
Knowledge-Based Systems 190 (2020) 105290

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Adaptive early classification of temporal sequences using deep
reinforcement learning✩

Coralie Martinez a,∗, Emmanuel Ramasso b, Guillaume Perrin a, Michèle Rombaut c

a bioMérieux, Marcy l’Etoile, France
b FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, Besançon, France
c Grenoble Institute of Engineering Univ. Grenoble Alpes, GIPSA-Lab, Grenoble, France

a r t i c l e i n f o

Article history:
Received 1 March 2019
Received in revised form19 September 2019
Accepted 27 November 2019
Available online 29 November 2019

Keywords:
Early classification
Adaptive prediction time
Deep reinforcement learning
Temporal sequences
Double DQN
Trade-off between accuracy vs. speed

a b s t r a c t

In this article, we address the problem of early classification (EC) of temporal sequences with adaptive
prediction times. We frame EC as a sequential decision making problem and we define a partially
observable Markov decision process (POMDP) fitting the competitive objectives of classification
earliness and accuracy. We solve the POMDP by training an agent for EC with deep reinforcement
learning (DRL). The agent learns to make adaptive decisions between classifying incomplete sequences
now or delaying its prediction to gather more measurements. We adapt an existing DRL algorithm for
batch and online learning of the agent’s action value function with a deep neural network. We propose
strategies of prioritized sampling, prioritized storing and random episode initialization to address the
fact that the agent’s memory is unbalanced due to (1): all but one of its actions terminate the process
and thus (2): actions of classification are less frequent than the action of delay. In experiments, we
show improvements in accuracy induced by our specific adaptation of the algorithm used for online
learning of the agent’s action value function. Moreover, we compare two definitions of the POMDP
based on delay reward shaping against reward discounting. Finally, we demonstrate that a static naive
deep neural network, i.e. trained to classify at static times, is less efficient in terms of accuracy against
speed than the equivalent network trained with adaptive decision making capabilities.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Early classification (EC) of temporal sequences with measure-
ments collected dynamically over time is of prime importance
in time-sensitive applications. When each measurement can be
costly or when it is critical to act as early as possible, there
is a need for methods to make fast online predictions. This is
for example the case in the field of health, where it is neces-
sary to provide a medical diagnosis as soon as possible from
the sequence of medical observations collected over time. An-
other example is predictive maintenance with the objective to
anticipate a machine’s breakdown from its sensor signals.

Taking into consideration that some incomplete sequences can
be classified using fewer measurements than more complex ones,

✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.
2019.105290.

∗ Corresponding author.
E-mail addresses: martinezcoralie.mc@gmail.com (C. Martinez),

emmanuel.ramasso@univ-fcomte.fr (E. Ramasso),
guillaume.perrin@biomerieux.com (G. Perrin),
michele.rombaut@gipsa-lab.grenoble-inp.fr (M. Rombaut).

an EC method should make decisions with adaptive prediction
time. It should adaptively decide to classify an incoming yet
incomplete sequence now or to delay the prediction to gather
more measurements. The method should balance its decision
between two competitive objectives: classification earliness and
accuracy.

1.1. Related work

As opposed to static data, temporal sequences are dynamic
data that can be sequentially completed with new measurements
over time. In the literature, classification on other types of dy-
namic data has been proposed by several authors which turned
this problem as a sequential decision problem.

Formulated as ‘‘learning when to stop thinking and do some-
thing’’ in [1], this problem was tackled by reinforcement learning
(RL). The authors were interested in ‘‘anytime algorithms’’ that
can be interrupted at any time and for which we assume that the
longer they ‘‘think’’, the better the quality of their response. In
particular, the authors seek to build a policy that decides if an
anytime algorithm should continue thinking or if it should return
its current best answer. Their approach is policy-gradient-based
and uses REINFORCE algorithm from [2].

https://doi.org/10.1016/j.knosys.2019.105290
0950-7051/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2019.105290
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.105290&domain=pdf
https://doi.org/10.1016/j.knosys.2019.105290
https://doi.org/10.1016/j.knosys.2019.105290
mailto:martinezcoralie.mc@gmail.com
mailto:emmanuel.ramasso@univ-fcomte.fr
mailto:guillaume.perrin@biomerieux.com
mailto:michele.rombaut@gipsa-lab.grenoble-inp.fr
https://doi.org/10.1016/j.knosys.2019.105290

2 C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290

In [3], a Markov decision process (MDP) is formulated for the
problem of text classification for which it is not always neces-
sary to read an entire document to classify its content. By RL
using approximate policy iteration, the authors propose a method
that either continues reading a document sentence by sentence,
or classifies it (using a support vector machine). Their method
is shown to better accomodate to small training datasets than
standard non-sequential classifiers.

The approach proposed in [3], working on a single feature (the
sentence), was extended to multiple features by the same authors
in [4]. The key idea is that some data points can easily be classi-
fied using few features while others would require more features
to achieve an accurate classification. This can be of practical inter-
est in various domains. In medicine for example, online symptom
checking for disease diagnosis requires such an algorithm to find
key positive symptoms. REFUEL algorithm proposed in [5] is a
policy-based method using REINFORCE which encourages a RL
agent to discover positive symptoms more quickly. The authors
incorporated a potential-based reward shaping in order to adapt
the reward according to the observations collected by the agent
before and after making an action.

The problem of costly feature acquisition in the medical do-
main was also addressed in [6] who proposed to optimize the
trade-off between classification accuracy and the total feature
cost with deep reinforcement learning (DRL) based on Dou-
ble Deep-Q-Network (DDQN) algorithm from [7]. The authors
demonstrated the capability of their algorithm to solve binary
classification problems efficiently.

The trade-off between classification accuracy and the predic-
tion time is also of paramount importance in EC applications.
Also called early prediction, this problem has been solved us-
ing sequential decision methods by various non-DRL approaches
in [8–13].

We proposed in [14] a recent previous work on a DRL ap-
proach using online Deep-Q-Network (DQN) algorithm for the
multi-class EC problem. Compared to standard EC approaches,
this approach offers an end-to-end learning of both the features
in the sequences and the decision rules. The end-user thus does
not need to perform feature engineering. The simultaneous op-
timization of both classification accuracy and earliness relies on
a trade-off specified by the user in terms of a reward function
dedicated to the EC problem.

