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a b s t r a c t

Categorical Distributional Reinforcement Learning (CDRL) uses a categorical distribution with evenly
spaced outcomes to model the entire distribution of returns and produces state-of-the-art empirical
performance. However, using inappropriate bounds with CDRL may generate inaccurate estimated
action values, which affect the policy update step and the final performance. In CDRL, the bounds of
the distribution indicate the range of the action values that the agent can obtain in one task, without
considering the policy’s performance and state–action pairs. The action values that the agent obtains
are often far from the bounds, and this reduces the accuracy of the estimated action values. This
paper describes a method of obtaining more accurate estimated action values for CDRL using adaptive
bounds. This approach enables the bounds of the distribution to be adjusted automatically based on
the policy and state–action pairs. To achieve this, we save the weights of the critic network over a fixed
number of time steps, and then apply a bootstrapping method. In this way, we can obtain confidence
intervals for the upper and lower bound, and then use the upper and lower bound of these intervals as
the new bounds of the distribution. The new bounds are more appropriate for the agent and provide a
more accurate estimated action value. To further correct the estimated action values, a distributional
target policy is proposed as a smoothing method. Experiments show that our method outperforms
many state-of-the-art methods on the OpenAI gym tasks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The goal of reinforcement learning (RL) is to learn an optimal
policy for sequential decision-making problems, by interacting
with the environment [1]. Recent research has shown that the
integration of RL and deep neural networks can solve problems
in a wide range of fields [2], including games [3–5], robotics [6–9],
natural language [10,11] and computer vision [12,13].

One of the major classes of RL is value-based methods, which
learn the optimal value function using the Bellman operator.
Almost every RL algorithm is based on this approach. The Deep
Deterministic Policy Gradient (DDPG) [14] extends two other
important algorithms, the deep Q-network and deterministic pol-
icy gradient, which estimate the policy gradient more efficiently
and stabilize the learning. The Asynchronous Advantage Actor
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Critic (A3C) [15] learns a value function and a policy. The value
function reduces variance and accelerates learning; A3C can also
run several agents in parallel to reduce the training time. Both
DDPG and A3C exhibit good performance on complex control
tasks with high-dimensional action spaces.

Categorical Distributional RL (CDRL) [16] views RL problems
from a whole new perspective. In contrast to the value-based
algorithms, which learn the expectation of the action value, CDRL
models the full distribution of the action value. CDRL preserves
the multimodality of the value distributions, leading to more
stable learning and better policies than other methods. CDRL uses
a categorical distribution with evenly spaced outcomes, and the
target value distribution can be computed through a distribu-
tional Bellman operator. However, the target and the predicted
distribution have disjoint supports. To account for this, CDRL
projects the target distribution onto the supports of the predic-
tion, and then applies a Kullback–Leibler minimization step.

CDRL assigns probabilities to an a priori fixed, discrete set of
possible returns, which is determined by the number of atoms l
and the bounds (Qmin,Qmax). The number of possible returns that
the agent can obtain is l and the distance between two atoms
is ∆ =

Qmax−Qmin
l−1 . According to distributional RL theory [16], the

expectation of this return distribution (estimated action value)
should be approximately equal to the true action value, otherwise
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the performance will be affected. The estimated action value
impacts the update of the distribution, as well as the estimated
policy gradient. If it is not accurate, the performance of the policy
will suffer.

The bounds of this distribution impact the estimated action
value and play an important role in CDRL. (Qmin,Qmax) and l
define the possible action values that the agent can get. In CDRL,
(Qmin,Qmax) is set as the minimal and maximal expected cumula-
tive reward the agent can receive in each task, and remains fixed
throughout the training. The bounds are set to be wide enough to
cover all the possible action values. However, most of the time,
the performance of the policy is not as good as the optimal policy.
Therefore, the true maximum action value that the agent can
achieve is far less than Qmax. As a result, the atoms between the
true maximum action value and the upper bound Qmax will have
some estimation error. These bounds may also be too wide for
those state–action pairs that cannot achieve large action values,
and so the estimated action value will be inaccurate. To make the
estimated action value more accurate, the bounds should be ad-
justed automatically for different learning stages and state–action
pairs.

In this study, to make the estimated action value more accu-
rate and improve the CDRL performance, we developed adaptive
bounds that can be adjusted depending on the performance of
the policy and the different state–action pairs. To achieve this,
we train a critic network that can produce the same action
value as common value-based RL methods. Then, we save the
weights of this critic network over a fixed number of time steps,
allowing the action values to be used as the samples for dif-
ferent state–action pairs in different learning stages. Finally, we
estimate a confidence interval for Qmax and Qmin based on these
samples. When calculating the confidence interval, the sample
dependencies, changing policies, and non-stationary and limited
sample size create certain challenges. Thus, we use a moving
block bootstrap [17,18]. We construct several blocks to elimi-
nate the dependencies between samples and then we sample
the blocks using bootstrapping [19]. These bootstrapped samples
can be used to approximate a 1-α confidence interval around
the bounds of the categorical distribution. Therefore, the bounds
can be adjusted automatically for different state–action pairs and
learning stages, resulting in a more accurate approximation of the
action value and improved performance. To reduce the variance
in the update and make the estimated action value more accu-
rate, we also developed a distributional target policy smoothing
(DTPS) strategy. The key idea behind DTPS comes from Expected
SARSA [20]. DTPS computes the target policy based on the ex-
pected distribution, by adding a small random noise to the target
action and averaging their distributions. To evaluate our method
in continuous-control tasks, we combine our improved CDRL with
DDPG. Experiments demonstrate that this configuration achieves
state-of-the-art performance.

