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A B S T R A C T

Background: Reinforcement learning (RL) is a computational approach to understanding and automating goal-
directed learning and decision-making. It is designed for problems which include a learning agent interacting
with its environment to achieve a goal. For example, blood glucose (BG) control in diabetes mellitus (DM), where
the learning agent and its environment are the controller and the body of the patient respectively. RL algorithms
could be used to design a fully closed-loop controller, providing a truly personalized insulin dosage regimen
based exclusively on the patient’s own data.
Objective: In this review we aim to evaluate state-of-the-art RL approaches to designing BG control algorithms in
DM patients, reporting successfully implemented RL algorithms in closed-loop, insulin infusion, decision support
and personalized feedback in the context of DM.
Methods: An exhaustive literature search was performed using different online databases, analyzing the litera-
ture from 1990 to 2019. In a first stage, a set of selection criteria were established in order to select the most
relevant papers according to the title, keywords and abstract. Research questions were established and answered
in a second stage, using the information extracted from the articles selected during the preliminary selection.
Results: The initial search using title, keywords, and abstracts resulted in a total of 404 articles. After removal of
duplicates from the record, 347 articles remained. An independent analysis and screening of the records against
our inclusion and exclusion criteria defined in Methods section resulted in removal of 296 articles, leaving 51
relevant articles. A full-text assessment was conducted on the remaining relevant articles, which resulted in 29
relevant articles that were critically analyzed. The inter-rater agreement was measured using Cohen Kappa test,
and disagreements were resolved through discussion.
Conclusions: The advances in health technologies and mobile devices have facilitated the implementation of RL
algorithms for optimal glycemic regulation in diabetes. However, there exists few articles in the literature fo-
cused on the application of these algorithms to the BG regulation problem. Moreover, such algorithms are
designed for control tasks as BG adjustment and their use have increased recently in the diabetes research area,
therefore we foresee RL algorithms will be used more frequently for BG control in the coming years.
Furthermore, in the literature there is a lack of focus on aspects that influence BG level such as meal intakes and
physical activity (PA), which should be included in the control problem. Finally, there exists a need to perform
clinical validation of the algorithms.
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1. Introduction

Diabetes Mellitus (DM) is characterized by chronic high blood glu-
cose (BG) level as a consequence of a metabolic disorder that occurs
either when the pancreas does not produce enough insulin or when the
body cannot effectively use the insulin it produces, leading to long–-
term damage, dysfunction and failure of various organs [1]. According
to the International Diabetes Federation approximately 1 in 11 adults
has diabetes, which means 425 million adults worldwide suffered from
these conditions in 2017. This represents 9.1 % of the adult population,
while trends suggest the rate would continue to rise. Furthermore, DM
at least doubles a person's risk of early death, resulting in approxi-
mately 1.5–5.0 million deaths each year, while 12 % of global health
expenditure is spent on diabetes ($727 billion) [2]. Because of the high
incidence and prevalence of diabetes, the share of research devoted to
the disease is continuously increasing [3].

There exist three main types of diabetes: Type 1 Diabetes Mellitus
(T1DM), in which the patient presents a deficient insulin production
and requires daily administration of insulin, Type 2 Diabetes Mellitus
(T2DM), characterized by an ineffective use of insulin in the body, and
gestational diabetes, produced by a high BG levels during pregnancy.
All of them require continuous management from patients and physi-
cians in order to avoid complications [1].

Recent technological advances in medical wearable devices and
sensor technologies, as well as the increase of processing power in
mobile phones, have made an extensive acceleration of research ac-
tivities possible in all aspects of diabetes. This new scenario has led to
the application of machine learning (ML) and data mining techniques in
the DM research field [4], with BG prediction appearing to be the most
popular focus [5], indicating that artificial intelligence is increasingly
common in DM solutions [6]. Among DM management tasks, the de-
velopment of BG control strategies has been one of the most important
issues during the last years [7]. For this reason, the design of control
algorithms for DM is a very active research area approached from many
different angles by a large number of scientists in different fields. Fur-
thermore, there is a great need for more data-driven control strategies
in this problem and the disadvantages of traditional algorithms suggest
the use of data-driven ML algorithms [8]. Among these, reinforcement
learning (RL) algorithms provide a highly promising approach that has
been increasingly adopted in the area of control algorithms. Indeed,
over the last few decades, RL has offered an appealing framework for
the treatment and long-term management of chronic diseases. In this
review, the goal is to analyze and assess existing RL algorithms for a
closed-loop controller in DM.

2. Diabetes and blood glucose control using reinforcement
learning

DM is often self-managed by the patient through multiple glucose
level measurements throughout the day and administration of insulin
via injection or a pump, which become a really challenging task for the
patients, who have to deal with many complications during their daily
life. Even with a due amount of vigilance, many patients may still suffer
significant diabetes-associated complications. This traditional and

manual BG control framework is shown in Fig. 1.
The artificial pancreas (AP) offers an efficacious and safe approach

for treating DM [9], therefore it has become the holy grail of diabetes
research [10]. The successful development of an AP consists of three
primary components: a continuous glucose monitoring (CGM) system to
continuously measure BG every five minutes or monitor glucose read-
ings over a period of time, an insulin pump that can deliver precise
amounts of insulin, and a control algorithm that translates data
streaming from CGM into instructions for insulin pump. While the first
two components have seen rapid technological gains in recent years,
state-of-the-art controllers still require regular patient or caregiver in-
tervention, operating in open-loop control with the user. Fig. 2 shows a
flowchart of the artificial pancreas BG control framework. This is a
closed-loop model [11], where BG levels are measured by the CGM and,
based on glucose concentrations, the controller determines the proper
amount of insulin needed. This insulin dosage is applied by the insulin
pump, affecting glucose system and changing BG level. Based on the
changes produced in BG concentration, a new insulin dosage is calcu-
lated and applied. This process implies that only information measured
from the patient is used to make decisions by the controller, without
knowledge of external data [12].

This framework can be extended to a broader scope using mobile
communication and wearables devices for health services, information,
and data collection, obtaining a complete mHealth system [13]. The
system would be able to monitor the patient physiological status while
supervising the healthcare plan, allowing to include additional relevant
information for diabetes care, such as food intake, physical activity
(PA), infections and stress level.