The framework proposed in [14] applies DQN algorithm in its
original form, i.e. in online learning with successive repetitions of
(1) interaction collection between the agent and the environment,
and its storing in the agent’s memory, and (2) update of the
agent’s policy. It makes the agent’s memory unbalanced. Indeed,
after each acquisition of a new measurement, the agent can either
predict a label or wait for more data. For a classification decision
at time k, the agent collected k measurements in the sequence
and the memory has been filled with k − 1 delay actions against
one classification action. The delay action is over-represented.
Moreover, since most actions terminate the acquisition process, it
is generally unlikely for the agent to reach the end of a sequence.
Early prediction times are over-represented as well. The unbal-
anced memory in both prediction times and actions can lead the
agent to learn on sub-optimal interactions and disturb or slow
down its overall training.

1.2. Contributions

The contributions we detail in the present paper are the fol-
lowing.

(1) We frame EC as a POMDP fitting the two competitive objec-
tives of classification earliness and accuracy. We experimentally
compare two definitions of the POMDP based on delay reward
shaping against reward discounting.

(2) In order to solve the POMDP and train an EC agent, we
adapt DDQN algorithm from [7] in two versions, online learning
and batch learning, depending on whether the EC application
comes with a finite training dataset or can collect new training
data over time.

We introduce three modifications to cope with the afore-
mentioned unbalanced memory issue. The modifications are the
following: we make use of an adapted prioritized sampling and
prioritized storing when performing experience replay and we
simply redefine episode initialization.

We experimentally show that these modifications improve the
agent’s training in terms of accuracy against speed and make the
proposed algorithm more robust to hyper-parameters setting.

(3) In experiments, we demonstrate that static naive deep
neural networks trained to classify at static times are less efficient
in terms of accuracy against speed than equivalent networks
trained with RL and benefiting from decision making capabilities
on adaptive prediction times.

The remainder of the paper is organized as follows. Section 2
gives background knowledge of RL terminologies and algorithms.
In Section 3, we define the EC problem. Sections 4 and 5 introduce
the method by defining and solving a partially observable Markov
decision process dedicated to EC. In Section 6, we carry out
experimental evaluations on the method. Section 7 concludes the
paper.

2. Background of deep reinforcement learning

2.1. Reinforcement learning

In RL, the objective is to solve a decision making process char-
acterized by an agent interacting in an unknown environment
through trial and error. In each state s from the state space S ,
the agent can pick some action a in the set of possible actions
A. The choice of action a is dictated by its policy π such that
a = π (s). As a response, the agent receives a reward r = R(s, a)
and moves toward next state s′ = T (s, a) with R the reward
function from the environment and T its transition model. The
interactions ⟨s, a, r, s′⟩ between the agent and the environment
go on until the agent reaches a terminal state leading to the end
of an episode.

At all time steps t ∈ N+, the agent seeks to choose ac-
tions leading to maximal return defined as the sum of future
discounted rewards

∑
∞

k=0 γ krt+k. γ ∈ [0, 1] is a discount fac-
tor valuing immediate rewards rather than future rewards. The
optimal policy π∗ leads to the maximal return.

State value. The value of a state s ∈ S is defined as the ex-
pectation of return the agent can hope to get starting from that
particular state s and following its policy π .

Vπ (s) = Eπ [

∞∑
k=0

γ krt+k|st = s]

Action value. The action value (or Q-value) of a state s ∈ S
conditioned on an action a is defined as the expectation of return
the agent can hope to get by picking action a in state s and then
following its policy π .

Qπ (s, a) = Eπ [

∞∑
k=0

γ krt+k|st = s, at = a]

Bellman equation allows to decompose the action value as the
sum of immediate reward plus discounted action value of the
following state.

Qπ (s, a) = Eπ [rt + γQπ (st+1, at+1)|st = s, at = a]

C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290 3

If the optimal action value function defined as Q ∗(s, a) = maxπ

Qπ (s, a) is known, then an optimal policy can be inferred by acting
greedily over the Q-function such that π∗(s) = argmaxa Q ∗(s, a).

To find an optimal policy, we can use two families of meth-
ods [15]: policy-based methods approximate the policy function
π directly while value-based methods approximate the action
value function Qπ (s, a) and act greedily over it to derive the
policy.

2.2. Deep-Q-Network

In [16], the authors seek to approximate the optimal action
value function Q ∗ by a deep neural network Q (s, a, Θ) with
parameters Θ . Through a gradient descent on mini-batches of
interactions {⟨s, a, r, s′⟩} and using Bellman equation, the DQN
algorithm minimizes the loss function from Eq. (1) using two
strategies:

L(Θ) = (r + γ argmax
a

Q (s′, a, Θ−) − Q (s, a, Θ))2 (1)

• Experience replay allows to sample mini-batches of past
interactions {⟨s, a, r, s′⟩} from a replay memory to perform
stochastic gradient descent. Samples within a batch are
likely to come from independent or remote interactions
further reducing correlations in the neural network updates
than the original Q-learning algorithm.

• Q-learning targets are computed with a separate Q-network
Q (s, a, Θ−) whose parameters Θ− are updated periodically
to remove correlations and improve convergence of the
algorithm.

Double Deep-Q-Network. In order to overcome DQN overestima-
tions of the action values, the authors in [7] introduce DDQN
algorithm and modify the loss function to optimize in Eq. (2).

L(Θ) = (r + γQ (s′, argmax
a

Q (s′, a, Θ), Θ−) − Q (s, a, Θ))2 (2)

3. Problem definition

Let X = (x1, . . . , xT) ∈ Rp×T be a temporal sequence with
maximal length T ∈ N+. At each time step t ∈ [1, T], the
measurement xt is a vector of p ∈ N+ features. When the
temporal sequence is not fully acquired, we say that we observe
a partial temporal sequence X:t = (x1, . . . , xt) ∈ Rp×t with t ≤ T .
We suppose we have a training dataset D = {(X j, lj)}j=1..n with
n pairs of complete temporal sequences X and their associated
label l ∈ L, with L the set of labels.

Classification. A (static) classifier is a mathematical function fclassif
mapping from a temporal sequence X to its label l such that
fclassif : {X} → L.

Early classification. We define an early classifier as a mathemati-
cal function fearly mapping from a temporal sequence X to a label
l and predicting the optimal earliest time step t∗ ∈ [1, T] to
perform classification, such that fearly : {X} → L × [1, T]. The
early classifier seeks to optimize the two competing scores of
classification accuracy and earliness:

t∗ = argmax
t∈[1,T]

Acc(fearly(X:t), l) + Earliness(t)

These two objectives are often competitive since for two time
steps t1, t2 ∈ [1, T], an earlier time step t1 < t2 gets a larger score
of Earliness while its score of Acc can decrease due to the lack of
information in Xt1 in comparison to Xt2 .

