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A B S T R A C T

Tiling robotics have been deployed in autonomous complete area coverage tasks such as floor cleaning, building
inspection, and maintenance, surface painting. One class of tiling robotics, polyomino-based reconfigurable
robots, overcome the limitation of fixed-form robots in achieving high-efficiency area coverage by adopting
different morphologies to suit the needs of the current environment. Since the reconfigurable actions of these
robots are produced by real-time intelligent decisions during operations, an optimal path planning algorithm is
paramount to maximize the area coverage while minimizing the energy consumed by these robots. This paper
proposes a complete coverage path planning (CCPP) model trained using deep blackreinforcement learning (RL)
for the tetromino based reconfigurable robot platform called hTetro to simultaneously generate the optimal set
of shapes for any pretrained arbitrary environment shape with a trajectory that has the least overall cost. To this
end, a Convolutional Neural Network (CNN) with Long Short Term Memory (LSTM) layers is trained using Actor
Critic Experience Replay (ACER) reinforcement learning algorithm. The results are compared with existing
approaches which are based on the traditional tiling theory model, including zigzag, spiral, and greedy search
schemes. The model is also compared with the Travelling salesman problem (TSP) based Genetic Algorithm (GA)
and Ant Colony Optimization (ACO) schemes. The proposed scheme generates a path with lower cost while also
requiring lesser time to generate it. The model is also highly robust and can generate a path in any pretrained
arbitrary environments.

1. Introduction

Recently, autonomous devices for both home and industrial appli-
ances have emerged due to the ever-increasing market demands. They
automate the regular time-intensive and laborious tasks. Tiling robotics
has quickly become an active area of research for tasks pertaining to
area coverage, such as cleaning [1, 2], inspection [3], maintenance,
surface painting [4] and surveillance monitoring in both indoor and
outdoor spaces. There are numerous tiling robots in the market, but
almost all of them are constrained by their fixed morphology design.
Reconfigurable robots are able to cover a higher section of the area in
any workspace compared to a fixed morphology robot. This is due to
their ability to change shapes, which is extremely beneficial to tiling
robots. This ability to morph into different shapes allows them to
choose morphologies most suitable to the current coverage requirement

dynamically. One such robot for cleaning tasks is the reconfigurable
robot platform hTetro developed by Veerajagadheswar et al. [1]. The
robot is able to morph into 7 different tetromino shapes using its four
blocks, three hinge design. This gives the robot platform the capability
to maneuver in difficult environments and around obstacles to reach
hard to clean spaces.
The critical challenge of the reconfigurable tiling robot is to gen-

erate the optimal trajectory and set of shapes to cover the entire area.
Typically, standard path planning algorithms are focused on trajectory
planning for the robot to move from a starting point to a goal effi-
ciently. However, when it comes to tiling tasks, completely covering the
space is just as important. Hence, Complete Coverage Path Planning
(CCPP) approaches are employed to plan the motion of tiling based
robots. This involves planning a path which is energy efficient and
completely covers the given area while avoiding any obstacles present.
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CCPP has been used in other fixed morphology platforms. Zeli Wang
et al. solves the CCPP using a Finite State Machine (FSM) for a waste
recycling robot [5].
All CCPP algorithms can be broadly grouped based on the decom-

position strategies used to represent the environment [6]. A decom-
position strategy involves breaking down the environment into smaller
chunks, also referred to as sub-regions or cells. The classic method in-
volves separating the space through the use of simple shapes like tra-
pezoids, triangles [7]. The environment can also be separated using the
morse function [8]. For sensor-based robot systems, the use of contact
sensors is another strategy [8]. Some other approaches include the use
of graphs [9], 3D data [10, 11] and landmarks [12]. Finally, the stan-
dard approach is through the use of grid-based decomposition as pro-
posed by Moravec and Elfes [13] and Choset [14], which is used in this
paper. Several algorithms can be used to section an environment using
the grid strategy, which includes the energy aware algorithm [15],
neural networks [16] and spanning trees [17]. The use of grid-based
decomposition heavily reduces the complexity required in terms of
computation to determine a coverage path. Most CCPP algorithms de-
signed for the grid decomposition strategy have been for fixed-mor-
phology robots.
The traditional modeling of CCPP for the grid-based representation