The main contributions of this paper are as follows: (1) We
show that the problem of inaccurate estimated action values
persists in CDRL. (2) Adaptive bounds are proposed to make
the estimate action value more accurate. (3) To further correct
the estimated action value, we propose a distributional target
policy smoothing strategy. (4) Evaluations on several continuous-
control tasks demonstrate that our method can lead to better
performance.

The remainder of this paper is structured as follows. Section 2
provides a brief introduction to RL and methods related to the
topic of this paper. Our approach is presented in Section 3, be-
fore the results of experiments are presented and discussed in
Section 4. Finally, Section 5 summarizes the conclusions to this
study.

2. Background

2.1. Reinforcement learning

RL solves sequential decision making problems with the aim of
learning reward-maximizing behavior [1,21]. A Markov decision
process (MDP) can be used as a formalization of RL problems. In
MDP, the agent is given a state s ∈ S at each discrete time step
and selects an action a ∈ A following the policy π : S → A. Once
the action is executed, the agent receives a reward r(s, a) and the
environment moves to a new state s′. The total return is defined
as follows:

Gt =

T∑
i=t

γ i−t r(si, ai) (1)

where γ ∈ (0, 1] is the discount factor, which determines the
priority of short-term rewards. At each time step, the agent can
use experience of the form (s, a, s′, r(s, a)) to improve its policy
and maximize the expectation of Gt .

Value-based methods are effective for solving RL problems.
The key component of value-based methods is the action value
function. The action value function Q π (s, a) = E[Gt |st = s, at =
a, π] describes the expected return from selecting action a in
state s and then acting according to π . We say that the action
value is the expectation or the mean of the value distribution.
Q-learning [22–24] is a central algorithm in the field of RL. The
update rule for this approach is as follows:

Q (s, a)← Q (s, a)+ α[r + γ max
a′

Q (s′, a′)− Q (s, a)] (2)

By iterating rule (2), Q-learning converges to the optimal action
value function [21], from which an optimal policy can be derived.
For a large state space, Mnih et al. introduced the Deep Q-
Network (DQN) [4], which uses deep neural networks to approx-
imate the action value function. To further stabilize the training
process, DQN uses a target network and experience replay.

In contrast to value-based methods such as Q-learning, policy-
based methods directly optimize the parameterized policy
π (a|s; θ ). REINFORCE [25,26] is a policy-based method that up-
dates θ in the direction of ∇θ logπ (at |st , θ )(Gt − bt (st )), where
bt (st ) is used as a baseline to reduce the variance of the gradient
estimate.

2.2. Categorical distributional reinforcement learning

CDRL models the entire distribution of returns, rather than
just the expected returns. Empirically learning the distribution
over returns improves data efficiency, final performance, and
stability [16,27,28].

Obtaining the action value under policy π is a basic prob-
lem in RL. One common way to solve this is to use dynamic
programming through the Bellman operator [29]:

T πQ (s, a) = E[r(s, a)] + γEP,π [Q π (s′, a′)] (3)

where P is the transition kernel P(.|s, a). Similarly, a distributional
Bellman operator is defined to compute the value distribution
through dynamic programming:

T πZ(s, a) : D= r(s, a)+ γ PπZ(s′, a′) (4)

where Pπ is the transition operator and Y : D= U denotes that the
random variable Y is distributed according to the same law as
U . The distribution over returns is denoted by Z and Q = E[Z].
A common parametric distribution is the categorical distribution,
which is supported on fixed locations z1 ≤ · · · ≤ zN . The param-
eters of this distribution are the probabilities qi corresponding
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to each location zi. Similar to value-based methods, the goal is
to minimize the loss between the target distribution T Zθ and
the current estimated distribution Zθ . The problem is that T Zθ

and Zθ always have disjoint supports, which makes it difficult to
calculate the loss. Thus, CDRL applies a projection step to map the
target distribution onto the same supports as Zθ . Given a sample
transition (s, a, r, s′), the Bellman update for one atom zi can be
computed as T zi := r+γ zi. The associated probability pi(s′, π (s′))
is then distributed to the immediate neighbors of T zi. The ith
component of the projected update ΦT Zθ (s, a) is:

(ΦT Zθ (s, a))i =
N−1∑
j=1

[1−
|⌊T zj⌉

Qmax
Qmin
− zi|

∆z
]
1
0pj(s

′, π (s′)) (5)

We then calculate the sample loss Ls,a(θ ) as follows:

Ls,a(θ ) = DKL(ΦT Zθ (s, a) ∥ Zθ (s, a)) (6)

Through minimizing the above loss function, CDRL converges to
the optimal value distribution and obtains the optimal policy [30,
31].

The bounds (Qmin,Qmax) of the categorical distribution in CDRL
define the range of all the possible returns the agent can attain
throughout the training and affect the estimated action value
(the estimated action value is the expectation of the categorical
distribution). The bounds also affect the projection step, as shown
by (5). If the estimated action value is as close as possible to the
real action value, CDRL can achieve good performance. Qmax and
Qmin reflect the maximum and minimal cumulative rewards that
the agent can obtain on each task. In CDRL, Qmin can be set as the
cumulative reward that the agent achieves by following the worst
policy (random policy), whereas Qmax is the cumulative reward
that the agent receives following the optimal policy. Thus, Qmax is
always far greater then Qmin. Most of the time, Qmax is far above
the true maximum action value that the policy can obtain, and
the true action value of some state–action pairs can will never get
close to Qmax. This leads to an inaccurate estimated action value
and harms the RL performance.