4. Early classification as a partially observable Markov deci-
sion process

We defined an early classifier as a model mapping from a
temporal sequence X to a label l and predicting the optimal
earliest time step t∗ ∈ [1, T] to perform classification. In real-
life applications, we do not observe the complete sequence X
but rather sequentially collect new measurements xt ∈ Rp at
each time step t ∈ [1, T]. We focus on applications which do
not seek to directly predict optimal time step t∗ ∈ [1, T] for
classification but rather decide online, at each time step t , to
perform classification on the partial sequence X:t or to delay
classification in order to get additional measurements.

To move closer to this objective, we frame EC as a sequential
decision making problem represented by a POMDP. We define the
POMDP by the tuple {S,A, T , R,O, γ } where S is the state space,
A is the action space, T is the transition model, R is the reward
function, O is the observation space and γ is the discount factor.
Each element of the tuple is introduced below.

Agent. The mathematical function for EC that we seek to opti-
mize becomes the policy of an agent which will interact and train
within the POMDP.

States. S is the state space. A state s ∈ S is characterized by the
tuple s = (X, l, t) with (X, l) ∈ D a pair of complete temporal
sequence X and its associated label l from the training dataset
and with t ∈ [1, T] the number of time steps observed in the
sequence. Since the objective is to predict labels l ∈ L as early
as possible, in real-life applications we do not have access to the
full state information. The label and future measurements are
unknown and the Markov decision process is said to be partially
observable. Such models assume that we cannot directly observe
the underlying state but instead receive an incomplete or noisy
observation of that state.

Observations. O is the observation space. An observation o of a
state s = (X, l, t) is the partial sequence of measurements from
X collected until time t such that o = X:t .

Actions. A is the action space: A = Ac ∪ ad, with ad the action
of delaying the prediction and with Ac the set of classification
actions: Ac = L.

Dynamics. T : S × A −→ S is the transition model. In real-life
EC applications, the acquisition of observations is often costly and
has to be shortened as much as possible. Once the system decides
to perform classification, observations are no longer collected.
The transition model T is defined by:

T ((X, l, t), a) =

{
terminal if {a ∈ Ac} ∪ {a = ad ∩ t = T }

(X, l, t + 1) if a = ad

Rewards. R : S × A −→ R is the reward function. Let R(s, a) be
the reward for taking action a in state s. Rewards should encode
the objective we want the model to reach, specifically earliness
and accuracy in the EC problem.

We choose to reward classification actions according to the
accuracy of the predicted label. When the predicted label matches
the reference label, we give a positive reward R((X, l, t), a = l) =

+1. On the contrary when the predicted label differs from the
reference label, we give a negative reward R((X, l, t), a ̸= l) = −1.

We point out that an objective can be encoded by several
reward functions. For a same objective of fast prediction using
as few features as possible, the agent is rewarded positively with
a score +1 if the classification is correct in [5] while it receives
null reward for correction classification and negative rewards for
incorrect classifications in [6].

4 C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290

To encode the objective of earliness, the following strategies
are possible:

• We could reward the agent based on classification actions
only and use a discount factor γ < 1 to motivate the agent
to get early rewards. The reward function is then defined by

R((X, l, t), a) ↦−→

{
+1 if a ∈ Ac and a = l
−1 if a ∈ Ac and a ̸= l
0 if a = ad

• Or we could shape the rewards for delay with a score
depending on time. If the rewards for delay are given all at
once at the time of classification, the agent will get sparse
rewards which are often difficult to train on as explained
in [15]. To avoid sparse rewards, the agent will be given
negative rewards at each decision of delay instead of a single
reward at the end of delay: R((X, l, t), ad) = −λ × c(t)
with c : [0, T] → R+ the cost function of delaying the
prediction at time t , a monotonic non-decreasing function
of time. λ ∈ R+ is a parameter setting the trade-off be-
tween the two objectives. The more important earliness is
in comparison to accuracy, the larger λ should be. The will
to compromise is application-dependent and the user can
set λ to his preference.
We want the penalization for delay to take into account the
amount of information the agent has collected so far. The
idea is that the more observations and knowledge the agent
has about the sequence, the worst it is to delay. We want a
penalty increasing in time t , in the form of κ t with κ > 1.
We normalize the reward function for delay so that it is
bounded independently of the sequence maximal length T .
The reward function is then defined by:

R((X, l, t), a) ↦−→

⎧⎨⎩+1 if a ∈ Ac and a = l
−1 if a ∈ Ac and a ̸= l
−λ ∗ κ t/(κT

− 1) if a = ad

If available, including domain knowledge into the reward
function can guide the agent towards a better or faster learning.

Discount factor. γ ∈ [0, 1] is the discount factor. When γ < 1,
rewards are discounted and more importance is given to immedi-
ate rewards. For episodic environments with short horizons, the
cumulative reward is finite and γ can be set to 1. Environments
for EC have horizon of size T which is the maximal length of
sequences.

4.1. POMDP models

We define two models of POMDP for EC, based on delay
reward shaping or reward discounting:

• Mshaping = {S,A, T , R,O, γ } is a POMDP where delay actions
are rewarded negatively over time with R((X, l, t), ad) =

−λ∗κ t/(κT
−1), ∀t ∈ [1, T] and rewards are not discounted

with γ = 1.
• Mdiscount = {S,A, T , R,O, γ } is a POMDP where rewards are

discounted with γ < 1. The action of delay is not rewarded
and the agent collects rewards (positive or negative) from
classification actions only with R((X, l, t), ad) = 0, ∀t ∈

[1, T].

4.2. Specificities of the POMDP models

All but one of the actions terminate the episode. As defined above,
actions are either to predict a label l ∈ L or to delay predic-
tion: A = Ac ∪ ad. Since we terminate the acquisition of new
observations once the classification is performed, all but one of

the actions lead to a terminal state. The probability of reaching
time t in an episode tends to zero as t increases:

P(st ̸= terminal) = P(a1 = ad)
≤1

P(a2 = ad)
≤1

... P(at−1 = ad)
≤1

=

t−1∏
j=1

P(aj = ad)
≤1

Actions of classification are the rarest. When the agent classifies at
time t , the episode is composed of t − 1 actions of delay for one
action of classification. This results in getting interactions that are
mostly composed of delay action.