The principle of RL is based on the interaction between a decision-
making agent and its environment [14]. In RL, the goal is to train an
agent to take actions that result in preferable states. At each decision
time point, the agent chooses an action for some given current state of
the system. The environment reacts to this action and transitions to a
new state. For the previous action taken, the agent now receives a
positive or negative reinforcement from the environment. The mapping
of state to action is called the policy. The goal of RL is to learn an
optimal policy that maximizes the amount of rewards it receives over
time. Fig. 3 shows this RL framework, where the agent is the decision
maker and learner while the environment is the thing the agent inter-
acts with, encompassing everything outside the agent [14].

Furthermore, in this framework there are additional sub-elements:
the policy defining the behavior of the agent, the reward function de-
fining the goal of the problem and the value function specifying the
long-term desirability of states. Concretely, the value function indicates

Fig. 1. Self-managed blood glucose control.

Fig. 2. Blood glucose management based on artificial pancreas.
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the total amount of reward expected by an agent when it starts from a
given state and follows a given policy thereafter. Similarly, the action-
value function indicates the total amount of reward expected by an
agent when it starts from a given state, takes a given action and follows
a given policy thereafter. Finally, some problems have the model of the
environment, a sub-element predicting future states and rewards [14].

Several approaches have been used in the literature in order to
reach the RL goal: learn the optimal policy, which is the policy that is
better than or equal to all other policies based on the values of the
states. This have originated many RL methods such as temporal-dif-
ference learning, which learn by bootstrapping and perform updates
from the current estimate of the value function, or actor-critic (AC)
learning, which are algorithms formed by two different parts: an actor
following a policy to select actions and a critic used to estimate the
value function and criticizes the actions taken by the actor. Therefore
these algorithms are characterized by a separate memory structure to
explicitly represent the policy independent of the value function [14].

In the DM reinforcement learning task, the interstitial glucose curve
is taken to be the state variable, as measured by the CGM. The action
space consists of insulin dosage amounts. The agent is the controller.
The environment is the patient’s glucose system. Finally, the reward
function should measure the discrepancy between ideal and actual
glucose levels.

RL is particularly suited to situations where decisions are made
sequentially along a timeline, actions depend on the observed state,
effects manifest at later points in time than the actions that induced
them (time delay), and there is some notion of preferred state(s). These
features are certainly present in the DM controller challenge.

Another advantage is that modeling the glucose-insulin dynamics
can be entirely bypassed in RL. Furthermore, labeled training data is
not required as in supervised learning strategies, but instead the agent
can learn optimal policies without the necessity of first being trained on
examples of “correct” actions to take.

RL algorithms are uniquely suited to problems with inherent time
delays. This presents a strong advantage in the diabetes application due
to the time lags in both continuous glucose monitors (which actually
measures subcutaneous glucose measurements) and insulin effect. RL
naturally accommodates for these time delays because actions are al-
lowed to have delayed effects and rewards are given for good behavior
in the long run.

Finally, this algorithm continuously adapts and evolves with the
user, which leads to a truly personalized analysis. In contrast, tradi-
tional statistics and ML often operate by borrowing strength across
subjects. Additional convincing arguments for the use of RL in the DM
scenario are given in [8].

3. Methods

The purpose of the review is to identify, assess and analyze the state-
of-the-art RL algorithms and strategies focusing on its applications to-
wards BG control in people with diabetes. As a result, a comprehensive
literature search was conducted from 5th June 2019 to 3rd August 2019.
The search was performed using different online databases such as ACM
digital library, DBLP Computer Science Bibliography, Google Scholar,
IEEE Xplore, Journal of American Medical Informatics Association
(JAMIA), PubMed and ScienceDirect. Relevant papers were further

extracted from the reference lists of the selected articles. The search
process covers a specified timeframe from 1990 to 2018 and considered
peer reviewed journal articles and conference proceedings. The search
was conducted using different combination of strings along with “re-
inforcement learning” including “artificial pancreas”, “blood glucose
control”, “closed-loop in diabetes”, “decision making in diabetes”,
“decision support in diabetes”, “insulin infusion”, “insulin pump” and
“personalized feedback in diabetes”. For the purpose of effective
searching strategy, the search strings were combined using Boolean
function such as “And” and “Or”. During the search, relevant articles
were identified by reviewing the title, keywords, and abstracts for a
preliminary filter based on the inclusion and exclusion criteria. A full-
text assessment was done on only articles that seemed relevant ac-
cording to our inclusion and exclusion criteria. Information extraction
were also done based on some structured predefined categories that is
in line with our inclusion and exclusion criteria, which were defined
based on discussions and brainstorming among the authors.

3.1. Inclusion and exclusion criteria

To be considered in this review, the study should develop and test
RL algorithms and strategies based on people with diabetes and in
addition fulfil the following conditions: focus on BG control and be
published between 1990 and 2019.

As a result, studies outside of the stated scope were excluded from
the review including all studies presented in other languages than
English.

3.2. Data categorization and data collection

Extraction of information from the selected studies was conducted
using some predefined and structured categories, which were defined
based on discussions and brainstorming among the authors. The cate-
gories were defined to fully assess and evaluate the state-of-the-art of
RL algorithms and strategies developed and tested on BG control for
people with diabetes.

3.2.1. Subjects
This category defines the nature and characteristics of the subject

used in algorithm development and testing, which includes age, gender,
type of DM and nature of the subjects; in silico and real subjects.

3.2.2. Data sources
This category defines different kind of data sources the studies have

used to develop and test the RL algorithms, which include data sources
like CGM devices, insulin pumps, different BG dynamics simulators and
others.

3.2.3. Preprocessing
This category defines the kind of preprocessing performed on the

raw data and the various approaches employed in the processes, in-
cluding glycemic ranges, sparsification (detecting novel information)
and others.

3.2.4. RL approach
This category defines the reinforcement algorithm approach used to

develop the control algorithm, including tabular solution methods and
approximate solution methods.

3.2.5. Class of RL
This category defines the class of RL algorithms used to develop and

test the control algorithm, which includes AC learning, Q-learning,
Sarsa and others.

3.2.6. Exploitation versus exploration
This category encompasses the exploitation-exploration dilemma in

Fig. 3. Reinforcement learning framework.
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RL algorithms, which involves making the best decision given the
current information or gathering more information with sacrifices for a
long-term benefit. In this regard, it pinpoints the approached favored by
the studies to solve the dilemma.

3.2.7. State space
This category encompasses the definition of the state space, its

nature and defining parameters used in the control algorithms, that is
the actual situation of the environment in which the agent finds itself.
The nature of the state space is either continuous or discrete. The de-
fining parameters include key diabetes parameters such as BG, insulin,
diet, PA and others.