In this paper, to make the estimated action value more accu-
rate, we describe the construction of adaptive bounds for CDRL.
These can be adjusted for different courses of training and state–
action pairs by using the bootstrapping method to approximate
the confidence interval of the bounds. We use the upper and
lower bounds of these confidence intervals as the new bounds of
the distribution. Finally, we introduce the DTPS method to further
reduce the variance of the update and correct the estimated
action value.

2.3. Deep deterministic policy gradients

DDPG is an actor–critic, model-free method for continuous
action space, that extends DQN [4] and the deterministic policy
gradient (DPG) [32]. DDPG deploys an experience replay tech-
nique and a target network to stabilize the training. The core
element of DDPG is the DPG theorem and the gradient of the
actor, which can be written as follows:

∇θ J(θ ) ≈ Eρ[∇θπθ (x)∇aQπθ
(x, a)|a=πθ (x)] (7)

where ρ is the state-visitation distribution. DDPG maintains an
estimate of the action value function Qω(s, a) by minimizing
the temporal difference error between the action value function
before and after applying the Bellman update. Therefore, we can
write the resulting loss as:

L(ω) = Eρ[(Qω(s, a)− T πQω′ (s, a))2] (8)

Barth-Maron et al. [33] proposed the distributional deep de-
terministic policy gradient (D3PG), which combines CDRL with

DDPG and has achieved state-of-the-art performance in several
complex tasks. D3PG considers the inclusion of a distributional
critic [16] and adapts CDRL to continuous control setting. To
use the distributional critic within the context of the DDPG ar-
chitecture introduced above, we need to rewrite the DPG theo-
rem by taking the expectation with respect to the action-value
distribution, i.e.,
∇θ J(θ ) ≈ Eρ[∇θπθ (x)∇aQω(x, a)|a=πθ (x)]

= Eρ[∇θπθ (x)E[∇aZω(x, a)]|a=πθ (x)]
(9)

D3PG updates the critic in the same way as CDRL, including
a projection step and a KL minimization step. The inclusion of
the distributional critic update means that D3PG is capable of
state-of-the-art performance on a number of difficult continuous
problems.

2.4. Related work

CDRL is a new perspective of RL: when combined with DQN,
it outperforms other algorithms that only model the expected
values in of many Atari 2600 games [34,35]. Besides Categor-
ical distribution, the paper [33] proposed a method to model
the return distribution with Mixture of Gaussians distribution,
which can reduce the requirement of domain-knowledge and
remove the projection step, but performs worse than categorical
distribution. MoG-DQN [36] modeled the return distribution with
Mixture of Gaussian distribution and proposed a new distance
metric for MoG distribution: Jensen–Tsallis Distance (JTD). The
advantage of JTD over other metrics such as KL-Divergence and
the Wasserstein Distance is that JTD computes the distance be-
tween two MoG distributions in a closed form, which makes JTD
loss applicable with sample-based methods.

More recently, additional distributional algorithms have been
proposed. Quantile regression (QR-DQN) [37] does not require
the projection step and can perform distributional RL over the
Wasserstein metric [38]. The Implicit Quantile Networks (IQN)
technique [39] uses quantile regression to approximate the full
quantile function for the return, and produces risk-sensitive poli-
cies. Bellemare et al. [40] provided theoretical and empirical
results that explain why distributional RL produces the observed
improvements. Dopamine [41] is a code repository containing
implementations of many distributional RL algorithms. Tang et al.
[42] propose a framework based on distributional RL and unifies
several methods in exploration. Dabney et al. [31] present a
unifying framework for designing and analyzing distributional
RL and provide improved analyses of existing distributional RL.
Tamar et al. [43] show that the distributional Bellman equation
is equivalent to a generative adversarial network (GAN) model.
The authors use this insight to propose a GAN-based approach
and can be used in the multivariate rewards setting.

Our work is also related to solving continuous control tasks.
Proximal Policy Optimization (PPO) takes the biggest possible
improvement step on a policy without stepping so far. PPO meth-
ods are simpler to implement and performs better than other
policy gradient methods. Guide Actor–Critic (GAC) [44] utilizes
Hessians of the critic for actor learning and learns a guide ac-
tor that locally maximizes the critic. In Dual Actor–Critic (Dual-
AC) [45], the actor and dual critic are updated cooperatively
to optimize the same objective function. Trust Path Consistency
Learning (Trust-PCL) [46] is an off-policy algorithm employing a
relative-entropy penalty to impose a trust region on a maximum
reward objective and can perform well on a set of standard
control tasks. Soft Actor–Critic (SAC) [47] is a new RL frame-
work, in SAC the actor aims to maximize expected reward while
also maximizing entropy to succeed at the task while acting as
randomly as possible. Twin Delayed Deep Deterministic policy
gradient (TD3) [48] increase the stability and performance with
consideration of function approximation error.
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3. Proposed method

In this section, we first show that inappropriate CDRL bounds
result in an estimation error, and that this estimation error affects
the overall performance. In Section 3.2, we describe an adaptive
bounds method using bootstrapping that addresses this problem.
A distributional target policy smoothing strategy is presented in
Section 3.3. Section 3.4 summarizes the whole algorithm.