5. Learning the action value with a deep neural network

The action space being finite and small, we choose to learn the
action value function and define the agent’s policy π by acting
greedily over the action values. The observation space composed
of temporal sequences is continuous and therefore the action
value function cannot be represented by a finite table with action
values on all pairs of observations and actions.

We approximate the action value function Q (s, a) with a deep
neural network Q (o, a, Θ) with parameters Θ defined over the
set of observations O. From the POMDP definition and by approx-
imating the action value with a deep neural network, the method
simultaneously learns optimal classification patterns in the se-
quences and optimal strategic decisions for the time of prediction.
The end-to-end learning capabilities of neural networks set the
user free from a prior step of feature engineering and definition
of prediction rules.

We train the neural network Q (o, a, Θ) with DDQN algorithm
from [7] to find optimal parameters Θ . In the following we pro-
pose two versions of the algorithm to address the specificities of
the EC POMDP, in online learning and batch learning, depending
on whether the EC application comes with a finite training dataset
or can collect new training data over time.

5.1. Batch learning

Since many real-life EC applications come with a finite training
dataset, their underlying POMDPs can generate a finite number
of episodes to train on. Unlike video games traditionally used
in DRL and for which the emulator can generate an infinite
number of episodes, these applications cannot collect new data
along training. For example, in microbiological diagnostics, data
acquisition is expensive because of the experiments it requires to
conduct, and it is common to be limited in the amount of data
that can be collected.

For those applications with a relatively small training dataset,
we propose to adapt DDQN algorithm in batch learning, i.e. by
decoupling data collection from the agent’s training. We argue
that all possible training interactions between the agent and the
environment can be simulated and stored in an exhaustive replay
memory before updating the agent’s policy.

We present in Algo. 1 the adaptation of DDQN to EC in batch
learning. The idea is to first build an exhaustive replay memory
with all possible interactions and then use prioritized sampling
proposed in Section 5.1.1 to cleverly learn from it. The advantage
of a batch version of the DDQN algorithm is to set the agent free
from its traditional exploration–exploitation dilemma, leading to
fewer hyper-parameters to tune.

C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290 5

5.1.1. Prioritized sampling
DDQN uses a stochastic gradient descent where a mini-batch

of interactions is uniformly sampled from the replay memory to
update the neural networks parameters and minimize the loss
function from Eq. (2). A specificity of the POMDP for EC is the
over-representation of the delay action ad compared to prediction
actions Ac . With DDQN uniform sampling in the replay memory,
batches of interactions will be highly unbalanced and the agent
will hardly learn from prediction interactions.

Related work. Some work in the literature propose a more ef-
ficient management of the agent’s replay memory. In [17], the
authors propose prioritized experience replay (PER), a method
which seeks to sample ‘‘important’’ interactions more frequently
than ‘‘non important’’ interactions. The latter allows to learn on
difficult or rare interactions on which the agent struggles to
predict accurate Q-values, by re-sampling them more often.

In [18], the authors force that a fraction of the mini-batch is
associated to interactions with positive rewards. In others words,
they give higher priority to interactions with positive rewards
and they seek to learn more efficiently from these rewarding
interactions.

In this work, we leave aside PER [17] and we propose a less
expensive solution inspired by [18]. We choose to exploit the fact
that the interactions between the agent and the environment can
be easily categorized into subgroups, according to the type of
actions selected.

Contrary to [18] where sampling is prioritized according to the
scalar rewards received in the interactions, we propose to use
prioritize sampling by focusing on particular state–action pairs.

Strategy. We adapt DDQNwith a simple strategy where a fraction
of interactions within a mini-batch are forced to come from
prediction actions and where the sampling is forced to be bal-
anced among different labels in order to be robust to unbalanced
training datasets.

From a replay memory M and for each label l ∈ L, we sample
a random mini-batch of interactions {⟨o, a, r, o′

⟩} ∼ M such that
the observation o is associated to a temporal sequence X of label
l, with fraction µ having a ∈ Ac . µ ∈ [0, 1] is the sampling
parameter.

5.2. Online learning

Solving EC with RL can also be performed in online learning
with successive repetitions of data collection and optimization of
the policy. This is suitable for EC application allowing for stream-
ing or multi-phases data collection. For example in predictive
maintenance, the machine sensor signals are daily monitored
and the training dataset for this application could regularly be
increased.

To fit to the EC POMDP specificities, we propose in Algo. 2 an
adaptation of DDQN algorithm in online learning, with a simple
episode initialization strategy (Section 5.2.2), prioritized sampling
(Section 5.1.1) and prioritized storing (Section 5.2.1).

5.2.1. Prioritized storing
To avoid possible overwriting of the delay action ad in the

replay memory, we propose to allocate a fraction of the memory
to prediction actions. With this strategy, delay actions will not be
stored with the same importance than prediction actions and will
be more often replaced.

Algorithm 1 DDQN algorithm applied to early classification in
batch learning
Require: Environment described by a POMDP {S,A, T , R,O, γ }

as defined in Sec. 4.1 and corresponding training dataset D =

{(X j, lj)}j=1..n.
Sampling parameter µ ∈ [0, 1] and DDQN hyperparameters
from [7].

Ensure: Action value function Q (o, a, Θ) with optimal weights
Θ∗

Store all possible interactions in replay memory M:
for j = 1 ... n do

Sample a training pair (X j, lj) ∼ D.
for t = 1 ... T do

Compute observation o = X j
:t

for a ∈ A do
Compute reward r = R((X j, lj, t), a)
Compute next observation o′

= T ((X j, lj, t), a).
Store interaction < o, a, r, o′ > into replay memory M.

end for
end for

end for
Randomly initialize weights Θ . Set Θ−

= Θ .
for step = 1 ... M do

Sample mini-batch of interactions {< o, a, r, o′ >} ∼

M using prioritized sampling from Sec. 5.1.1 with sampling
parameter µ.
Update weights Θ with gradient descent on loss function
from Eq. (2) computed on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ−

= Θ

end for

5.2.2. Episode initialization
To answer our objective of fast decision making, the agent

has little interest in postponing prediction and reaching the end
of temporal sequences. Therefore a static episode initialization
at time t = 1 would cause early prediction times to be over-
represented in the replay memory. In Algo. 2, we adapt DDQN
with a random episode initialization. We start an episode at
random time in the temporal sequence to compel the agent to
explore and train on all times of the sequence acquisition.