3.2.8. Action space
This category encompasses the definition of the action space, its

nature and defining parameters, which is a set of all possible actions the
agent is entitled to choose. The nature of the action space is either
continuous or discrete. The defining parameters include different ac-
tions such as insulin dose, food intake, PA and others.

3.2.9. Planning
This category encompasses the planning techniques used in the re-

inforcement algorithms. It includes either a model-based or model-free
approach.

3.2.10. Generalization approaches
This category determines the approaches to address the problem of

learning in large spaces. Among these techniques we can find policy
gradient method, Gaussian process (GP) regression and others.

3.2.11. Performance metrics or evaluation criteria
This category defines performance metrics the studies have used to

evaluate the developed BG control algorithms. It includes different
approaches such as predefined target ranges, control variability grid
analysis (CVGA), comparison with reference value and others.

3.2.12. Model of optimal behavior
This category considers the different models of optimality, where

there are three main models in this area: the finite-horizon model, the
infinite-horizon discounted (IHD) model and the average-reward (AR)
model.

3.2.13. Reward function
This category defines the kind of reward function used to develop

the control algorithms, which measures the success or failure of an
agent according to a set of chosen actions. A reward is defined based on
the objective of the task at hand and the expert knowledge. As a result,
various kinds of reward functions have been defined in the literature
and this category pinpoint widely adopted reward functions.

3.3. Literature evaluation

Papers were evaluated based on the above predefined categories to
evaluate the state-of-the-art approaches and strategies used in RL al-
gorithms for BG control in people with diabetes. The first evaluation
and analysis was done based on data characteristics including data
sources, subjects and preprocessing approach. The second evaluation
and analysis were conducted based on RL strategies including class of
RL algorithms and its approaches. The third analysis was carried out
based on exploitation versus exploration, to reveal the state-of-the-art
approaches in solving the dilemma involved. The fourth evaluation and
analysis was conducted based on state and action space including their
respective nature and defining parameters. The fifth evaluation and
analysis was carried out based on planning approaches employed
during development. The sixth evaluation and analysis was conducted
based on reward function used to learn the agent. Note that the number

of features extracted might exceed the number of reviewed articles
since many features are reported in the literature. Therefore, the
number of findings in each category might vary from the number of
total studies included in the review, since more than one approach can
be considered in the same article.

4. Results

4.1. Relevant literatures

RL is a quickly growing field, and its application to diabetes BG
control is growing even more rapidly, as found in the literature pub-
lication dates, with only 2 publications before 2012 while 27 publica-
tions between 2012 and 2019. From those articles, 8 were published in
just the last year.

The initial search using title, keywords, and abstracts resulted in a
total of 404 articles. After removal of duplicates from the record, 347
articles remained for further analysis. An independent analysis and
screening of the records against our inclusion and exclusion criteria
resulted in removal of 296 articles, leaving 51 relevant articles. A full-
text assessment was conducted on the remaining relevant articles,
which resulted in 29 relevant articles that were critically analyzed as
shown in Fig. 4 below. The inter-rater agreement was measured using
Cohen Kappa test [15], and any differences were resolved through
discussion among the authors.

4.2. Evaluation of literature

The reviewed articles are evaluated, as described earlier, based on
the above predefined categories. The results obtained are showed below
in Table 1.

4.3. Data characteristics

4.3.1. Subjects
The reviewed articles are mainly based on real and in silico (si-

mulated) subjects for T1DM and/or T2DM, as shown in Table 1 above.
Almost all studies developed and tested algorithms for T1DM (82.75 %,
24/29), while only 2 studies (6.9 %) are based on T2DM, 2 other studies
(6.9 %) consider both types of diabetes, and 1 study (3.45 %) does not
specify the type of diabetes. Moreover, most of the studies (76.67 %,
23/30) have relied on in silico subjects and only 20 % of the studies (6/

Fig. 4. Flow diagram of the process.
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30) have tried to test the algorithm on real subject data sets, while the
remaining group (3.33 %, 1/30) relies on mixed data sets such as using
simulated BG and insulin along with real meal data sets.

4.3.2. Data sources
The reviewed articles have used various kinds of data sources for the

development of the control algorithm using RL, as shown in Table 2
below. Accordingly, the most used data source is the UVA/PADOVA
simulator [20] (35.48 %, 11/31) followed by the Bergman’s minimal
model [25] (12.90 %, 4/31), AIDA model [17] (12.90 %, 4/31) and
public available real datasets (12.90 %, 4/31). The third most used are
the Hovorka model [40] (6.45 %, 2/31) and combination of the
minimal model with part of the Hovorka model, one of them using
actual meal data (6.45 %, 2/31). The fourth most used data sources
includes, private datasets (3.23 %, 1/31), Palumbo model [28] (3.23 %,
1/31), real datasets from a clinical study (3.23 %, 1/31) and simulated
data generated by researchers (3.23 %, 1/31). The real datasets are
mainly from CGM (3.23 %, 1/31), insulin pump (9.68 %, 3/31), ac-
celerometer (3.23 %, 1/31), automatic electronic recording device
(3.23 %, 1/31), paper records (3.23 %, 1/31), multiple daily injections
(3.23 %, 1/31), and actual meal data records (3.23 %, 1/31).

4.3.3. Preprocessing
Preprocessing is a crucial component in RL strategies. In this regard,

extracting a range of glycemic features ranked as most used (40.63 %,
13/32) followed by the absence of a preprocessing stage (34.38 %, 11/
32), as shown in the Table 3 below. Bayesian active learning (BAL)
(9.37 %, 3/32) and sparsification (9.37 %, 3/32) are the third most
used techniques followed by Bayesian surprise (6.25 %, 2/32).

4.4. Reinforcement learning strategies

4.4.1. Class of reinforcement learning algorithms
There are various classes of RL algorithms such as AC learning, Q-

learning, Sarsa to mention a few. In this regard, the most popular RL
algorithms is found to be the AC learning (36.67 %, 11/30) followed by
Q-learning (10 %, 3/30) and Gaussian processes reinforcement learning
(GPRL) (10 %, 3/30), as shown in the Table 4 below. Sarsa (6.68 %, 2/
30) and dynamic programming (DP) (6.68 %, 2/30) are ranked as the
third most popular reinforcement learning algorithms followed by
Gaussian process dynamic programming (GPDP) (3.33 %, 1/30),
learning automaton (3.33 %, 1/30), V-learning (3.33 %, 1/30), model-
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Table 3
Preprocessing techniques used in the reviewed literature.