3.1. Motivation

In CDRL, the categorical distribution has an important hyper-
parameter: the bounds of the support (Qmin,Qmax). These bounds
determine the range of the possible action value that the agent
can attain throughout the training process and the estimated ac-
tion value. The action value depends on the policy’s performance
and the state–action pairs. The bounds (Qmin,Qmax) in CDRL only
consider the minimum and maximum action value the agent can
obtain, and remain fixed throughout the training stages. Thus, the
bounds are not accurate enough for the estimation of the action
value.

Given the bounds (Qmin, Qmax) and the number of atoms l, we
assume the support set of this distribution is {zi = Qmin + i∆z :
0 ≤ i ≤ l}, ∆z := Qmax−Qmin

l−1 . The atom probabilities are given by a
parametric model θ : S × A→ Rl. We assume the probability of
each atom zi for state–action pair (s, a) is pi(s, a; θ ). The initial
distribution is typically uniform, as shown in Fig. 1(a), so we
obtain: pi(s, a; θ ) ≈ 1/l, i = 1, . . . , l. In this way, the action value
that the distribution approximates during the early stage is as
follows:

Q̂ (s, a) =
l∑

i=1

zi ∗ pi(s, a; θ )

≈

l∑
i=1

zi ∗
1
l

=
1
l
∗

l∑
i=1

zi

=
1
l
∗
l ∗ (Qmin + Qmax)

2

=
(Qmin + Qmax)

2

(10)

This equation shows that, during the early stage of training,
the estimated action value is approximately equal to (Qmin+Qmax)

2 .
This is greater than the real action value that the agent can obtain
because the performance of the policy is poor during the early
stages of training and the bounds will cause an overestimated
bias.

As the training progresses, the estimated action value Q̂ (s, a)
will decrease and become closer to the real action value. How-
ever, because of the inaccurate bounds and the projection step,
CDRL will soon underestimate the action value. The parametric
distribution is updated by applying the distributional Bellman
operator to each atom zi: z ′i ← r + γ zi, where z ′i is the target
atom, γ ∈ (0, 1] is the discount factor, and r is the reward. The
relationship between zi and z ′i is important. We assume that zi is
greater than z ′i :

r + γ zi ≤ zi (11)
H⇒ r ≤ (1− γ )zi
H⇒ r ≤ (1− γ )(Qmin + i∆z)

In other words, if r ≤ (1 − γ )(Qmin + i∆z), zi is greater than
z ′i ; otherwise zi, is less than z ′i . Because the distance ∆z is large

(When Qmax is far larger than Qmin), inequality (11) will hold
easily as i becomes larger. As shown in Fig. 1(b), the target atoms
z ′3 and z ′4 are less than the original atoms z3 and z4. After the
Bellman update, CDRL applies a projection step. The probability
of the target atom will be allocated to the two adjacent atoms, as
Fig. 1(b) shows. For example, the probability of the target atom
z ′4 is p′4. We define b = (z ′4 − Qmin)/∆z and p4 = p′4(b − ⌊b⌋).
The projection step and the inaccurate bounds mean that the
probability of obtaining the higher action value decreases and the
whole distribution shrinks, as shown by Fig. 1(c). As a result, the
estimated action value will not change any more and the learning
stops.

Does the problem of inaccurate estimated action values
occur in practice for CDRL? Fig. 2 plots the expected action value
of CDRL and the true action value over the learning process on
the OpenAI gym environments Ant-v2. The true action value was
obtained by averaging the discounted return over 10000 time-
steps following the current policy. Then, we saved the visited
state–action pairs during evaluation to obtain the expected value
(the expectation of the return distribution). From Fig. 2(a), for the
Categorical distribution with fixed bounds, there is an initial over-
estimated bias between the expected action value and the true
action value; then the expected action value changes slowly and
the policy gradually stops learning. On the contrary, the expected
action value obtained by adaptive bounds is closer to the true
action value than that of fixed bounds. Moreover, using adaptive
bounds achieves better performance because the achieved true
value is larger.

Finally, we demonstrate that the inaccurate estimated action
value caused by CDRL harms the overall performance. The error
will propagate because of the distributional Bellman operator,
which means it learns an action value distribution from another
distribution that already has errors. Therefore, the error prop-
agates throughout the whole course of learning. Additionally,
in an actor–critic setting, the policy will become poor through
the interplay between the actor and the critic. For example, the
distributional policy gradient algorithm in D3PG is ∇θ J(θ ) ≈
Eρ[∇θπθ (x)E[∇aZw(x, a)]|a=πθ (x)]. If the value estimate Zw itself is
inaccurate, then the actor network updates in the wrong direction
and becomes poor.

3.2. Adaptive bounds

This section introduces a novel method that automatically
adjusts the bounds in CDRL and makes the estimated action value
more accurate. The estimated action value is the expectation of
the distribution, which is determined by the number of atoms l
and the bounds of the distribution. However, l cannot change the
expectation as much as the bounds. Thus, we focus on finding the
appropriate bounds.

The new bounds are (Qmin(st , at ),Qmax(st , at )), which can be
adjusted based on the policy’s performance (time step) and state–
action pairs instead of remaining fixed. We cannot attain the new
bounds directly, and the only thing we can do is collecting the
action values that the agent obtained during several previous
time steps and computing a confidence interval for Qmin(st , at )
and Qmax(st , at ). However, the state–action pairs cannot be the
same in continuous-control tasks and we cannot have several
action values for one state–action pair. We assume the action
value function is parameterized by a critic network Qθ . During the
course of the training, we save a sequence of changing weights
{θi, θi+1, . . . , θj} from time step i to j. Therefore, we can obtain
samples for each state–action pair at different time steps. To
estimate the confidence interval, we are still faced with some
challenges. The first is the limited sample size, because we cannot
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Fig. 1. Procedure of CDRL: (a) At the beginning of the training stage, the categorical distribution is uniform. We use z1, . . . , z10 to denote the possible returns and
q1 is the corresponding probability. (b) Projection step of CDRL. z ′1, . . . , z

′

4 are the possible returns after applying the distributional Bellman operator and p′4 is the
probability of the target position z ′4 . The colored dashed lines are the target probabilities. The rectangles with different colors are the results after projection. (c) After
projection, the distribution (light color) shrinks to the target distribution (dark color). As a result, the estimated action value will stop updating and the learning
process slows down.