Batch learning or online learning?. We point out that the two
versions of the algorithm can be combined in the specific case
where the user has a finite training dataset at first and will later
collect additional training samples. It is possible to first build
an exhaustive memory from the finite available training dataset,
learn a policy in batch learning, and then update the policy in
online learning while processing newly collected data as they
arrive.

6. Experimental evaluation

The experimental objectives are threefold: (1) We evaluate the
effect of delay reward shaping against reward discounting in the
definition of the POMDP. (2) We compare early classifiers with
adaptive prediction time capabilities to equivalent naive deep
neural networks trained to classify at static times. (3) We assess
performance gain brought by our specific adaptation of DDQN
algorithm.

6.1. Dataset

Data. We conduct experimental evaluations on a dataset col-
lected from a private project carried out by bioMérieux company.

6 C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290

Algorithm 2 DDQN algorithm applied to early classification in
online learning
Require: Environment described by a POMDP {S,A, T , R,O, γ }

as defined in Sec. 4.1 and corresponding training dataset D =

{(X j, lj)}j=1..n.
Sampling parameter µ ∈ [0, 1] and DDQN hyperparameters
from [7].

Ensure: Action value function Q (o, a, Θ) with optimal weights
Θ∗

Randomly initialize weights Θ . Set Θ−
= Θ . Initialize replay

memory M.
for episode = 1 ... M do
Initialize episode observation ot with episode initialization
from Sec. 5.2.2
while episode not terminated do
The agent receives observation ot and picks action at =

argmaxa∈A Q (ot , a, Θ) with probability ϵ or random action
with probability 1 − ϵ.
The environment computes reward rt = R((X, l, t), at) and
next observation ot+1 = T ((X, l, t), at).
Store interaction < ot , at , rt , ot+1 > into replay memory
M according to prioritized storing from Sec. 5.2.1.
Sample mini-batch of interactions {< o, a, r, o′ >} ∼

M according to prioritized sampling from Sec. 5.1.1 with
sampling parameter µ.
Update weights Θ with gradient descent on loss function
from Eq. (2) computed on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ−

= Θ

Increment time t = t + 1
end while

end for

Data are multivariate time series derived from living organisms.
The EC application is related to an in-vitro microbiological diag-
nostic and seeks for rapid categorization of the living organisms
described by MTS. The 3155 temporal sequences X = (x1, . . . , xT)
have length T = 77 and each measurement xi∈[1,T] is a 5-
dimensional array. With previous notations from Section 3, X ∈

R5×77.
This real-life example can be generalized to industrial prob-

lems with the same EC objective on multivariate or univariate
temporal sequences. In previous work [14], we compared the
RL framework to state-of-the-art methods on the UCR archive
from [19] which is widely used as benchmark for classification
and clustering of time series. We point out that the autonomous
learning of features for decision-making and classification makes
the proposed method applicable to data on which we have no
features expertise. Indeed, we did not have any prior knowledge
on these public datasets.

Labels. Sequences are associated to labels a, b, c , and d depicting
four classes of living organisms. Fig. 1 gives the distribution of the
labels among the training, validation and testing sets.

t-SNE projection. In Fig. 2, we represent the training set with a
two-dimensional t-SNE embedding of the (complete) temporal
sequences using algorithm from [20]. We observe overlapping
clusters of points from different labels. Samples from class b and c
are often mixed among the same clusters of points. This illustrates
the complexity of the dataset in which sequences from different
classes are very similar due to the biological variability in the
dataset.

Fig. 1. Distribution of labels a, b, c , and d among the sets of training, validation
and testing.

Fig. 2. Two-dimensional t-SNE embedding of the temporal sequences from the
training set.

6.2. Evaluation pipeline

In Section 4, we framed EC as a sequential decision making
problem defined by a POMDP. We proposed to solve the POMDP
by training an agent with RL in Section 5. In this section, we
introduce metrics and procedures used to train the agent, select
optimal policies and compare performance between trainings.

6.2.1. Hyper-parameter setting
In Section 5, the agent is defined by its policy whose model

is a deep neural network Q (o, a, Θ) with weights Θ trained with
DDQN algorithm. The deep neural network training depends on
a set of hyper-parameters to define. The combinatorial space
of the hyper-parameters being too large, we cannot perform an
exhaustive search.

To fine-tune the method, we randomly select a set of hyper-
parameters in a restricted combinatorial space near optimal pa-
rameters presented in [16]. We dedicate one agent per setting
of hyper-parameters. Agents are trained separately between all
settings.

6.2.2. Training procedure
When trained under supervision (for static classification or

regression tasks), deep neural networks are updated until the
loss function stops decreasing on the validation set. The selection
of the best deep neural network model is also straightforward:
the selected model is the one with highest performance on the
validation set. When trained with reinforcement, the loss function

C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290 7

is based on an approximation of future cumulated rewards and
is typically not used to stop the training procedure or to select
optimal policies either.

Instead, for each hyper-parameter setting of the method, we
independently train an agent for a fixed number of episodes in the
environment, until it reaches 100000 updates of its deep neural
network weights Θ . We simultaneously evaluate the agent of
each setting on the validation set every 1000 updates of Θ . Fig. 3
reports the evaluations performed during an agent’s training.

6.2.3. Evaluation metrics
Accuracy. We define the agent accuracy Acc on a dataset D =

{(X j, lj)}j=1..n as

Acc =

n∑
j=1

1(fclassif (X j) = lj)/n

Time of prediction. The prediction time tj,pred of the agent on a
sequence (X j, lj) ∈ D is defined as the earliest time step for which
the action value of a classification action outreaches the action
value of delay, such that:

tj,pred = min
t∈[1,T]

{argmax
a∈A

Q (X j
:t , a) ∈ Ac}

The prediction time tpred of the agent on a dataset D is the mean
of prediction times on all sequences from the dataset, such that:

tpred =

n∑
j=1

tj,pred/n

6.2.4. Optimal policy selection
In [16], the authors evaluate the agent’s policies over training

and select the optimal policy as the one with the highest score
of reward. In the special case of EC for which two competitive
objectives are optimized one against the other, the optimal policy
selection can be application-dependant.