involves two steps. First, a tileset that represents the shapes required to
fill the space is generated using the polyomino tiling theory [18] with
several lemmas. The hTetro can then move to each tile location of the
chosen tileset and transform to the corresponding shape. This approach
can assure that the workspaces satisfied by the tiling lemmas can be
tiled by hTetro completely. However, the suggested tileset by tiling
theory does not consider the optimal tileset with the least number of
shape-shifts. Next, a path is generated by connecting and ordering the
tileset generated. This can be done using traditional path planning al-
gorithms such as zigzag, spiral, greedy search. As a consequence of the
generated tileset, there are redundant actions generated, which cause
the hTetro to transform and rotate to the desired shape within simple
free spaces. However, most of these spaces can be covered more effi-
ciently with the use of a single shape such as a square or bar. Moreover,
the performance of these pathing algorithms is highly dependant on the
environment and its structure.
A better approach is to model this path planning problem using the

generated tileset as a TSP. This computes the least cost path (most ef-
ficient) under the pretext of connecting all waypoints, which ensures
maximum coverage. However, solving this TSP is an NP-hard problem
that is not feasible in real-world systems [19]. Another approach is to
use Evolutionary algorithms such as GA [20] and ACO [21] to solve this
TSP in a reasonable time [22]. However, these solutions are based on
the tiling theory, which is heavily constrained by the landmarks ex-
tracted from the environment and cannot be adapted to any arbitrary
environment. Moreover, optimization of the TSP solution also requires
multiple iterations of computation to identify a semi-optimal path and
can be swayed easily by the local minima during optimization.
Reinforcement learning has been used under the pretext of path

planning before. Changxi et al. [23] proposed the use of reinforcement
learning for trajectory planning for autonomous vehicles. Kenzo
et al. [24] used the DDPG reinforcement learning algorithm to plan the

motion of bipedal robots in a soccer match. Farad et al. [25] generated
a path for efficient exploration in unknown environments through
Actor-Critic Reinforcement learning model. A model trained using Q-
Learning to generate a path from point A to point B in a grid-based
decomposition of the environment has been proposed in Aleksandr
et al. [26], Amit et al. [27] and Soong et al. [28]. David et al. extends
this approach for multi-robot systems [29]. Yuan et al. [30] used a GRU
RNN network to plan a path from point A to point B while avoiding
obstacles in a grid-based environment. Richard et al. [31] discussed the
application of Q-Learning for industrial robot motion planning. How-
ever, all of these works are focused on the simplistic task of trajectory
generation from point A to point B and do not discuss the CCPP sce-
nario.
This paper proposes a deep learning model trained using re-

inforcement learning for CCPP for the hTetro platform which is able to
determine an efficient trajectory in real-time with a blackmuch lesser
distance travel costweight compared to the previously discussed tiling
approaches. The model also generates a more efficient path by mini-
mizing the number of shape changes while maximizing the use of a
single shape. The model is also highly versatile by being adaptable to
unknown environments. The remainder of this paper is sectioned as
follows. Section 2 describes the hTetro platform and the cost function
used. These costs are proportional to the energy consumed and the time
required by the robot for each action. Optimizing this cost leads to
lower energy use, which can allow for longer operations of the robot
platform. Section 3 discusses the state representation, the network ar-
chitecture, training algorithm and the reward function used. Section 4
discusses and compares the performance of the algorithm in different
environments.