Preprocessing Count Percentages

Extracting a range of glycemic features 13 40.63 %
No preprocessing 11 34.38 %
BAL 3 9.37 %
Sparsification 3 9.37 %
Bayesian surprise 2 6.25 %

Table 2
Data sources used by the studies.

Data sources Count Percentages

UVA/PADOVA simulator 11 35.48 %
Bergman’s minimal model 4 12.90 %
AIDA model 4 12.90 %
Public available data set (Real data) 4 12.90 %
Hovorka model 2 6.45 %
Combination models 2 6.45 %
Palumbo model 1 3.23 %
Private data set (Real data) 1 3.23 %
Clinical study (Real data) 1 3.23 %
Simulated data generated by themselves 1 3.23 %
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free approximate/adaptive dynamic programming (ADP) algorithm
(3.33 %, 1/30), reinforcement-learning optimal control algorithm
(RLOC) (3.33 %, 1/30), linearly-solvable Markov decision process
(LSMDP) (3.33 %, 1/30), fitted Q-iteration (3.33 %, 1/30), reinforce-
ment learning with feedforward (RLFF) (3.33 %, 1/30), and deep Q-
network (DQN) (3.33 %, 1/30).

4.4.2. Reinforcement learning approaches
The approaches in RL in the reviewed literature could be roughly

categorized as tabular solution methods and approximate solution
methods. In this regard, as shown in Table 5 below, approximate so-
lution methods (73.33 %) are more popular than the tabular solution
methods (26.67 %).

4.5. Exploitation-exploration dilemma

In RL algorithm applications, exploitation-exploration dilemma is
one of the most important constituents of the design choices. In this
regard, Gaussian distribution function (24.25 %, 8/33) is the most
popular choice, as shown in Table 6 below. BAL (12.12 %, 4/33) and ε-
greedy policy (12.12 %, 4/33) are the second most important choices
followed by greedy policy (9.09 %, 3/33) and exploration noise (9.09
%, 3/33). Least squares algorithm (6.06 %, 2/33) and uniform dis-
tribution (UN) (6.06 %, 2/33), are the fourth most popular choices
followed by truncated gaussian (TG) (3.03 %, 1/33) and randomized

decision rule (3.03 %, 1/33). However, surprisingly (15.15 %, 5/33) of
the studies either did not report their choices or did not consider it at
all.

4.6. State and action spaces

The other most important constituents design choices of RL appli-
cations is defining the nature and parameters of the agent state and
action spaces. In this section, we will present the nature of the state and
action spaces along with their defining parameters.

4.6.1. State space
4.6.1.1. Nature of the state space. Based on the reviewed studies, the
nature of the state space could be grouped in two; continuous and
discrete state space. In this regard, most of the studies have relied on
continuous state space (73.33 %), as shown in Table 7 below.

4.6.1.2. State space defining parameters. Various key diabetes
parameters have been used to define the state spaces, as shown in
Table 8 below. Based on the reviewed studies, the most popular
parameter is BG level (43.34 %, 13/30) followed by BG level and
insulin dose (30 %, 9/30). BG level and carbohydrate (CHO) intake
(6.67 %, 2/30), and BG level and the interstitial insulin activity (6.67
%, 2/30) are the third most used parameters. The fourth most used
parameters include the following combinations:

• BG level, glucose absorption rate, measurement times during the
day, CHO intake and PA (3.33 %, 1/30).

• BG level, weight and PA (3.33 %, 1/30).
• BG level, PA and CHO intake (3.33 %, 1/30).
• Patient level variables, BG related variables, periodic vital signs and

laboratory values (3.33 %, 1/30).

4.6.2. Action space
4.6.2.1. Nature of the action space. As for the state spaces, the nature of
the action space is inline and could be grouped into continuous or
discrete as shown in Table 9 below. Accordingly, most of the studies
have relied on continuous action spaces (66.67 %, 20/30), while only
33.33 % of the studies have relied on a discrete space.

4.6.2.2. Action space defining parameters. Various action parameters
taken by the diabetes patients to manage his/her BG are considered
in the reviewed studies, as show in Table 10 below. In this regard,
insulin dose is the most popular action parameter used in the studies

Table 4
Class of reinforcement learning algorithms.

Class of reinforcement learning algorithms Count Percentages

AC learning 11 36.67 %
Q-learning 3 10 %
GPRL 3 10 %
Sarsa 2 6.68 %
DP 2 6.68 %
GPDP 1 3.33 %
Learning automaton 1 3.33 %
V-learning 1 3.33 %
ADP 1 3.33 %
RLOC 1 3.33 %
LSMDP 1 3.33 %
Fitted Q-iteration 1 3.33 %
RLFF 1 3.33 %
DQN 1 3.33 %

Table 5
Approaches to reinforcement learning for blood glucose control in diabetes
patient.

RL solution Count Percentages

Approximate Solution Methods 22 73.33 %
Tabular Solution Methods 8 26.67 %

Table 6
Various design choices towards exploitation-exploration dilemma.

Exploitation-exploration dilemma Count Percentages

Gaussian distribution 8 24.25 %
BAL 4 12.12 %
ε-greedy 4 12.12 %
Greedy policy 3 9.09 %
Exploration noise 3 9.09 %
Least squares algorithm 2 6.06 %
UN 2 6.06 %
TG 1 3.03 %
Randomized decision rule 1 3.03 %
Unspecified 5 15.15 %

Table 7
Nature of the state space.

State space nature Count Percentage

Continuous 22 73.33 %
Discrete 8 26.67 %

Table 8
State space defining parameters.

State space defining parameters Count Percentages

BG level 13 43.34 %
BG level and insulin dose 9 30 %
BG level and CHO intake 2 6.67 %
BG level and interstitial insulin activity 2 6.67 %
BG level, glucose absorption rate, measurement times

during the day, CHO intake and PA
1 3.33 %

BG level, weight and PA 1 3.33 %
BG level, PA and CHO intake 1 3.33 %
Patient level variables, BG related variables, periodic vital

signs and laboratory values
1 3.33 %
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followed by insulin dose, PA and food intake (3.23 %, 1/31) and
targeted BG level (3.23 %, 1/31).