Among all trainings, each one being dedicated to a set of
hyper-parameters, we select the policy with highest Acc on the
validation set for several ranges of tpred (as illustrated in Figs. 4,
6 and 7 where the top-5 optimal policies are represented). We
then have as many optimal policy candidates as ranges of tpred
considered. Among all candidates, we can then choose the opti-
mal policy as the one satisfying the most our will to compromise
between accuracy and speed. The optimal policy reflects the best
performance achieved by the method during its fine-tuning.

6.2.5. Training evaluation
Best performance. To assess an agent best performance during its
training, we compute max Acc , as illustrated in Fig. 3.

Mean performance. To globally assess an agent performance over
its entire training, we compute mean Acc and mean tpred over all
the agent’s evaluations, that is to say on the 100 policies that
were evaluated every 1000 updates of Θ , as illustrated in Fig. 3. A
large score of mean Acc means that the agent was globally highly
accurate all along its training.

Stability. We measure the stability of a training through the vari-
ation in Acc and tpred with the standard deviation metric (stdev),
as illustrated in Fig. 3. A high score of stdev Acc means that the
policies evaluated along training were not equally accurate and
very unstable.

6.2.6. Methods comparison
Best performance. When comparing several methods, we seek to
identify which one gave the best results. Thus we compare the
optimal policies results between each method, as illustrated in
Figs. 4, 6 and 7.

Fig. 3. An agent training with 100000 updates of its deep neural network
parameters Θ . The agent’s policy is evaluated every 1000 updates on the
validation set. Policies performances are represented with dot points in terms of
Acc vs. tpred . Dots points are colored according to the updates. The black vertical
line (resp. band) gives the agent’s mean (resp. stdev) tpred over training. The
black horizontal line (resp. band) gives the agent’s mean (resp. stdev) Acc over
training. The red horizontal line gives the agent’s maximal Acc over training.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Robustness. We are also interested in assessing the robustness of
each method regarding the hyper-parameter setting. We compare
each method through the distribution of max Acc , mean Acc ,
stdev Acc , mean tpred and stdev tpred computed on each training.
For each metric, we report the p-values of Mann–Whitney rank
statistical tests on the null hypothesis that the two versions are
equivalent.

6.3. Experimental comparison between two models of POMDP: re-
ward discounting and delay reward shaping

We carry out an experiment to assess the impact of delay
reward shaping against rewards discounting in the definition of
the POMDP. We compare the two POMDP models Mdiscount and
Mshaping from Section 4.

Experimental setting. We solve each POMDP with DDQN algo-
rithm in batch learning, adapted with prioritized sampling, as
introduced in Algo. 1. We perform 50 trainings on each POMDP
model (Section 6.2.2) by varying the deep neural network ar-
chitecture and respective specific hyper-parameters. We vary
γ ∈ [0.3, 1] for Mdiscount , λ ∈ {0.05, 0.1, 0.25, 0.5, 1, 2} and
κ ∈ {1.06, 1.09, 1.1, 1.2} for Mshaping . Other shared DDQN hyper-
parameters are fine-tuned (Section 6.2.1).

Experimental comparison. To evaluate if both POMDP models
achieve comparable best classification accuracy under different
trade-offs, we report in Fig. 4 the top-5 optimal policies within
ranges of prediction times (Section 6.2.4) for both Mshaping and
Mdiscount models.

For each model, accuracy rapidly increases when the predic-
tion time reaches tpred = 30 and then increases only very slightly
with the acquisition of more measurements in the sequences.

Experiments show that Mshaping results in top-5 policies with
higher Acc than Mdiscount under all trade-off of prediction time
tpred.

We compare the robustness between the two POMDP models
by computing metrics from Section 6.2.6 which are shown in
Fig. 5 and statistically compared in Table 1. Tests allow to reject
the null hypothesis that both POMDP models achieve comparable
max Acc along training. Fig. 5 shows that Mshaping reaches higher
max Acc.

Also, tests on the stdev Acc and stdev tpred lead to the con-
clusion that Mshaping is more variable than Mdiscount during its
fine-tuning.

8 C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290

Table 1
Statistical comparison between Mshaping and Mdiscount performance metrics. The
table reports p-values of Mann–Whitney rank tests on the null hypothesis that
Mshaping and Mdiscount have comparable metric score for each performance metric
(max Acc , mean Acc , stdev Acc , mean tpred and stdev tpred) from Fig. 5. The null
hypothesis is rejected in favor of the alternative hypothesis on tests with a
p-value below 0.05, shown in bold. The alternative hypothesis is that the metric
performance is different between the different POMDP models. Fig. 5 shows
which POMDP model has the greatest score.
Performance Stability

Max Acc Mean Acc Mean tpred Std Acc Std tpred
0.0228 0.1962 0.0018 0.0016 1.3162e−8

Fig. 4. Top-5 policies from Mshaping and Mdiscount . We select the top-5 policies in
Acc on the validation set for several ranges of tpred . We evaluate those policies
on the test set. The full line represents mean Acc and the band is the stdev Acc.

6.4. Experimental comparison between early classifier and naive
static classifiers

We seek to experimentally measure the added value of our
method for EC in comparison to static classification. More pre-
cisely, for an agent that would predict on average at tpred, we seek
to evaluate whether a static DNN classifier that would make the
prediction with the same average speed (but always at the same
time step tpred) would achieve a better classification quality than
the agent.

To perform the evaluation, we deactivate the decision making
capability of our algorithm, i.e. the RL part, and train the equiva-
lent naive deep neural network to classify at a list of predefined
(static) time steps.

Experimental setting.
Early classifier We use experiments from 6.3 on Mshaping

solved with Algo. 1 to obtain early classifiers enhanced with
decision making capabilities.

Static classifier For regular time steps t ∈ [1, T], we train
equivalent deep neural networks to map between the partial
temporal sequences and the labels. We use the training pairs from
dataset D = {(X j, lj)}j=1..n and we train deep neural networks as
a mathematical function fclassif such that fclassif : {X:t} → L. For
each regular time step t ∈ [1, T], the deep neural networks are
trained separately until the loss function stops decreasing on the
validation set (Section 6.2.2).

The neural networks used for both static classification and the
agent’s policy are similar except from the output layer. The output
layer of the agent’s policy is linear and has an additional neuron
for the delay action compared to the static classifier which has as
many neurons as labels and a softmax activation.

Experimental comparison. In Fig. 6, we report top-5 policies per-
formance for different ranges of tpred (Section 6.2.4). Both static
deep neural network and early classifier have poor Acc in early
times (tpred < 20) due to lack of information in the partial
temporal sequences.

