeding 30 sense-act-learn cycles
(running out of time). An agent having reached the target without
hitting obstacles or running out of time is defined as a success. A mis-
sion ends when all agents fail or arrive at the target successfully. A
mission will also be deemed to have failed if an agent collides with
another, as depicted in Fig. 18.

The positions of origins and targets are automatically chosen by
MARL on the one side of columns or beams as described in Section 3.2.
The positions of obstacles are generated according to paths of other
agents in the previous steps. In a mission i, the positions of the targets
remain stationary, while the obstacles are gradually generated by
MARL, therefore the positions of obstacles are dynamically increasing.
As the configuration of the obstacle is changing within missions, agents
need to learn strategies that can be carried out onto future unseen
missions.

5. Empirical study

The effectiveness and efficiency of the proposed framework via the
MARL system with BIM have been examined empirically in this paper.
The authors also proposed two evaluation indexes like success rate Sr
and the spent time investigating the performance of MARL. Section 5.1
presents the detailed experimental configurations including setting

Fig. 18. Illustration of learning process of agents.
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parameters and evaluation indicators such as success rate for MARL.
Two illustrative examples of three beam-column joints (Section 5.2)
and two-story RC frames (Section 5.3) were used to test the proposed
framework.

In these experiments, the BIM models of RC members were first built
in Autodesk Revit [41], and PKPM [11] to serve as structural analysis
applications. Then, programming based on python and Dynamo [42]
was developed to automatically transform the support conditions, load
conditions, and geometry details to PKPM [11]. The structural analysis
of PKPM [11] was then extracted to the MARL method to generate the
clash-free rebar designs. At last, the calculated information about
number, diameters, and 3-D of rebar by the MARL system was trans-
formed to Autodesk Revit [41] to generate 3-D rebars BIM models using
application programming interface (API) in Autodesk Revit [41] and
Autodesk plug-in.

5.1. Experimental configurations

In the experiments of illustrative examples, 40 independent simu-
lations for each experiment were carried out, where each simulation
involves 1000 missions (i.e., Nt = 1000). The setting of parameters of
MARL is summarized in Table 2. To ensure the independence in each
simulation, the initial Q-value is to be reset as 0 in each simulation.
Meanwhile, the initial positions of multiple agents' origins and targets,
obstacles are also reset at the start of each mission. An agent having
reached the target without hitting obstacles or running out of time is
defined as a success. The success rate Sr for a group of agents is mea-
sured by the percentage of agents that arrives the defined target posi-
tions without hitting obstacles or running out of time within the total
missions, which can be calculated by:

= × ×
=

S
N

N
N

1 100%r
m i

N
s
i

s1

m

(11)

where Nm is the number of missions performed, Ns is the total number
of agents that participated in all missions, and Ns

i is the number of
agents arriving the targets successfully in mission i without hitting
obstacles. Sr was used to evaluate the performance of the proposed
framework with MARL.

5.2. Illustrative example of 1 - RC beam-column joints

In this section, three common RC beam-column joints are con-
sidered as the case study. Obviously, these joints are prone to rebar
clashes, since the rebars are densely arranged three-dimensionally.

Design drawings for the beam-column joints are shown in Fig. 20.
Each column is 3500 mm in height with a cross-section of 500 mm×
500 mm. The yield strength(fy) of longitudinal rebars is 360 N /mm2.
The longitudinal rebars in each column consist of 4 20 mm-diameter
bars and 16 18 mm-diameter bars. The beams have a typical cross-
section of 500 mm× 300 mm. There are 12 18 mm-diameter long-
itudinal bars at the top and bottom of each beam.

5.2.1. The example of training process in RC beam-column joint by MARL
The training processes for agents in + beam-column joints by MARL

are given in Fig. 19. The gray vertical line indicates the longitudinal
rebars in the column which is the obstacle for agents. The origins and
targets are represented by red dots and red triangles, respectively.

In this mission, a group of agents are tasked to navigate from the
origins (red dots) towards defined targets (red triangles) safely, while
crossing a RC beam-column joint. The RC beam-column joint is gra-
dually filled with obstacles which are the 3-D coordinates of the rebars
generated in the previous steps.

In the initial stages of mission as shown in Fig. 19 (a) –(c), agents
having a higher value of ϵ rate are encouraged to explore new possi-
bilities and try to reach defined targets without hitting obstacles or
running out of time. Therefore the paths of the agents look messy,
cluttered, or indirect. In the late stage of mission as shown in Fig. 19
(d), agents having a lower value of ϵ rate attempt to converge gradually
to the global optimum and to find the optimal paths for the rebar de-
signs. Moreover, along with the experimental training, the paths of
agents have also gone from chaos to the gradual and orderly process of
development and finally, the global optimum of the path will be se-
lected to generate a suitable rebar design.