4.7. Planning

Planning is another important constituent of the design choices in
the RL applications. Accordingly, based on the studied articles planning
approaches could be roughly categorized as model-based or model-free
approaches. In this regard, a model-free approach (79.31 %, 23/29) is
the most widely exploited approach in diabetes BG control algorithms,
as shown in the Table 11 below.

4.8. Generalization approaches

Generalization is a straight forward approach for high dimensional
and continuous state and action spaces in real world control tasks,
where a discrete representation is intractable. In this regard, the re-
viewed literatures have exploited various generalization approaches as
shown in Table 12 below. The most used generalization approach is
policy gradient method (11/24, 45.83 %) followed by nonparametric
regression (7/24, 29.16 %). Function approximation (3/24, 12.5 %) is
the third most used generalization approach. The fourth most used
generalization approaches include continuous action-set learning au-
tomata (CALA) (1/24, 4.17 %), tile-coding (1/24, 4.17 %), and mix
from policy gradient and function approximation (1/24, 4.17 %).

4.9. Performance metrics or evaluation criteria

Various kinds of evaluation criteria have been used to measure the
performance of the algorithm towards the specified goal as shown in
Table 13 below. In this regard, the most used approach is predefined

target ranges (14/36, 38.90 %) followed by comparison with reference
value (5/36, 13.89 %) and CVGA (4/36, 11.11 %). Low blood glucose
index (LBGI) (3/36, 8.33 %) is the fourth most used approaches fol-
lowed by on-line behavior monitoring (2/36, 5.55 %), high blood
glucose index (HBGI) (2/36, 5.55 %), and total daily insulin (TDI) (2/
36, 5.55 %). The sixth most used performance metrics are risk function
(1/36, 2.78 %), mean amplitude of glucose excursion (MAGE) (1/36,
2.78 %), optimal insulin treatment policy (1/36, 2.78 %) and ability to
reject the effect of meal disturbance and to overcome the variability in
the glucose-insulin dynamics from patient to patient (1/36, 2.78 %).

4.10. Model of optimal behavior

Another important constituent of reinforcement algorithm design
choices includes the description of model of optimal behavior, as shown
in Table 14 below. In this aspect, the reviewed papers mainly exploited
the IHD model (25/29, 86.20 %) and only (1/29, 3.45 %) used the AR
model. Surprisingly, (3/29, 10.35 %) have not stated anything related
to the optimal behavior model.

4.11. Reward function

The reward function is also among the crucial constituents of design
choices for a successful RL design. In this regard, choosing the reward
function relies on the expert designing and developing the algorithms.
As a result, the expert is free to choose the reward function based on the
specific task and objective he/she is in need of achieving. With the same
token, the reviewed studies have reported various types of reward
functions based on their nature and defining parameters of the state and
action spaces as shown in Table 15 below.

5. Discussion

Over the last decade, there has been an increase in the use of ML
techniques for diabetes management, which has meant important ad-
vances in this research area. Concretely, RL algorithms have arisen as a
competitive solution for BG control in diabetes patients during recent
years, especially in T1DM where its use is more extended. These algo-
rithms were applied on in-silico subjects in most cases. Clinical data is
usually hard to obtain because the patients have to collect carefully
their data and in addition, there are ethical issues related to the use of
such data. However, although the current situation could be marked by
the difficulties of obtaining real data from diabetic patients, there exists

Table 9
Nature of the action spaces.

Action Space Nature Count Percentage

Continuous 20 66.67 %
Discrete 10 33.33 %

Table 10
Action space defining parameters.

Action Space Parameters Count Percentage

Insulin dose 29 93.54%
Insulin dose, PA and food intake 1 3.23 %
Targeted BG level 1 3.23 %

Table 11
Planning approaches.

Planning Count Percentage

Model-free 23 79.31 %
Model-based 6 20.69%

Table 12
Generalization Approaches.

Generalization issues Count Percentages

Policy Gradient Method 11 45.83 %
Nonparametric regression 7 29.16 %
Function approximation 3 12.5 %
CALA 1 4.17 %
Tile-coding 1 4.17 %
Mix from Policy gradient and function approximation 1 4.17 %

Table 13
Performance metrics or evaluation approaches.

Performance metrics or evaluation criteria Count Percentages

Predefined target ranges 14 38.90 %
Comparison with reference value 5 13.89 %
CVGA 4 11.11 %
LBGI 3 8.33 %
HBGI 2 5.55 %
TDI 2 5.55 %
On-line behavior monitoring 2 5.55 %
Risk function 1 2.78 %
MAGE 1 2.78 %
Meal disturbance rejection and overcoming variability 1 2.78 %
Optimal insulin treatment policy 1 2.78 %

Table 14
Model of optimal behavior.

Model of optimal behavior Count Percentages

IHD model 25 86.20 %
AR model 1 3.45 %
Unspecified 3 10.35 %
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Table 15
Reward functions.

Reference Reward/Cost function Comments

[16]
= +r G t e r( ( )) 1 ; [ 1, 0]

G t GX
a

( ( ) )2

2 2
Gaussian reward function where:
G t( ) - Instantaneous reading from the glucose sensor
GX - Reference value of the glucose concentration
a - Width of the desired glucose band for normoglycemia

[18] =k
GA k GN

GA k
| ( ) |

( )
G k( )A - Actual BG level
GN - BG average normal value

[19] = +c x a F a F( )k h
k

l
k

1 2 Fk
1 and Fk

2 - Features describing the glycemic profile
ah and al - weights for scaling the hypo and hyperglycemia components

[21] N/A N/A
[22] Reward +1 if next BGL measurement is within a predefined range N/A

Penalty -1 if next BGL measurement is out of a predefined range
[23]

= +r G t e r( ( )) 1 ; [ 1, 0]
G t GX

a
( ( ) )2

2 2
Gaussian reward function where:
G t( ) - Instantaneous reading from the glucose sensor
GX - Reference value of the glucose concentration
a - Width of the desired glucose band for normoglycemia

[24] =r x a G( , ) |( 80)|t The reward is set equal to the difference of the glucose concentration from its target
value of 80 mg/dl. This value has been considered as a reference set point in
normoglycemic range of BG.