Then the early classifier provides top-5 policies with higher
Acc than static classifiers. The improvement in Acc for equivalent
tpred is due to the capability of the agent to adapt its classification
individually on each temporal sequence. The agent can choose
to quickly classify sequences that can easily been categorized or
to require more observations on sequences lacking discriminant
patterns. The early classifier’s will to individually compromise
makes the classification more efficient than static networks using
the same amount of observations in all sequences independently
of their complexity.

Interestingly, we cannot evaluate the early classifier in late
prediction times (tpred > 55). To reach its objective of fast decision
making, the agent did not choose to classify at the end of the
sequences and it always provided fastest policies.

6.5. Online learning: Experimental evaluation of prioritized sam-
pling, prioritized storing and episode initialization in DDQN algo-
rithm

We carry out an experiment to assess the impact of prioritized
sampling (Section 5.1.1), prioritized storing (Section 5.2.1) and
random episode initialization (Section 5.2.2) when training early
classifiers with DDQN algorithm in online learning. We compare
four versions of DDQN algorithm to solve Mshaping :

• DDQN-baseline refers to original DDQN algorithm [7].
• DDQN-ps refers to DDQN with prioritized sampling and pri-

oritized storing proposed in Sections 5.1.1 and 5.2.1.
• DDQN-ei refers to DDQN with random episode initialization

proposed in Section 5.2.2.

Fig. 5. Performance metrics on Mshaping and Mdiscount on the validation set. (a) Max Acc. (b) Mean Acc . (c) Stdev Acc . (d) Mean tpred . (e) Stdev tpred .

C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290 9

Fig. 6. Top-5 policies from Mshaping and top-5 static deep neural network
classifiers. We select the top-5 policies and classifiers in Acc on the validation
set for several ranges of tpred . We evaluate those policies and classifiers on the
test set. The full line represents mean Acc and the band is the stdev Acc.

• DDQN-ps-ei refers to DDQN with simultaneously prioritized
sampling, prioritized storing and random episode initializa-
tion as synthesized in Algo. 2.

Experimental setting. All shared DDQN hyper-parameters are first
manually fine-tuned (Section 6.2.1). On each version of DDQN
algorithm, we perform 100 trainings (Section 6.2.2). We vary
rewards for correct classification R((X, l, t), a = l) ∈ {0, +1} in
order to obtain policies with slow decision making and to be able
to compare the four versions of DDQN in late prediction times.

Experimental comparison. Top-5 policies (Section 6.2.4) on all
four versions of DDQN algorithm are shown in Fig. 7.

For each version, accuracy rapidly increases when the pre-
diction time reaches tpred = 30. Then, accuracy slightly gets
better when the prediction time increases up to tpred = 40. We
can observe that accuracy stops increasing (and even slightly
decreases in some cases) when the prediction is performed at
tpred > 50 approximately. This is due to the particularity of the
application for which more time passes and more the biological
process associated with different classes will have similar states.

DDQN-baseline top-5 policies are globally the least accurate
under all trade-offs of tpred. Top-5 policies with highest Acc for
different trade-off of tpred are produced by DDQN-ei and DDQN-
ps-ei. We can see that the different proposed strategies lead to
optimal policies which are at least as good or better than those
obtained with the original DDQN algorithm.

The distributions of performance metrics from Section 6.2.5
are shown in Fig. 8 and statistically compared in Table 2.

We first compare the best classification performance achieved
by the agent during each of its training sessions, on each version
of the algorithm. That is to say, on each of training of the agent,
we keep the policy that was the most accurate in classification.
Tests from Table 2 show that both DDQN-ei and DDQN-ps-ei im-
prove max Acc over DDQN-baseline. In other words, these versions
of the algorithm result in policies with the best classification
quality.

Then, we compare the average performance of the agent dur-
ing each of its training sessions, by averaging the performance of
each of its policies from the same training session. This allows
to illustrate the overall performance of the agent throughout its
training, and not at a specific moment of its training. Tests from
Table 2 show that both DDQN-ps and DDQN-ps-ei improve mean

Fig. 7. Top-5 policies from DDQN-baseline, DDQN-ei, DDQN-ps and DDQN-ps-ei
evaluated on the test set. The full line represents mean accuracy and the band
is the accuracy standard deviation.

Table 2
Statistical comparison between DDQN-baseline, DDQN-ps, DDQN-ei and DDQN-ps-
ei performance metrics. The table reports p-values of Mann–Whitney rank tests
on the null hypothesis that DDQN-baseline have a score comparable to DDQN-
ps and DDQN-ps-ei for each performance metric (max Acc , mean Acc , stdev Acc ,
mean tpred and stdev tpred) from Fig. 8. The null hypothesis is rejected in favor of
the alternative hypothesis on tests with a p-value below 0.05, shown in bold. The
alternative hypothesis is that the metric performance is different between the
different versions of the algorithm. Fig. 8 shows which version has the greatest
score.
Methods Performance Stability

Max Acc Mean Acc Mean tpred Stdev Acc Stdev tpred
DDQN-baseline
vs. DDQN-ei

0.0023 0.1467 0.0430 0.8227 0.6270

DDQN-baseline
vs. DDQN-ps

0.2464 0.0001 0.8067 1.7212e−5 0.1090

DDQN-baseline
vs. DDQN-ps-ei

0.0001 0.0036 0.0286 0.2263 0.5418

Acc over DDQN-baseline which means that these versions of the
algorithm improve the overall classification quality of the agent
compared to the baseline.

Also, both DDQN-ei and DDQN-ps-ei shorten mean tpred over
DDQN-baseline which means that these versions of the algorithm
result in earliest classification times compared to the baseline.

In brief, DDQN-ps-ei is then the version of the algorithm that
leads to both best classification quality and earliest prediction
times simultaneously. Both competitive EC objectives are im-
proved with this version.

In terms of stability, measured through the metrics of stdev
tpred and stdev Acc , the different versions of the algorithm are
comparable except for DDQN-ps which is statistically less variable
in terms of accuracy compared to DDQN-baseline.

As a conclusion, DDQN-ps-ei, which refers to DDQN combined
with all of the proposed strategies (prioritized sampling, pri-
oritized storing and random episode initialization), is the best
memory and episode management method because it simultane-
ously improves the classification performance of the agent and
fastens its prediction time.