2. hTetro reconfigurable robot platform

The hTetro platform is represented by four blocks named A, B, C and
D. The three hinges which connect these four blocks provide 180-de-
gree freedom of movement. Through this architecture, the platform can
morph into seven different tetromino based morphologies - O, Z, L, T, J,
S, I. Fig. 1 shows the seven different morphologies and the design of the
hTetro platform. An Audrino microcontroller is used to control the
hinges and wheels at each block. For running deep learning models, the
Nvidia Jetson Nano is used along with the Audrino board to process the
pathing algorithm. The robot uses differential drive motors for per-
forming three different types of movements - translation, rotation, and
transformation. These actions are able to be performed by issuing dif-
ferent velocity commands to the motor. The robot employs the use of
magnets and limit-switches to ensure that transformations are com-
pleted correctly, and the robot is able to move without disrupting the
current shape. Details of the mechanisms of the platform are discussed
in [1].
Each action consumes a different amount of energy. For generating

the path, action space is discretized, which means that a single action
cannot be a combination of multiple types of movement. The cost of an
action is characterized by the overall distance the robot moves for
performing that particular action. The cost function for translation is
determined by calculating the Euclidean distance between the start

Fig. 1. Different morphologies of hTetro platform. From left to right: O, J, L, T, S, Z, I.
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location (xj,yj) and the end location (xi,yi) of each block, which is de-
scribed in Eq. (1). Rotation and transformation assume that the position
of the center of block B of the robot is fixed. Under this assumption, the
cost function for a rotation of angle π/2 (90°) is given by Eq. (2). This
equation represents the length of the arc in which each block has to
travel to achieve this change. An example of this is shown in Fig. 2. The
blocks move according to the dotted line. The overall cost as per the
given equation would be + +l l l( 2 )2 , where l is the length of a block.

= +C x x y y( ) ( )translation
i j A B C D

i j i j
, , , ,

2 2

(1)

= × +C pi x x y y
2

( ) ( )rotation
i A C D

i B i B
, ,

2 2

(2)

=C a
C if a O Z L T J S I

C if a clockwise anticlockwise
C if a up down left right

( )
{ , , , , , , }

{ , }
{ , , , }

total t

transformation t

rotation t

translation t (3)

Transformation costs are dependent on the current shape and the
desired shape. Table 1 shows the equations used to compute the
transformation cost Ctransformation. Generally, a set of block rotations are

required to complete a transformation. Since these rotations are done
around a hinge, the cost is in terms of L, which is l/2, where l is the
length of the block. An example of a transformation is shown in Fig. 3.
For changing the shape from O to L, the robot must first change from O
to I and then I to L. The cost for transitioning from O to I is

+ L( 5 2 ) , since both C and D blocks have to move an angle of π,
and they are at a distance of L 2 and L 5 respectively. The cost for
changing from I to L is L( 2 )pi

2 , since only D block moves this time an
angle of

2
at a distance of L 2 from the hinge. Hence, the overall cost

turns out to be + L( 5 2 )3
2 . The overall cost of any action is given in

Eq. (3).
Real-world environments are captured using the 2D LiDAR present

on the robot. These real-world maps are converted into discrete grid
maps of fixed size (11 × 11). Each grid cell has a size corresponding to
one block of the hTetro platform in the real world. Larger maps are split
into multiple 11 × 11 maps.

3. Proposed methodology

The problem of path planning for the reconfigurable robot platform
hTetro can be represented in the form of a Markov Decision Process
(MDP). The parameters of the MDP include (S,A,Pa(s,s′),Ra(s,s′)). Here,
S represents state information which pertains to shape, cleaning status,
environment map. The set of actions represented by A involves four
movements (up, down, left, right), two rotations (clockwise, anti-
clockwise), and seven transformations (described in Section 2). The
reward function Ra(s,s′) is described later in this section. The goal is to
estimate a probability function Pa(s,s′) that maps the state s to an action
a which leads to the state s′. This function can be computed through
brute force, but given the infinite arrangements and configurations
possible for different environments, this is not feasible. This paper uses
a CNN LSTM model to approximate the probability function which is
responsible for determining the movement strategy at any state.
For training the RL model, the state maps are converted into images

of 88 × 88. The image represents the environmental information which
is required by the network to make a decision. There are distinct re-
presentations of different features present in the environment. White
squares represent grid cells that have objects or obstructions present in
them. The combination of four blue squares represents the robot.
Cleaned squares are blank whereas squares yet to be cleaned are re-
presented by red diamonds. These distinct representations reduce the
complexity of the model required to understand the current state. Fig. 4
shows a sample representation of the environment, which is used to
train the network.

Fig. 2. hTetro rotation of Z shape.