[26] N/A Function of the difference of the A1C from its target value 7.
[27] =r s a G t G t( , ) | ( ) ( )|t ref The reward is set equal to the difference of the plasma glycaemia signal from a

reference signal.
[29]

= <R t
a E t if G t G
a E t if G t G

otherwise
( )

( ) ( )
( ) ( )

0

h H

l L

ah - Hyperglycemia penalty
al - Hypoglycemia penalty

Where
=E t G t G( ) | ( ) |ref

GH - Hyperglycemia bound
GL - Hypoglycemia bound
E ( ) - Current error between the measured and the desired glucose concentration
value
Gref - reference glucose concentration value

[30] N/A The state is used by the algorithm for the estimation of the long-term expected costs
[31] = +l u q KL p u hx x x x x x( , ) ( ) ( ( | , ) || ( | ))p p p q x( ) - State cost

KL (• •) - Kullback–Leibler distance
p ux x( | , )p - Optimal actions under uncertainty
h x x( | ) - Passive system dynamics
x - Actual state
x - Next state
up - Control action

[32] = + + +l u hq KL p px x x x x x( , ) ( ) ( ( | ) || ( | ))u k k k k1 0 1 q x( ) - State cost
KL (• •) - Kullback–Leibler distance

+p x x( | )u k k1 - Controlled diffusion process

+p x x( | )k k0 1 - Passive dynamics
xk - State at time k

+xk 1 - State at time k + 1
u - Control action

[33]
= +g G e g( ) 1 ; [ 1, 0]t

Gt G
a

( )2

2 2
Gaussian reward function where:
Gt - Instantaneous reading from the glucose sensor
G - Reference value of the glucose concentration
a - Width of the desired glucose band for normoglycemia

[34] = +c x a x a x( )k h k l k
1 2 xk

1 and xk
2 - Features describing the glycemic profile

ah and al - weights for scaling the hypo and hyperglycemia components
[35] =r g r g r g( ) ( ) ( )l n Heuristically defined. Positive rewards are obtained for the healthiest states and

negative rewards are obtained at undesired BG levels.

=r g( ) 1l gl glh
gl glL

| |

1
gl - BGL-state

= <r g I( ) 1n gl glLc
gl glLc

glLc

glh - Most healthy BGL
I - Standard indicator function

[36] Mean-reward (Sarsa):

=+
+

+
Rt

t
t score BG d

t t1
1 ( )

1

They define a score function that matched their objectives. This function penalizes
when glucose level is out of the ideal range (4−8 mmol/L).

Cumulative-reward (Actor-Critic):
=+

+ +R score BG d( )t t
t

1
1

[37] Weighted sum of glycaemic events (hypo- and hyperglycaemic episodes) over
the 60 minutes preceding and following time t .

Weights are:
−3 when glucose ≤ 70 (hypoglycemic)
−2 when glucose > 150 (hyperglycemic)
−1 when 70 < glucose ≤ 80 or 120 < glucose ≤ 150 (borderline hypo- and
hyperglycemic)
0 when 80 < glucose ≤ 120 (normal glycaemia)

[38] = +J G u d( )0
2 2 G - BG concentration

u - Infusion rate of the insulin pump
> 0 and > 0 - Weighting constants

(continued on next page)
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a need to move the studies from simulated data to clinical data in order
to facilitate the validation of the algorithms. Regarding the source of
these data, most of the studies relies on the in-silico patient cohort
provided by UVA/PADOVA simulator [20] to evaluate the algorithms.
The main reason for this is presumably that it is the only in-silico dia-
betes model accepted by the FDA as a substitute for pre-clinical animal
testing of new treatment strategies for T1DM, which is the prelude to
the clinical studies on humans. This simulator is followed by AIDA and
Bergman’s minimal models [17,25], which are the second most
common option, probably because these are simple models and for this
reason it is easier to work with them. For example, Bergman’s minimal
model does not present any delay in insulin action, which fits better
with the RL framework. Once again, the lack of real data sets is evident
and so is the validation of the problem since we only found one clinical
study in the literature [18]. After obtaining the data, preprocessing is
performed to extract a range of glycemic features, which in some of the
studies is used to establish different glycemic ranges in order to dis-
cretize the state space [22,24,26]. However, studies using raw BG levels
also occurs frequently. Other techniques such as BAL, which samples
only relevant data, and sparsification, which determines whether ar-
riving data provide valuable information are interesting options in fu-
ture research [16].

Moving the discussion to the RL framework, we can find two dif-
ferent solutions: tabular methods and approximate methods, the latter
being most used for this BG control problem. Tabular methods are used
to face problems with small state and action spaces, while approximate
methods are well-suited to problems with large state and action spaces.
Since current BG control research is focused on developing the AP,
which includes the use of a CGM and insulin pump that generate con-
tinuous blood glucose measurements and continuous insulin infusion,
we found that we are facing continuous spaces and therefore approx-
imate solutions fit well given the nature of the problem. Moreover, in
scenarios with continuous or large discrete state and action spaces we
need to use generalization techniques to learn information and transfer
knowledge between similar states and actions, since in a large and
smooth state space we generally expect similar states to have similar
values and similar optimal actions [51]. In this regard, we found in the
literature that the most used generalization technique is policy gradient
method, characterized by learning a parametrized policy that does not

use the value function to select actions [14]. Another much used gen-
eralization technique is GP regression, which is an interpolation
method with the interpolated values modeled by a GP governed by
prior covariances. Further information about GP in ML can be found in
[52].

Among the RL algorithms analyzed during this review, AC methods
are most used. These algorithms produce an approximate solution
based on policy gradient methods that learn a parametrized policy in-
stead of learning which action is better in each state. Therefore, action-
value functions are not directly used by these methods to select actions
[14]. Regarding tabular methods Q-learning is the most used approach,
which is an off-policy temporal-difference control algorithm in which
the learned action-value function directly approximates the optimal
action-value function [14]. During a temporal-difference learning pro-
cess, previous predictions are used as a targets for next predictions in
order to solve the prediction problem [36]. Furthermore, most of those
algorithms found in the literature are on-policy methods that evaluate
the same policy that is used to make decisions. Otherwise, off-policy
methods evaluate a policy which is different than the policy used to
obtain the data. Moreover, although in most of the literature learning
method information is not included, we found more cases based on on-
line learning, in which learning is performed as the data is coming in,
than on off-line learning where there is a static dataset. It is worth
mentioning articles in which a policy is learning off-line in a first stage
using stored data, and then this policy is adapted on-line for the patient
[16,29,33]. Finally, most of the articles in the literature use the IHD
model to decide how the future is considered in the actions made by the
agent about how to behave in the current time step. These are typical
situations in mHealth applications, in which we usually have an on-line
estimation of optimal treatment strategies as data continuously accu-
mulate, as well as no definite time horizon taking into account the long-
run reward of the agent [37]. This scenario is reflected in the BG control
task, where a CGM yields a continuous flux of BG measurements.