Fig. 2. Expected action value and true action value of fixed bounds and our
proposed adaptive bounds on Ant-v2.

save too many weights for reasons of computation time and re-
source. The second issue is the sample dependencies [18], because
the weights are strongly interrelated.

The moving block bootstrap (MBB) [17,49,50] technique is
known to be valid for this situation. Every bootstrapping method,
including MBB, is derived from Efron’s original bootstrapping pro-
cedure [19]. The bootstrapping produces a bootstrapped sample
from the initial samples, whereas MBB first divides the original
sequential data into blocks from which blocks of samples are
drawn with replacement. In this way, MBB breaks the depen-
dencies between the sequential data and takes full advantage of
the limited number of samples. Finally, these samples are used to
estimate the confidence interval of the bounds.

The whole process of estimating the confidence interval is as
follows. Given a sequence of changing weights {θi, . . . , θj} from
time step i to j, we compute the sample action values Qs =

{Qi(s, a), . . . ,Qj(s, a)} for one state–action pair (s, a) through the
critic network. Then, we construct a set of overlapping blocks
{B1, . . . , BN}, where N = j− i− l is the number of blocks and Bi =

(Qi(s, a), . . . ,Qi+l−1(s, a)). B∗1, . . . , B
∗

k represents a random sample
with repetitions from the set {B1, . . . , BN}. Finally, we merge
these blocks to obtain the observations Q ∗s = {Q

∗

1 (s, a), . . . ,
Q ∗k∗l(s, a)}. Given these observations, an estimate T ∗n of the statistic
can be computed. This process is repeated K times, resulting in

K samples of the statistic, T ∗n,1, . . . , T
∗

n,K . With these bootstrapped
samples, we construct a percentile− t(studentized)interval as fol-
lows:

P(T ∈ (2Tn − T ∗1−α/2, 2Tn − T ∗α/2)) ≥ 1− α (12)

where T ∗β is the β-quantile of the ordered population and Tn is the
statistic of the original sample Qs. In bootstrapping, the β-quantile
is usually computed as follows:

T ∗β = (1− r)T ∗j + rT ∗j+1 (13)

where j = ⌊nβ⌋+m, r = nβ−j+m andm depends on the quantile
type. For non-normal distributions, m = β+1

3 . In this way, we can
approximate a 1-α confidence interval (2Tn − T ∗1−α/2, 2Tn − T ∗α/2),
which means the probability of seeing the statistic outside of the
interval is low. When T ∗n = max(Q ∗s ) and Tn = max(Qs), we can
determine the 1-α confidence interval for the upper bound of the
distribution. If T ∗n = min(Q ∗s ) and Tn = min(Qs), we can determine
the confidence interval for the lower bound of the distribution.
Here the confidence interval for Qmin is denoted as (Q lower

min ,Q upper
min )

and the confidence interval for Qmax is denoted as (Q lower
max ,Q upper

max ).
Then we use the upper bound of the confidence interval of Qmax
as the upper bound of the new distribution, and use the lower
bound of the confidence interval of Qmin as the lower bound of the
new distribution. This means the new bounds of the distribution
is (Q lower

min ,Q upper
max ). In this way, the probability of seeing the true

action values inside of the new interval is maximized, which
benefits the approximation of the return distribution.

Before updating the policy, we compute the bounds for every
state–action pair and replace the oldest weights in the buffer
{θi, . . . , θj} by the latest weights every a fixed number of time
steps. In this way, the bounds of the distribution adapt to the
policy and state–action pairs. At the same time, the bounds will
be not too wide (Fig. 3(b)). In Fig. 3(a), the agent cannot obtain
action values as large as (or even close to) Qmax using CDRL
(fixed bounds). Therefore, the atoms between the true maximum
action value and Qmax (we use braces to denote them in Fig. 3(a))
produce an estimation error. The new bounds reduce the distance
between the two atoms, preventing the distribution from shrink-
ing and the learning from stopping too early. Finally, the adaptive
bounds lead to more accurate estimated action values and better
performance.
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Fig. 3. Distribution over return using two methods.

Fig. 2(b) plots the estimated action value and the true ac-
tion value using the novel Adaptive Bounds (AB) method. From
Fig. 2(b), we see that the estimated action value is almost the
same as the true action value and the performance of the new
method is also better than that of the original CDRL (average
value of AB is greater than that of CDRL).