Table 1
Transformation cost Ctransformation values. Columns headings represent the cur-
rent shape. Row headings are the goal state.

O Shape I Shape L Shape J Shape

O Shape - + L( 5 2 ) + L( 5 2 )3
2

+ L( 5 5 2 )2
I Shape + L( 5 2 ) - L( 2 ) + L( 5 5 2 )2
L Shape + L( 5 2 )3

2
L( 2 ) - + L( 5 7 2 )2

J Shape + L( 5 5 2 )2 + L( 5 5 2 )2 + L( 5 7 2 )2
-

S Shape + L( 5 3 2 )2 + L( 5 3 2 )2 + L( 5 5 2 )2
L( 2 )

Z Shape L( 2 ) + L( 5 2 2 ) + L( 5 2 )5
2

+ L( 5 5 2 )2
T Shape L(3 2 )2 + L( 5 2 )5

2
+ L( 5 3 2 ) + L( 5 4 2 )2

S Shape Z Shape T Shape
O Shape + L( 5 3 2 )2

L( 2 ) L(3 2 )2
I Shape + L( 5 3 2 )2

+ L( 5 2 2 ) + L( 5 2 )5
2

L Shape + L( 5 5 2 )2 + L( 5 2 )5
2

+ L( 5 3 2 )

J Shape L( 2 ) + L( 5 5 2 )2 + L( 5 4 2 )2
S Shape - + L( 5 5 2 )2 + L( 5 6 2 )2
Z Shape + L( 5 5 2 )2

- L( 2 )2
T Shape + L( 5 6 2 )2 L( 2 )2

-
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3.1. Decision network

The probability function to determine the action at any state is
determined through a CNN LSTM network. The network architecture is
shown in Fig. 5. The CNN portion has 3 convolution layers with dif-
ferent kernel sizes. The CNN extracts features from the environment
state representation obtained above. The activation function used for
these layers is the ELU activation function. ELU activation function is

given by Eq. (4).

=
>

f x
e for x

x for x
( )

( 1) 0
0

x

(4)

These features are then passed through a fully connected layer with
ELU activation and then a LSTM with sigmoid activation. The LSTM
helps learn sequences of actions that may be useful for covering a
certain object pattern as well as avoid covering already covered areas.
The sigmoid activation function is given by Eq. (5).

=
+

f x
e

( ) 1
1 x (5)

3.2. Training the decision network

Training the decision network is done through the use of re-
inforcement learning (RL). Different RL algorithms exist, but only some
of them are feasible for this scenario. blackModel-based RL techniques,
such as Monte Carlo Tree Search (MCTS), are not feasible due to a large
number of combinations of state and action pairs. Hence, model-free
approaches are used. Q Learning [32] is not used here due to a large
number of actions possible at each state. Policy gradient techniques
estimate a policy which is able to predict the most rewarding action at
any state. However, due to the nature of the complete coverage pro-
blem, it is not enough if the policy only takes into account the next
action. Doing so would result in prioritizing avoidance of action with
not so large reward, which will result in not achieving complete

Fig. 3. hTetro shape transformation from O to L.

Fig. 4. State representation.

Fig. 5. Decision network model.
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coverage. Hence, a policy gradient approach that takes into account
future rewards is used, which enables the model to achieve efficient
complete coverage path planning.
blackActor-critic [33] models are state-of-the-art techniques in

policy gradient-based reinforcement learning. Actor-critic models
comprise two sections - the actor which determines policy and a critic
that evaluates the decision of the policy. The actor is trained based on
the feedback from the critic, which evaluates decisions based on the
reward function. The popular actor-critic model, A3C [34], is an on
policy method, i.e. the algorithm completes a full run before evaluating
their performance. Off-policy methods often have advantages over on-
policy methods. This includes higher sample efficiency and better ex-
ploration. These two factors are crucial in the complex decision process
for the hTetro environment, which inspires the use of the off-policy
implementation of the actor-critic model, called Actor-Critic with Ex-
perience Replay (ACER) [35].