Further comparison between different RL algorithms is performed in
[36], were policy gradient and tabular methods are compared. In this
paper, AC algorithm shows better performance than sarsa. This is be-
cause sarsa starts completely from scratch, while AC starts from a
reasonable policy from which knows its structure. Furthermore, we are
trying to face a continuous action task and sarsa is designed for discrete

Table 15 (continued)

Reference Reward/Cost function Comments

[39] = +xc a x a x( )t h t l t
1 2 xt

1 and xt
2 - Features describing the glycemic profile

ah and al - weights for scaling the hypo and hyperglycemia components
[41] 90-day mortality status: N/A

+100 for patients who survived 90 days after their admission
−100 for those who were deceased before 90 days after their admission

[42] = +r u Rux Qxk
k
T

k k
T

k x - State of the model formed by BG level and interstitial insulin activity
u - Insulin dose
Q and R - Weighting factors

[43] = +r g| 90|i i 1
gi - Plasma glucose value
90 mg/dl =5 mmol/L is taken as the optimal blood glucose level

[44] = ++r u Rux Qxk k
T

k k
T

k1 x - State of the model formed by BG level and interstitial insulin activity
u - Insulin dose
Q and R - Weighting factors

[45] = +R risk risk(b ) (b )t t1 Where risk is the asymmetric blood glucose risk function defined as:
=risk b b( ) 10 *(1.509 * log( ) 5.381)1.084

bt - Blood glucose value
[47] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
[48] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
[49] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
[50] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
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action space, while AC is designed for continuous action space [36].
This paper also compares traditional supervised learning with RL
methods. In this regard, RL does not require any knowledge on the
parameters of the policy, but supervised learning needs this informa-
tion. Moreover, supervised learning needs shorter training period than
RL because of the generalization ability of the former. However, RL
algorithms continuously learn from new data, while supervised learning
does not adjust to the patient after the training period, loosing this extra
information. Therefore, glucose pattern in diabetes keeps changing and
RL methods can adapt to this change, but supervised learning algo-
rithms cannot [53].

Proportional-integral-derivative control algorithm and self-man-
aged control by the patient are compared with RL methods in [45].
From this study, RL algorithms were able to outperform traditional
approaches under certain circumstances, although they do not outper-
form the proportional-integral-derivative controller across all settings
[45]. This kind of control algorithms are considered one of the most
used techniques in the AP framework [54]. Moreover, the impact of
errors in CHO estimation is analyzed in [49]. This paper tests the per-
formance of proportional-integral-derivative controller, bolus calcu-
lator [55] and RL algorithm under different CHO estimation error le-
vels. In this work, RL algorithm outperforms traditional approaches,
achieving stable blood glucose control performance under all different
conditions. Furthermore, categorical CHO announcement using three
different levels (small, medium, and large) has low or no impact on the
blood glucose control when errors in CHO estimation are lower than ±
25 %, indicating that the algorithms do not need accurate meal an-
nouncements [49].

The trade-off between exploration and exploitation is one of the
unique characteristics that differentiate the RL algorithms from others
ML approaches. Therefore, how to perform it is one of the choices we
must make when we are going to implement a RL algorithm. However,
we extracted from the results that in many cases this issue is not de-
fined. This is because in most of that cases AC algorithms and therefore
policy gradient methods are used, and for these algorithms we only
generally require that the policy never becomes deterministic in order
to ensure the exploration [14]. Therefore, in practice it is enough to
choose a stochastic policy to solve the exploration-exploitation di-
lemma, and in some of these studies those policies are not specified.
Moreover, we found that Gaussian distribution functions are very fre-
quently used to deal with this issue. It is worth mentioning the use of ε-
greedy exploration, since it is a really simple method in which instead
of taking in each state always the action with greatest value, we choose
from time to time a random action with small probability ε in order to
ensure the exploration.

Another of the most important choices we must take during RL al-
gorithm implementation is the definition of the state and action spaces.
First of all, we found that most of these spaces are defined as con-
tinuous. As we mentioned above, this is because of the nature of the
problem, in which we expected to have continuous BG measurements
and continuous insulin infusion rate. Accordingly, in the BG control
problem we will always have at least two information sources: BG level
and insulin doses. Therefore, it is natural in the RL framework to relate
that information with the states and actions respectively. There are
various definitions of the state space in the reviewed literatures, all of
them somehow related to the BG level. Concretely, most of the authors
define the state space based only on the BG level, followed by these
studies in which the states take into account not only the BG level, but
also the insulin doses. Regarding the action space, there is only one
study in which the actions are not based on the insulin doses [41]. In
this paper, the authors take the actions choosing the best glycemic
target under different circumstances, leaving the choice of agents and
doses to achieve that target to the clinicians. It is worth to mention two
articles in which not only the quantity of insulin is used as an action,
but also the kind of insulin used [22], such us short-acting, inter-
mediate-acting or long-acting, and even a combination of those

different insulins [35]. However, several additional factors affect the
BG level such us CHO intake, PA, stress level, infections, etc [56]. This
means that the use of this information is useful in order to face the BG
control problem, so we expected to find this data as part of the state and
action spaces. However, there are few papers in which for example CHO
intakes and PA are included in the state space, although this informa-
tion is really relevant for the algorithm and facilitates its operation.
Furthermore, there is a lack of automatic CHO recording since in those
cases this task relies on manual recording. In order to reduce the burden
on the patient, as well as increase the objectivity during the control
task, the combination of RL algorithms with meal detection algorithms
such as [57,58] could be part of future perspectives in order to work in
a fully closed-loop system. Concerning the action space, we found that
despite the importance of the PA and CHO intakes, there is only one
paper in the literature in which this value information is indeed taking
into account as part of the actions [37]. This action space is formed by a
hypothetical mHealth intervention where insulin injections are ad-
ministered using an insulin pump while suggestions for food intake and
PA are administered using a mobile app, considering all possible
combinations of insulin injection, food intake, and PA.