3.3. Distributional target policy smoothing strategy

When applying CDRL to an actor–critic setting, deterministic
policies may overfit to narrow peaks in the value estimate [48].
This problem is aggravated when using adaptive bounds, because
the new bounds will adapt to different state–action pairs and
policies, and so the bounds change with the training process.
Every time the bounds change, the expectation of the distribution
also changes. There will be a sudden change in the critic network,
which will influence the actor network according to the (9):
∇θ J(θ ) ≈ Eρ[∇θπθ (x)E[∇aZω(x, a)]|a=πθ (x)]. This sudden change
will increase the variance of the target and influence the accuracy
of the estimated action value. Thus, we propose a distributional
target policy smoothing method to fix this problem. The proposed
method originates from Expected SARSA [20,51]. The update rule
of Expected SARSA is:

Q (st , at )← Q (st , at )+ α[rt+1+

γ
∑
a

π (st+1, a)Q (st+1, a)− Q (st , at )] (14)

Using the expected value E[Q (st+1, at+1)] as the target value,
rather than Q (st+1, at+1), can reduce the variance in the update.
Unfortunately, we cannot achieve the same idea in distributional
RL and continuous action space problems by enumerating all pos-
sible next actions in order to calculate the expected distribution
as the target distribution. Thus, we propose the following target
distribution:

y = r + Eε[Zθ ′ (s′, πφ′ (s′)+ ε)] (15)

where ε is a small random noise and ε ∼ clip(N (0, σ ),−c, c). σ
determines the range of the noise and the parameter c controls
the limit value of the noise. To approximate this expectation, we
first sample the noise and add it to the target action. Then, we
have a target distribution. This process is repeated K times to
give K target distributions. Because these distributions all have
the same support set, we can find an approximate expectation by
averaging over them. In practice, our proposed DTPS reduces the
variance of the update and further corrects the estimated action
values.

3.4. Proposed algorithm

In this section, we combine all the components described
above and adapt them to an actor–critic setting. The pseudo
code of our Adaptive Smoothing-CDRL (AS-CDRL) is presented in
Algorithm 1. In step 12, we estimate the confidence interval of
the bounds Qmax(s, a) and Qmin(s, a) and set the upper and lower
bound of the intervals as the bounds of our distribution. The
procedure of computing Qmax can be found in Algorithm 2. Qmin
is computed in a similar manner. Steps 13–17 describe the DTPS
procedure.

Algorithm 1 AS-CDRL

Input:
batch size M , learning rates α and β , sample times K , the
frequency of saving the critic network weights N , sample size
B

1: Initialize the critic network Qθ

2: Initialize the actor network πφ

3: Initialize the distributional critic network Zω

4: Initialize the replay buffer B

5: Initialize the target weights(φ′, ω′)← (φ, ω)
6: for t = 1 to T do
7: Sample M transitions (s, a, s′, r) from B

8: if t mod N then
9: save critic weights θt

10: end if
11: sample M transitions (s, a, s′, r) from mathcalB
12: GetUpperConfidence({θ1, . . . , θB},(s, a))
13: for j = 1 to K do
14: â = πφ′ (s′)+ ε

15: z ′ = r + γ Zω′ (s′, â)
16: end for
17: Compute the target distribution ztarget through averaging

over z ′
18: Compute the current distribution z = Zω(s, a)
19: Compute the distributional critic loss:

δω =
1
M

∑
∇ωDKL(Φztarget ||z)

20: Compute the actor loss:
δφ =

1
M

∑
∇φπφ(s)E[∇aZω(s, a)]|a=πφ(s)

21: Update the network parameters:
ω← ω + αδω , φ← φ + βδφ

22: Compute the critic loss using (8) and update θ as in other
common RL methods.

23: Update target networks
24: end for

4. Experiments and discussions

In this section, we describe the experiments conducted to
measure the performance of the proposed AS-CDRL on a set of
continuous-control tasks. In Section 4.1, we describe the exper-
imental setup and set some important hyperparameters of our
method. Section 4.2 evaluates the proposed AS-CDRL and other
baselines on some locomotion tasks and presents the correspond-
ing learning curves. Finally, we analyze the effect of AB and DTPS
in Section 4.3. Readers wishing to reproduce our method are
welcome to use the open-source code.1

1 https://github.com/zhaoyingnan179346/AS-CDRL.

https://github.com/zhaoyingnan179346/AS-CDRL
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Fig. 4. Example Mujoco environments.

Algorithm 2 GetUpperConfidence

Input:
last B weights {θ1, . . . , θB}, block length l, state–action pairs
(s, a), confidence level α(=0.05), the number of bootstrapping
times K .

1: Get sample action values:
QB = {Q (s, a; θ1), . . . ,Q (s, a; θB)}

2: Construct the block:
Bi = (Q (s, a; θi), . . . ,Q (s, a; θi+l−1))

3: The total number of blocks:M ← ⌊B/l⌋
4: for i = 0 to K do
5: Sample M blocks and merge them:

Q ∗B =(Q
∗(s, a; θ1), . . . ,Q ∗(s, a; θM∗l))

6: Compute an estimate of the statistic:
T ∗i = max(Q ∗B )

7: end for
8: Sort({T ∗1 , . . . , T ∗K })
9: T ∗α/2 = (1− r)T ∗j + rT ∗j+1

10: j = ⌊Kα/2+ (α + 2)/6⌋, r = Kα/2+ (α + 2)/6− j
11: return 2 ∗max(QB)− T ∗α/2

4.1. Setup

Our experiments were conducted using the Mujoco [52] envi-
ronment interfaced through OpenAI Gym2 [53]. We chose eight
continuous-control locomotion tasks from Mujoco (see Fig. 4).

In CDRL, we need to set the bounds Qmin and Qmax of the cat-
egorical distribution, and these values have an important impact
on the performance. Finding the optimal bounds for each task is
a process of trial and error. The bounds are listed in Table 1.