3.2.1. ACER reinforcement learning algorithm
ACER [35] is an off-policy implementation of A3C. It uses an ex-

perience replay buffer to record states, actions and rewards during
training. Select experiences are chosen from this buffer and used for
training the policy. ACER uses marginal value functions to approximate
the policy gradient at each step. The marginal value policy gradient for
any blackpolicy π with blackpolicy function θ is given by gmar with state
st and action at at a time t is computed as given in Eq. (6).

= × × ×g log a s Q s a[ ( ( | )) ( , )]mar s a t t t t t,t t (6)

where ρt is the importance weight, denotes the expectation. To in-
crease stability during the training process, ACER uses three optimi-
zations to this function. First, ACER uses retrace q-value estimation to
train the critic. Using retrace q-value instead of standard q-value
function significantly reduces the bias during off-policy updates. The
retrace estimator Qret is computed as shown in Eq. (7).

= + × ×

+ ×
+ + + + +

+

Q s a r Q s a Q s a

s

( , ) [ ( , ) ( , )]

( )
ret t t t t ret t t t t

t

1 1 1 1 1

1 (7)

where rt is the reward obtained given state st and action at, γ is the
discount factor, Q is the standard q-value estimate and is the expected
Q value. The other two optimizations are aimed at reducing the var-
iance during training. The former involves introducing a bias correction
to the truncated importance weight ρ, which reduces the effect large ρ
values can have on the final marginal value function. This term is added
to Eq. (6). The latter is utilizing trust region policy optimization during
training. Trust Region Policy Optimization (TRPO) [36] computes loss
using blackKullback–Leibler (KL) divergence which is to be optimized
by the optimizer. ACER modifies the KL divergence formula to make it
more efficient. It uses a running average of the KL divergence to reduce
huge variance caused due to large deviations from the running average.

3.2.2. Loss optimization
The loss is optimized using a Root Mean Squared Propagation (RMS

Prop) optimizer [37]. RMS prop computes the weight wt
rms at any time t

based on the gradient gt and exponential average vt and the weight
current weight. Eqs. (8), (9) and(10) are used to update the weights in
the network. Here, η is the initial learning rate, β and ϵ are hy-
perparameters.

= +v v g(1 )t t t1
2 (8)

=
+

×w
v

grms

t
t (9)

= ++w w wt
rms

t
rms rms

1 (10)

3.3. Reward function

Reward functions are crucial for optimal training of the model. For
CCPP, a reward can be given whenever the robot completely covers the
accessible area. However, such a sparse reward function can result in
very hard to achieve the convergence status of the model. Hence,
covering each new tile is also rewarded along with complete coverage.
The reward for completion is much larger compared to the covering of a
single tile. Each action also has an associated cost described in
Section 2. This cost is removed from the reward obtained at each step. If
no new tile is covered, the overall reward is negative. This prevents the
robot from backtracking or getting stuck. However, the reward of
covering a tile is higher than the cost of movement, which allows the
robot to make multiple actions to reach a new square. There is also a
large negative reward for the suggestion of illegal action. blackIf the
algorithm opts to perform an illegal action, no move will be performed.
This can include collision with walls obstacles or suggestions of trans-
formation rotations in locations with inadequate space. The overall
blackreward R for a single action is given by

= × + × ×R a n r status r C a illegal c( ) ( )t new new final t illegal (11)

where nnew is the number of new tiles covered, rnew is the reward for a
new tile covered, status is a boolean that describes if the process is
complete, rfinal is the reward for completing the process, C(at) is the cost
of the given action at, cillegal is the penalty for any illegal action and
illegal is a boolean that describes if an action is illegal. These reward
values are fixed through experimentation.