7. Conclusion

We defined a POMDP to train an agent for EC with RL. We
modeled the agent’s policy by a deep neural network and we

10 C. Martinez, E. Ramasso, G. Perrin et al. / Knowledge-Based Systems 190 (2020) 105290

Fig. 8. Performance metrics on DDQN-baseline, DDQN-ps, DDQN-ei and DDQN-ps-ei on the validation set. (a) Max Acc . (b) Mean Acc. (c) Stdev Acc. (d) Mean tpred . (e)
Stdev tpred .

adapted the DDQN algorithm in order to address the specificities
of the POMDP that could lead to unbalanced memory of the
agent if applied without modifications. The validity of the method
was shown experimentally on a complex multi-class classification
problem on a dataset of multivariate temporal sequences with
natural variability. We experimentally demonstrated that:

• Shaping the environment reward signal for delay leads to
higher accuracy at all prediction times than sparse dis-
counted rewards.

• Improvements to DDQN online algorithm such as prioritized
sampling, prioritized storing and random episode initializa-
tion increase the classification accuracy of the agent while
boosting the rapidity of its decision making.

• The method empirically results in an agent with adaptive
fast-classification capabilities which achieves higher accu-
racy performance than an equivalent neural network trained
for static classification.

References

[1] B. Póczos, Y. Abbasi-Yadkori, C. Szepesvári, R. Greiner, N. Sturtevant,
Learning when to stop thinking and do something! in: Proceedings of the
26th Annual International Conference on Machine Learning, ACM, 2009,
pp. 825–832.

[2] R.J. Williams, Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning, Mach. Learn. 8 (3–4) (1992) 229–256.

[3] G. Dulac-Arnold, L. Denoyer, P. Gallinari, Text classification: A sequential
reading approach, in: European Conference on Information Retrieval,
Springer, 2011, pp. 411–423.

[4] G. Dulac-Arnold, L. Denoyer, P. Preux, P. Gallinari, Datum-wise classifica-
tion: a sequential approach to sparsity, in: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, Springer, 2011,
pp. 375–390.

[5] Y.-S. Peng, K.-F. Tang, H.-T. Lin, E. Chang, Refuel: Exploring sparse features
in deep reinforcement learning for fast disease diagnosis, in: Advances in
Neural Information Processing Systems, 2018, pp. 7333–7342.

[6] J. Janisch, T. Pevnỳ, V. Lisỳ, Classification with costly features using deep
reinforcement learning, in: AAAI Conference on Artificial Intelligence, 2019.

[7] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double
q-learning, in: Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[8] Z. Xing, J. Pei, S.Y. Philip, Early prediction on time series: a nearest neighbor
approach, in: Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[9] Z. Xing, J. Pei, P.S. Yu, K. Wang, Extracting interpretable features for early
classification on time series, in: Proceedings of the 2011 SIAM International
Conference on Data Mining, 2011, pp. 247–258.

[10] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, L. Wang, Early classification on
multivariate time series, Neurocomputing 149 (2015) 777–787.

[11] A. Dachraoui, A. Bondu, A. Cornuéjols, Early classification of time series
as a non myopic sequential decision making problem, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2015, pp. 433–447.

[12] W. Wang, C. Chen, W. Wang, P. Rai, L. Carin, Earliness-aware deep
convolutional networks for early time series classification, 2016, arXiv
preprint arXiv:1611.04578.

[13] T. Santos, R. Kern, A literature survey of early time series classification and
deep learning, in: Sami@ Iknow, 2016.

[14] C. Martinez, G. Perrin, E. Ramasso, M. Rombaut, A deep reinforcement
learning approach for early classification of time series, in: 2018 26th
European Signal Processing Conference, IEEE, 2018, pp. 2030–2034.

[15] R.S. Sutton, A.G. Barto, et al., Introduction to Reinforcement Learning, Vol.
135, MIT press Cambridge, 1998.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare,
A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level
control through deep reinforcement learning, Nature 518 (7540) (2015)
529.

[17] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay,
2015, arXiv preprint arXiv:1511.05952.

[18] K. Narasimhan, T. Kulkarni, R. Barzilay, Language understanding for text-
based games using deep reinforcement learning, 2015, arXiv preprint
arXiv:1506.08941.

[19] H.A. Dau, A. Bagnall, K. Kamgar, C.-C.M. Yeh, Y. Zhu, S. Gharghabi,
C.A. Ratanamahatana, E. Keogh, The ucr time series archive, 2018, arXiv
preprint arXiv:1810.07758.

[20] L.v.d. Maaten, G. Hinton, Visualizing data using t-sne, J. Mach. Learn. Res.
9 (Nov) (2008) 2579–2605.

http://refhub.elsevier.com/S0950-7051(19)30582-9/sb1
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb1
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb1
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb1
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb1
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb1
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb1
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb2
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb2
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb2
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb3
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb3
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb3
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb3
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb3
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb4
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb4
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb4
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb4
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb4
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb4
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb4
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb5
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb5
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb5
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb5
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb5
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb6
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb6
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb6
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb7
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb7
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb7
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb8
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb8
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb8
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb8
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb8
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb10
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb10
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb10
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb11
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb11
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb11
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb11
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb11
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb11
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb11
http://arxiv.org/abs/1611.04578
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb13
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb13
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb13
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb14
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb14
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb14
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb14
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb14
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb15
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb15
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb15
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb16
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb16
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb16
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb16
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb16
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb16
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb16
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1506.08941
http://arxiv.org/abs/1810.07758
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb20
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb20
http://refhub.elsevier.com/S0950-7051(19)30582-9/sb20

	Adaptive early classification of temporal sequences using deep reinforcement learning
	Introduction
	Related work
	Contributions

	Background of deep reinforcement learning
	Reinforcement learning
	Deep-Q-Network

	Problem definition
	Early classification as a partially observable Markov decision process
	POMDP models
	Specificities of the POMDP models

	Learning the action value with a deep neural network
	Batch learning
	Prioritized sampling

	Online learning
	Prioritized storing
	Episode initialization

	Experimental evaluation
	Dataset
	Evaluation pipeline
	Hyper-parameter setting
	Training procedure
	Evaluation metrics
	Optimal policy selection
	Training evaluation
	Methods comparison

	Experimental comparison between two models of POMDP: reward discounting and delay reward shaping
	Experimental comparison between early classifier and naive static classifiers
	Online learning: Experimental evaluation of prioritized sampling, prioritized storing and episode initialization in DDQN algorithm

	Conclusion
	References