For our method, we used the DDPG architecture. Both the
actor and the critic contained two-layer feedforward networks of
400 and 300 hidden nodes, respectively. ReLU non linearity was
applied between each layer. The critic received both the state and

2 https://github.com/openai/mujoco-py.

Table 1
Optimal bounds for CDRL in different tasks.
Task Qmin Qmax

Ant-v2 −200 300
HalfCheetah-v2 −100 1100
Reacher-v2 −50 0
Hopper-v2 −60 600
Walker2d-v2 −100 700
Swimmer-v2 0 120
InvertedPendulum-v2 0 160
InvertedDoublePendulum-v2 0 1500

action as input, and produced the atom probabilities as output.
Both network parameters were updated using Adam [54]. The
learning rate for the actor was 1e−4 and that for the critic was
2.5e−4. After each time step, the networks were trained with a
mini-batch of 100 transitions.

Our proposed AS-CDRL consists of two components: AB and
DTPS. For the AB component, we saved the critic weights ev-
ery N time steps. To provide some intuition, we examined the
performance with different values of N on HalfCheetah-v2 (see
Fig. 5(a)). With N = 100 and N = 1000, the training becomes
unstable because the frequency of saving the weights also rep-
resents the frequency of changing the bounds. If the bounds of
the categorical distribution change too often, the estimated action
value will also change frequently, which makes the estimated
gradients of the actor and the critic inaccurate. Saving the critic
weights at a lower frequency (N = 2000 and N = 3000) improves
the performance and makes the training process smoother. This
situation is similar in other tasks.

DTPS reduces the variance of the target and stabilizes the
training. The sample numbers K in DTPS represent the number of
actions we sample in the small area around the target action. We
examined the performance with different values of K on Ant-v2
(see Fig. 5(b)). When K = 0 (no DTPS), the policy achieves a high
score, but the learning process is unstable and causes divergent
behavior. As K increases, the approximation of the expected
target distribution becomes more accurate and the instability and
divergence problems obviously improve. In practice, we set K =
100.

https://github.com/openai/mujoco-py
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Fig. 5. Performance of AS-CDRL with different hyperparameters.

Fig. 6. True averaged action value and the adaptive bounds.

Table 2
Maximum average return over 10 trials of 1 million time steps. The results show
the ablation results over DTPS and AB.
Method HCheetah Ant Walker2d Swimmer

CDRL 10851.26 3295.39 5237.63 122.44
AS-CDRL - AB 11089.11 3476.00 4566.02 140.22
AS-CDRL - DTPS 11542.88 4845.86 5259.77 96.69
AS-CDRL 12217.74 5198.19 5615.16 141.26

The core idea behind AB is that the bounds can be adjusted
automatically based on the policy’s performance and state–action
pairs. To verify this, the bounds and the true action values during
the training courses were calculated. From Fig. 6, the values of
Qmin and Qmax increase as the performance (the true action value)
improves. The adaptive bounds are not too wide for the true
action value, making the estimated action value more accurate.

4.2. Evaluation

We compared our algorithm against DDPG [14], and the state-
of-the-art policy gradient algorithms D3PG [33], Twin Delayed
Deep Deterministic (TD3) [48], and Proximal Policy Optimization
(PPO) [54]. D3PG is an actor–critic version of CDRL that can
achieve state-of-the-art performance on many continuous tasks.
TD3 reduces the overestimation bias in an actor–critic setting and
greatly improves both the learning speed and performance in a
number of challenging tasks. These methods like AS-CDRL, are
DDPG-family methods that use the deterministic policy gradient
theorem. PPO is a family of policy optimization methods based
on the stochastic policy gradient theorem. PPO is motivated by
Trust Region Policy Optimization(TRPO) [55] and can take the
biggest possible improvement step on a policy. PPO performs well

in continuous-control environments. AS-CDRL builds on CDRL by
applying AB and DTPS to reduce the estimation error and improve
the performance. Besides Categorical distribution, there is also
Mixed of Gaussian (MoG) distribution which do not have bounds.
We compared our method with the distribution reinforcement
learning methods that uses MoG distribution. We denote this
method as MoG-KL [33] for using the MoG distribution while
minimizing the KL-divergence. MoG-DQN [36] is another distri-
butional reinforcement learning method which used a Mixture of
Gaussian distribution to model the distribution of the sum of re-
wards and proposed a new distance metric for MoG distribution:
Jensen–Tsallis Distance (JTD).

Each task was executed over 1 million time-steps. We eval-
uated the policy for 10 episodes every 5000 time steps and
then averaged the rewards. The learning curves are presented in
Fig. 7. From the results, we observe that the proposed AS-CDRL
achieves better performance than the other methods. AS-CDRL
outperforms TD3 on Swimmer-v2, HalfCheetah-v2, Hopper-v2,
and InvertedDoublePendulum-v2. AS-CDRL matches or outper-
forms D3PG in both final performance and learning speed across
all tasks because AS-CDRL has a lower estimation error and im-
proved performance compared with D3PG. From Fig. 7 it is clear
that MoG-KL does not perform well. Since minimizing a distance
metric between two MoG distributions is difficult, neither the
KL-divergence nor the Wasserstein distance between two MoG
distributions can be computed in a closed form and the estima-
tion of it by a Monte Carlo method is computationally expen-
sive and suffers from high variance. This harms the final perfor-
mance. MoG-DQN outperforms our method on the environments
Swimmer-v2 and Hopper-v2. On other tasks like HalfCheetah-v2,
Ant-v2, Walker2d-v2, MoG-DQN underperforms our method due
to the lack of constraint on the return distribution, which makes
the learned reward distribution inaccurate and brittle. MoG-DQN
is completely random at the beginning of the training. Along with
the training, the MoG distribution approximates the real rewards
distribution gradually, using only the one-step reward. Therefore,
the training process is time-consuming and unstable.