4. Experimental results

4.1. Experimental setup

To evaluate path planning strategies between tiling-based methods
and proposed trained model, three criteria are used in general - the
efficiency, percentage of area covered and the time taken to generate
the path. However, since this paper deals with CCPP, the underlying
assumption is that complete coverage occurs every time. This is possible
given the reconfigurable nature of the hTetro robot platform. This is
also used as the criteria for termination of generation of any path.
Hence, the applicable criteria for comparison is the efficiency or the
cost associated with the generated path and the time taken to generate
this path. The cost is computed as described by Eq. (3) in Section 2. The
results are showcased as the path generated for various 11 × 11 en-
vironments along with their associated cost and execution time. The
proposed approach is compared with tiling theory based algorithms in
which the tetromino-based tileset is derived prior to the path using
zigzag model, spiral model, greedy search and TSP models using opti-
mization techniques like method [19], GA and ACO are used to solve
the trajectory generation. One such tileset within the workspace
11 × 11 used for comparison is showed in Fig. 6b. To the best of our
knowledge, excepting tiling theory-based method, the state-of-the-art
CCPP methods are used to the fixed morphology platform, so further
research is required to adapt them to hTetro.
The hyperparameters of the ACER algorithm and the reward func-

tion of the proposed CCPP are optimized through trials that check the
convergence of the model for all environments. black120 random en-
vironments representing different real-world rooms are used to train
the model. The learning rate for the RMS prop optimizer is set as 0.0001
with a β value of 0.99. The discount factor γ used for Qret estimation is
set as 0.9. An experience buffer of size 20,000 is used when training on
replays. In the reward function, rnew is set to around 20 times the
maximum cost of a movement (400). The length of a block, which
determines the grid size, is assumed as 2 when computing movement
cost term C(at). The penalty of an illegal action cillegal is set as 10 times
the maximum cost of a movement (200). The final reward obtained for
completely covering the workspace is 50 times the reward of a single
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square ( 20,000). All rewards are scaled down by a factor of 400. These
values of hyper-parameters provide an optimal convergence of the re-
ward function when trained with multiple environments. Changing
these values by a large margin results in a lack of convergence of the
model during training. blackThe training time depends on the structure
of the workspace. Normally it takes about black10,000 iterations to
train 120 workspaces.

4.2. Experimental results simulation environment

The proposed CCPP trained model generates the same plans after
three experimental trials for each workspace among 120 trained
workspaces. The CCPP plans cover 100% of free spaces of tested
workspaces without leaving any uncover grid cells. The averaged values
of the cost associated with the generated path and the time taken to
generate the path during trials are provided as 2636.59 and 0.251 s,
respectively. The results proved the consistency in generating the CCPP
plan and the feasibility for the real-time deployment of the trained
model.
We selected randomly 10 workspaces among 120 workspaces which

can tile completely by tiling theory based method to evaluate the op-
timality of the proposed CCPP framework statistically. Note that the
tiling theory method is not able to generate the tetromino based tilesets
for the workspace among 120 trained workspaces if the number of free
spaces inside this workspace is not divisible by four. The averaged
costweights and path generation time of all comparison methods are
shown in Table 2. The proposed scheme with the trained model gen-
erates an optimal path with less associated costweight (2816.29 com-
pare to 2947.59) and quicker (0.265 s compare to 1.159 s) than ACO
with the second best costweight. Furthermore, this generation time is
for the entire path, and decisions are made sequentially. Hence, only a
fraction of this time would be required to start the movement process,

and the remaining path can be generated while moving simultaneously.
However, since this is a neural network model, there is a load time
overhead of around 8 s, which can be done during the startup of the
robot.
The comparisons between plans generated by the CCPP of tiling

theory-based methods [22] and proposed CCPP method for an example
workspace as Fig. 6a are given in Fig. 7 and Fig. 8, respectively. Note
that the tiling theory based models first generate a tileset based on the
given state. The tileset generated for this comparison workspace is
shown in Fig. 6b. The sequence of actions is then optimized by the
algorithm chosen. On the other hand, the proposed CCPP generates the
robot shape and navigation sequence simultaneously. Specifically, the
Zigzag model does a row-wise connection of tile pieces (Fig. 7a). The
spiral model implements a circular or spiral search method, which
prioritizes completing outer tiles before inner tiles (Fig. 7b). Although
these two algorithms are computationally inexpensive, their efficiency
is highly dependent on the environment configuration and is not sui-
table for real use. The greedy approach chooses the closest tile at each
step and is executing the respective action to reach that tile (Fig. 7c).
However, the closest distance may not necessarily mean the best action.
This is because the total cost includes transformational and rotational
costs as well, which can often add up to a large amount.
Modeling the problem as a TSP and employing method [19]