The model of the environment is another element of model-based RL
systems. The models are used for planning or predicting the next state
and the next reward. In this stage we have to decide if we want to use a
model-based method or a model-free method in which the learner be-
havior is based on trial and error. What we found here is that most of
the authors based their algorithms on model-free methods. It can be
explained by the fact that it is difficult to obtain realistic metabolic
models for a real person. Furthermore, it is expected that RL algorithms
becomes a personalized solution learning from the real patient, and
each person presents different characteristics due to the inter- and intra-
subject variability of insulin absorption and insulin action [59].

Finally, the choice of a good reward function is crucial for the
correct performance of the algorithm. This is the way we have to
communicate to the agent what we want to achieve, thereby defining
the goal in the RL problem [14]. Therefore, in our BG control problem,
the reward function should reflect our desire to stay inside the normal
glycemic range. In general, these may be stochastic functions of the
state of the environment and the actions taken. Since the reward
function is freely defined by the authors, in this category we found very
varied reward functions as we can see in Table 15. In general terms, we
found that most of reward functions are related with the BG level in
some way and consequently with the state of the environment. There is
only one case that does not take into account the BG level [41]. This is
because the study is focused on severely ill septic patients and in this
situation the survival of patients is the main objective of clinicians for
critical care. It is also common to find some reference values related to
normal, hyper and hypoglycemia ranges in order to establish good re-
wards and penalties. However, we found that only five papers include
the actions taken in the reward function [31,32,38,42,44]. We think it
could be interesting to also consider the insulin doses in the reward
function, which for example can lead to take less aggressive actions for
the patients. The success of a RL application strongly depends on how
well the reward function frames the goal of the application's designer
and how well the function assesses progress in reaching that goal [14].

In order to measure the performance of these algorithms, the authors
usually predefine target ranges since in the BG control problem we aim to
spend as much time as possible in normal glycemia, which is between 70
and 130 mg/dl with a mean normal value of 100 mg/dl. This means that in
this task it is quite easy to establish desired ranges and reference values.
Another quite common technique to evaluate the efficacy of the glucose
regulation algorithms is the CVGA, which shows the glucose excursions
caused by a control algorithm in a group of patients, providing a summary
of the quality of glycemic regulation for a population of subjects [60]. This
method is complementary to the low blood glucose indices (LBGI) mea-
surement, which characterize a single glucose trajectory for a single pa-
tient and is used to estimate the risk of hypoglycemia [61].
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6. Conclusion

Recent research in diabetes area has produced new advances and
technologies such as sensors, new insulins, monitoring devices, etc. On
the one hand these discoveries facilitate the adoption of new techniques
such as ML methods and the idea of the AP, but on the other hand the
problem becomes more complex. At this point, RL algorithms emerge as
a smart, personalized and optimal solution to calculate insulin delivery.
In this regard, it is worth to mention this recent patent related to esti-
mate insulin dose based on RL [62], and this patent that uses RL
combined with neural network to optimize patient treatment re-
commendations [63], in which diabetes is used as a practical example
of application. However, RL is still a recent approach in the diabetes
area and there are few papers which explicitly use this class of algo-
rithms in the BG control problem. For such purpose, we expected to find
a model-free RL algorithm based on an approximate solution method,
using continuous state an action spaces, learning on-line and following
the IHD model, some of them being typical characteristics of mHealth
systems. This is because of the nature of the problem, in which we
continuously expect to receive BG measurements from a CGM in-
definitely and learning according to the data is obtained, while at the
end stage we are not able to know the model of the patient. Those
expected features perfectly match with the trends we found in the lit-
erature during this systematic review.

Moreover, despite several factors, such as CHO intakes, PA, infec-
tions, or stress level, influence the BG, there are few papers in the re-
viewed literature which include these factors in the state and action
spaces. This is, in particular, the case if we talk about the action space
where there is only one study that considers PA and food intakes as part
of the possible actions [37]. Therefore, we consider inclusion of some of
these factors in the BG control problem to be a very important future
research direction. For example, it would be possible to use meal de-
tection [57,58] or CHO counting algorithms [64] to include the food
intake information as a part of the state and action spaces. Another
option could be a sensor mounted on a tooth transmitting information
on glucose intake [65]. Moreover, nowadays the use of mobile devices
and other wearables is quite common, therefore the inclusion of the PA
in the state and action spaces would be really easy. This would allow
the creation of a mHealth system for self-management diabetes con-
trolled by a mobile app [66], in which BG level, insulin doses, food
intake and PA are combined to deal with the BG control problem.
However, although the inclusion of that additional information would
be easy, the difficulties come with how such information can be cor-
rectly used by the RL algorithm, which in our opinion is the next
challenge developers have to overcome to obtain a fully closed-loop AP
system. In addition to the integration of additional systems for the es-
timation of the accurate CHO intake during meals as well as PA, an
early warning system in order to forecast and predict hyper/hypogly-
cemic events would be extremely valuable [67].

Furthermore, to perform evaluation experiments on diabetic pa-
tients may be neither possible, appropriate, convenient nor desirable,
since some of these experiments cannot be done at all or are too diffi-
cult, dangerous and not ethical [68]. Moreover, different countries have
different execution procedures and regulatory conditions. For this
reason, simulators are really necessary in order to deal with the dia-
betes framework, because these allow us to design, evaluate and verify
the effectiveness of the BG controller before clinical tests. This is par-
ticularly important in the case of RL, where a continuous interaction
with the patient is needed in order to learn the correct amount of in-
sulin for each situation. However, there exist few papers in the litera-
ture using real data, therefore it is necessary to obtain and use more
clinical data in order to clinically validate the algorithms.

Finally, traditional RL algorithms requires carefully chosen feature
representations. Therefore, it would be interesting to test other RL ap-
proaches such us deep reinforcement learning [45], in which deep
learning is used for learning feature representations, that in the

traditional framework are usually hand-engineered [69]. Another pos-
sibility would be to combine supervised learning with RL, since the
latter requires an extensive amount of training data in order to con-
verge to a meaningful solution, restricting its usage for complex input
spaces [70]. In such scenarios, it would be possible to learn from the
past historical records of the subject BG level before start to learn di-
rectly from the patient, accelerating convergence and reducing the
amount of time needed by the controller to stay in normoglycemic
range, thereby facilitating clinical trials. Other approaches have been
used in the literature for that purpose, for example [21,30,34,47] and
[49] use transfer entropy to automatically initialize the control algo-
rithm in a personalized fashion, providing faster learning rate. This
method is a measurement of the information transfer between insulin
and glucose signals, with promising application in biomedical signal
analysis [71].
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