5.2.2. Results and discussions
The centerline coordinates of clash-free rebar designs are generated

by the proposed system, with the simulation results shown in Fig. 21.
The automated 3-D BIM outputs of the rebars in RC beam-column joints
are also given in Fig. 21. Rebar designs for RC beam-column joints are
based on the result of the proposed system and design code (GB50010-
2010 [5]. As observed, there is no rebar clash in RC beam-column joints
using the clash detection of the 3-D BIM output.

The averaged success rates (Sr) of 40 simulations on the proposed
MARL were analyzed. The averaged Sr values are plotted in Fig. 22,
which indicates the percentage that the proposed MARL has success-
fully solved the path planning problem of clash-free rebar designs in 40
simulations.

5.3. Illustrative example of 2 - RC frames

A two-story RC frame shown in Fig. 23 with fixed end RC beams and
columns was considered as the case study. RC frames have been com-
monly used in practice. Therefore, they are selected to illustrate and
test the proposed framework with MARL.

5.3.1. Experimental environment
In this tested frame, there are 63 RC beams and 23 RC columns in

the first floor. The numbers of RC beams and RC columns in the second
floor are 47 and 23, respectively. Concrete compressive strength is 40 N
/mm2 (C40 grade) for the RC beams and 60 N /mm2 (C60 grade) for the
RC columns. The concrete cover is 20 mm typically. There are three
different rectangular cross-sections for the beams: 150 mm×
350 mm,175 mm× 350 mm, and 200 mm× 350 mm. The RC beams
are fixed at the ends with end-support moments in the RC frame. The
cross-section of RC columns is 300 mm× 300 mm typically.

The yield strength (fy) of the longitudinal rebars in RC beams and
columns is 360 N /mm2 and the counterpart (fyv) for the stirrups is
270 N /mm2. The proposed framework with MARL for rebar designs
was then tested on this RC frame. The RC frame BIM model was built by
Autodesk Revit [41] and PKPM [11], which serves as the structural
analysis application.

5.3.2. Results and discussions
The simulation rebar results and automated 3-D BIM detailing of the

rebar details by MARL for the studied RC frame are given in Fig. 25.
Therefore, the developed framework via the MARL with BIM helps
achieve the rebar 3-D visualization and generate construction drawing
details.

Table 3 shows the comparison between the framework with MARL
(including the time spent on the BIM model information extraction) and

Table 2
Summary of the parameters setting for the MARL system.

MARL parameters
Temporal difference learning parameters

TD learning rate α 0.05
Discount factor γ 0.7
Initial Q-value 0
ϵ-Greedy action policy parameters
Initial value of ϵ 0.6
ϵ Decay rate 0.0004
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manual arrangement in terms of the average time for rebar designs of
RC members. A total of 40 construction designers or engineering con-
sultants were invited to participate in the experiments having at least
2 years construction experience from famous construction design in-
stitute and engineering consulting corporation in Chongqing, China. In
particular, the participants were invited to design and draw the rebar
models of the specific joint types in Table 3, like L, opposite, T, +
beam-column joints by Autodesk Revit and record the time used. As for
the two-story RC frame, due to expensive manpower, the participators
estimated the time based on the time cost spent on the rebar design of
the previous joints.

As observed, the average time (min) taken by the framework with
the MARL is more optimal than the manual arrangement (Fig. 24). For
example, for the considered L, opposite, T, + beam-column joints with
rectangular beam cross-sections of 500mm×300 mm and rectangular

column cross-sections of 500 mm× 500 mm, the average time (min)
taken by the framework with MARL is 5–6 min, whereas the manual
arrangement would take about 50–60 min for each beam-column joint.
Moreover, another advantage of the developed framework is the ability
to provide fast and consistent clash-free rebar designs every time. In
addition, for the considered RC frame with 110 RC beams, 46 RC col-
umns, and 2240 longitudinal rebars, the proposed framework consumes
about 180–200 min to generate a clash-free rebar design, whereas a
designer must spend 2900–3400 min or more to arrange rebars, while
still cannot completely avoid rebar clashes in RC members. The two-
story RC building frame case indicates that the proposed framework can
reduce engineering time for rebar designs by 90%. As a result, the
proposed framework with MARL can provide much more effective and
efficient rebar designs for RC members than the manual arrangement.

Fig. 19. The training process in + beam-column joint by MARL.