(Fig. 7d), GA (Fig. 7e) or ACO (Fig. 7f) optimization models [22] reduce
the cost by choosing an optimal combination of decisions which are
most suitable for the given environmental configuration. These three
models also take into account the transformation and rotation costs
associated with each movement, thereby generating a more optimal
path. GA and ACO evolutionary algorithms perform better than the
method proposed in [19]. However, the performance of these techni-
ques is capped by the performance of the tiling algorithm. Due to the
nature of the tiling algorithm, a lot of different tiling pieces are stacked
to fill the space. However, this can lead to a sub-optimal path to gen-
erate due to a large number of transformations required to fulfill the
best path for the given tileset. In general, most transformations are as
expensive or more expensive than a simple translation. Additionally,
these paths can have moves that have a hidden cost, such as moves that
require the robot to move around an obstacle.
Fig. 8 shows the path generated by the decision model trained using

reinforcement learning for the comparison environment. Gray squares
represent grid cells that have not been visited. The blue squares high-
light the section, which requires a different shape to reach. White grid
cells represent regions that have been visited. The path taken when the
robot is in O shape is represented by the use of red arrows. Similarly,

Fig. 6. Environment used for comparison. (a) Environment map used for performance measure. Red spaces with a − 1 value represents obstacles. (b) Tileset
generated on the environment map by tiling based-theory method.

Table 2
Comparison of performance of the different CCPP methods on the simulated
environments.

Method Cost weight of path Path generation time (s)

Zigzag [22] 4013.13 0.014
Spiral [22] 3924.12 0.161
Greedy Search [22] 3802.32 31.36
Method [19] 3693.41 1.192
GA [22] 2993.35 1.172
ACO [22] 2947.59 1.159
Proposed 2816.29 0.265
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the path taken after the robot is in I shape is represented by green ar-
rows. The dots represent the location of block B of the robot. For this
environment, only one transformation occurs due to the requirement of
a different shape to cover the difficult to reach squares. The model
chooses to transform into an I shape because of it having the least
transformation cost from the original O shape. On the other hand,
changing to a J or L shape would have required two rotations to get into
position, which would have made it a more costly maneuver. The model
also tends to prioritize remaining in the original O shape.
The path generated by this model for two other environments is

shown in Fig. 9. These environments cannot be tiled using the tiling
theory since the number of free spaces is not divisible by four. Hence,
tiling theory-based algorithms cannot be employed to generate a path.
However, the proposed scheme is able to generate a path in these en-
vironments. Furthermore, the model minimizes the cost by reducing
unnecessary transformation and rotation. Fig. 9a is a workspace that
does not require any transformation to cover. The model generates a
path with no transformation or rotation, which is the most cost-effec-
tive route. In Fig. 9b, a change of shape is necessary to cover the one
block wide gaps present in the obstacle in the middle of the

Fig. 7. Paths generated from algorithms based on the tiling theory. White arrows represent the sequence of actions the algorithm takes to completely cover the space.
(a) Zigzag. Cost weight: 4072.19, (b) Spiral. Cost weight: 3821.18, (c) Greedy Search. 3791.92, (d) TSP based method [19]. Cost weight: 3688.21, (e) GA. Cost
weight: 2968.95, (f) ACO. Cost weight: 2933.69.

Fig. 8. Path generated by reinforcement learning in the comparison environment. Cost: 2817.31.
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environment. The model suggests a change to the S shape in this case
along with a rotation to align the robot with the gap in order to com-
pletely cover the workspace.
Another limitation of the tiling based approaches is that the optimal

set of shapes for a given environment needs to be determined before-
hand. This is not the case for the proposed approach, which is able to
decide the optimal shapes required based on the obstacles, gaps, and
spaces present in the environment. This is true for Figs. 8 and 9b where
the model decides to choose shapes I and S based on the environmental
structure, respectively. Even in Fig. 9a, the model decides to remain in
O shape.
Visual outputs for sequences of actions in which the robot in blue

color performs navigation and shapeshifting in five example simulated
workspaces with various obstacle arrangements are provided in Fig. 10.
Considering the simple workspaces without the need of shapeshifting as
in Fig. 10a to the complex workspaces with the needs of shapeshifting
as in Fig. 10b, c, e and and Maze-like environment Fig. 10d, and by
following gradually the generated CCPP, one can observe that the robot
can clear the free spaces (denoted as red dots) entirely. Besides, the
number of shapeshifting is minimized, and the robot prefers to keep the
same shape to clear the fee space area and only change to the shape
with the minimal cost to clear the constraints, and narrow areas.

Fig. 9. Other examples of paths generated using reinforcement learning. (a) Cost: 2200, (b) Cost: 3624.45.
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4.3. Experimental results in real robot

The costweights generated by all CCPP methods for simulation
workspaces are validated in terms of energy consumption efficiency in
the real testbed environment. To compare with the existing methods
using a tetromino based robot to tile the real tested environment, we
use the workspace of Fig. 11 in which the obstacle layout is similar with
the simulated workspace as in Fig. 7. The Hector SLAM [38] is used for
building the map and localizing the robot within the map. After the
map is built, the hardcode predefined waypoints indicated the loca-
tions, and the desired shapes are set then stored on the robot global
navigation plan. Note that the plan was just duplicated from the si-
mulation result as the map layouts are the same, but the exact waypoint
locations are adjusted based on the prebuild map. After the waypoints
are generated by all tested CCPP methods, the robot starts moving
within the prebuild map, the real-time robot location is monitored, and
the commands indicating the desired navigation direction and shape
are issued autonomously to control the robot to clear all predefined
waypoints. To calculate the power consumption of the robot during
navigation, the value from the current sensor of the robot battery
module was recorded. The sampling frequency of the measured current

Fig. 10. Simulated navigation for different workspaces settings. (a) Only O shape, (b) shapeshift between O shape and S shape, (c) shapeshift between O shape and I
shape, (d) able to backtrack in Maze-like environment, (e) shapeshift between O shape and I shape with optimal orientation.

Fig. 11. Cover and re-covered areas by proposed CCPP.
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is 10 KHz at the 12 V voltage. The maximum motor speed is 150 rpm.
Coverage map, which includes area re-covered, is derived from the

recorded videos by the camera mounted on the top view of the tested
workspace. Fig. 11 presents the tracked map during hTetro navigation
following the sequence of the proposed CCPP. In the image, the green
pixels depict the area covered by the hTetro, and the red parts present
for the re-covered area. From Fig. 11, we can observe that the robot
covers the map entirely with few percentages of re-covered areas.
Table 3 shows the energy consumption and averaged travel time

after blackfive trials of all test methods with the real workspace as
shown in Fig. 11. From the numerical values, we realize that the smaller
estimated costweight is matched with the smaller energy value. Spe-
cifically, the simplest zigzag method creates the highest value of energy
consumption, and close behind is the spiral. The proposed method
yields both the smallest average grid coverage time and the least energy
consumption. The proposed method gains about 82% lower than Zigzag
the longest distance cost and about 38% lower than ACO the second-
best method. These results show that the proposed CCPP with a pre-
trained RL model is a possible energy-aware CCPP technique for poly-
omino tiling robot platforms in real environments.

5. Conclusion

This paper is the attempt to solve CCPP for the reconfigurable
platform by a novel reinforcement learning-based framework. The ro-
bustness of the model is demonstrated through testing in different en-
vironments. The experimental results prove that the algorithm is able to
minimize the transformational and rotational actions, thereby enabling
it to reduce the cost over traditional tiling methods. The model is also
able to determine the optimal set of morphologies required for each
environment. In contrast to TSP based optimization schemes such as GA
and ACO, the proposed method generates a path with lower cost while
also taking lesser time to run. Moreover, the proposed CCPP can be
extended to other polyomino-based shapeshifting robots. In future
work, we will study the effectiveness of this model to generate actions
in partially explored environments. We also plan to extend the proposed
model to completely control the robot platform using continuous out-
puts that can drive motors rather than discrete action requests.
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