Fig. 20. Design drawing of RC beam-column joints: (a)+ Joint (b)T Joint (c)+ Joint(with another form of rebar).
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6. Conclusions and future research

The traditional approaches for rebar designs require manual cal-
culations for each RC element. Due to the large number of rebars and
the restrictive design code requirements for rebar arrangement, it is
impractical, labor-intensive and error-prone for designers to avoid all
rebar clashes, even with the use of computer software. For clash de-
tection and resolution, several research efforts have been also made to
solve this issue.

Furthermore, most of the existing studies lack the automatic and
intelligent arrangement and adjustment of rebars to avoid obstacles for
real complex RC joints and frame structures.

In previous work, clash detection and resolution problem for rebar
designs is first modeled as a path-planning problem of multi-agent in
order to achieve the automatic arrangement and adjustment of rebars
according to obstacles. However, the reinforcement learning engine
FALCON relies on the availability of immediate rewards and is not
applicable to clash-free designs in real complex RC structures where the
immediate reward is often not available. To overcome this inadequacy,
the authors further extend previous work with Q-learning by con-
sidering both immediate and delayed rewards and achieve more stable
and efficient performance in rebar designs of real complex RC frames.

The contributions of the present study are summarized as follows:

(1) To overcome the inadequacy of relying on immediate rewards and
failing to find feasible solutions for real-world complex RC struc-
tures, this paper presents the use of Q-learning based MARL for
more realistic path planning problem considering both immediate
and delayed rewards for the clash-free rebar designs in real-world

Fig. 21. The simulation result and 3-D BIM output of the beam-column joint based on MARL method: (a),(b) &(c):+joint; (d),(e) &(f):T Joint; (g),(h) &(i):+ joint
(with another form of rebars).

Fig. 22. The success rates of the MARL system.

Fig. 23. A two-story RC frame BIM model.
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RC structures.
(2) To achieve more stable and efficient performance for rebar designs

in complex RC members, the particular form of state, action, and
immediate as well as delayed rewards for the reinforcement MARL
are designed by employing Q-learning as the RL engine.

(3) Comprehensive experiments on a two-story RC building frame have
been conducted to verify the effectiveness and efficiency of the
proposed framework.

To validate the effectiveness and efficiency of the proposed frame-
work with MARL system, comprehensive simulations were conducted

on three typical RC beam-column joints and two-story RC frames. The
simulation results of success rate and the average time for rebar designs
in RC members indicate that the proposed framework can significantly
reduce the engineering time (up to 90% in this study) and avoid spatial
rebars clashes. The study results also reveal that: (1) The average time
taken by the framework is more optimal than the manual arrangement;
(2) The developed framework has the ability to provide fast and con-
sistent clash-free rebar designs every time; and (3) The proposed fra-
mework with MARL can provide much more effective and efficient
rebars design for RC members compared with the manual arrangement.

However, the proposed framework with MARL system still has some

Fig. 24. Average time (min) for the rebar designs of RC members between the framework with MARL and manual arrangement.

Fig. 25. 3D BIM output of the RC beam-column joints based on the MARL system: (a) L beam-column joint; (b)T beam-column joint; (c)+ beam-column joint; (d)L
beam-beam joint; (e) T beam-beam joint and (f) + beam-beam joint.
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limitations: (1) This work only applied the proposed method for reg-
ular-shaped cast-in-place RC members (beams and columns) and their
connections. For other structures like prefabricated structure in the
Chinese construction sector, additional rewards and punishments
schemes are required in the proposed MARL. Based on this framework,
a plug-in application on Revit has been developed for regular-shaped
cast-in-place RC frames, however, it is currently in the test phase and it
cannot be widely used in the Chinese construction sector now. Because
as for other structure types like prefabricated structure, additional re-
wards and punishments should be designed for the specific structure
type to meet the design codes; (2) As for the other concrete technolo-
gies, the density of the rebars will affect the origins and targets of the
rebar agents and increase the collision probability as well as compu-
tational complexity. For fiber reinforced concrete, it depends on the size
of the fiber. The size of steel fiber or other fibers are generally too small
to affect the spacing of the rebars, therefore they are not taken into
consideration in the rebar clash problem. Furthermore, there are similar
regulations in the current design code. If the size of the fiber is large
enough to disturb the rebar arrangement, the rebar spacing should be
larger than a certain range to maintain the workability of concrete. In
this case, the corresponding rules suitable for the rebar design of fiber
reinforced concrete, e.g., if agents (rebar) within the range of fiber, a
plenty of -1 is given, would be included in the rewards and penalties
design in MARL; (3) Only general concrete structure design code in
GB50010-2010 [5] is considered in this study. For tackling other
complex and specific construction requirements and standards in the
design code, expert knowledge system for spatial conflict coordination
will be very helpful in the reinforcement learning design. In the future,
further extensions of the proposed MARL will be considered to address
the limitations as discussed above.
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