To investigate the robustness to random seeds, we record the
results for our method and MoG-DQN with different random
seeds on all the tasks. We plotted the results on a violin plot
in Fig. 8, including markers for the best, worst, and median
performances. In Fig. 8, the y-axis represents the normalized
score over all the tasks. The white point represents the median
score, while the two ends of the line represent the best and worst
score. The width of the shape represents the frequency of getting
the corresponding score. Fig. 8 shows that the violin plot of our
method is wider and shorter, which means that there is little
difference between the best and worst score. Furthermore, our
method achieve similar results regardless of the different random
seeds. The violin plot of MoG-DQN is thinner and longer, which
means MoG-DQN may obtain very different performance for just
setting different random seeds. This will increase the difficulty
of debugging and practical applications. Therefore, our method is
much better than MoG-DQN in terms of both the performance
and the robustness.

4.3. Ablation

This subsection describes ablations to remove components of
our algorithm in order to compare their separate contributions.
Our algorithm includes two parts: AB and DTPS. The results pre-
sented in Table 2 compare the performance of each component.
The significance of each component varies from task to task.
Across all four tasks, the best performance is obtained by AS-
CDRL. The biggest gain is due to the inclusion of AB, which is
particularly helpful on tasks with wide bounds (Qmax − Qmin is
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Fig. 7. Learning curves for the OpenAI gym control tasks. The shaded region represents the standard deviation of the average evaluation over three trials.

Fig. 8. Distribution of performance across random seeds.

large), which is intuitively reasonable. If Qmax − Qmin is large,
the training produces a greater estimation error and harms the
final performance. In tasks like Swimmer-v2, DTPS is more helpful
than AB. This is because the range of possible action values is not
large and the estimation error is not a serious problem. In such
situations, the contribution of AB is not as large as in other tasks.

DTPS can enhance the performance in most of these tasks,
especially those with large stochasticity, because the target action
for the same state may be different and changes frequently. As a
result, the variance of the update is large and increases the bias of
the estimated action value. DTPS samples several actions around
the target action and smoothes the target distribution. In this
way, DTPS can eliminate the effect of stochasticity and improve
the performance.

5. Conclusion

This paper has described two novel modifications to CDRL.
The first, Adaptive Bounds, saves the critic weights over a fixed
number of time steps and obtains the associated action values as
the samples for different state–action pairs in different learning
stages. Moving block bootstrapping then computes confidence in-
tervals for Qmax and Qmin based on these samples, and the upper
and lower bound of these intervals are taken as the adapted
bounds.

In practice, AB effectively reduces the estimation error in
CDRL. The second modification, Distributional Target Policy
Smoothing changes the target distribution to the expected dis-
tribution over some similar actions, which further correct the
estimated action values.

AB and DTPS constitute our proposed method, Adaptive
Smoothing-CDRL. AS-CDRL significantly improves the
performance and learning speed of CDRL in eight locomotion
tasks taken from Mujoco. Our method outperforms several state-
of-the-art algorithms, including TD3 and PPO. In this paper we
combine our method with DDPG and show promising avenue
for improved performance. Incorporating other policy gradient
methods (e.g. trust regions) is an exciting avenue for future work.
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Table 3
Average maximum return for different types of networks.
Method HCheetah Ant Walker2d

FF 12217.7 ± 427.0 5198.1 ± 121.7 4995.6 ± 479.3
RNN 12197.0 ± 102.5 4300.2 ± 901.4 3888.1 ± 358.8
LSTM 11632.0 ± 682.8 3765.2 ± 907.5 4666.6 ± 757.9
GRU 11511.7 ± 241.3 4315.0 ± 475.9 4069.0 ± 276.5

Table 4
Average maximum return for different numbers of hidden node.
Method HCheetah Ant Walker2d

300–200 10834.3 ± 456.3 4587.2 ± 83.9 4183.1 ± 527.7
400–300 12217.7 ± 427.0 5198.1 ± 121.7 4995.6 ± 479.3
400–400 12026.2 ± 430.7 5204.7 ± 285.4 4830.1 ± 370.6
400–500 12390.9 ± 207.9 4802.7 ± 1063.1 4947.1 ± 782.7

Appendix A. Networks

In all experiments, we use feedforward networks to param-
eterize the policy. Actually, there are also some methods that
using recurrent networks to solve the problem of partial ob-
servability. We add the comparison results with three types of
recurrent networks: Long Short-Term Memory (LSTM), Recurrent
Neural Networks (RNN) and Gated Recurrent Unit (GRU). Ta-
ble 3 shows the results for three tasks: Ant-v2, Walker2d-v2 and
HalfCheetah-v2. Table 3 includes the average maximum return
and the standard deviation over five trials.

It is clear that feedforward networks achieve best performance
over all three tasks. In our study, the tasks are fully observable,
therefore using recurrent networks is unnecessary and increases
the complexity of training. In addition, our method is trained
using a replay buffer. During training, we sample the transitions
from the replay buffer randomly and the relationship between
different batches is weak. As a result, the memory stored in
recurrent networks is not useful for the training step. So we select
the feedforward networks. The full learning curves are shown as
Fig. 9.

Appendix B. Number of hidden nodes

The number of the hidden nodes determines the number of the
parameters and the expression of the networks. In this paper the
policy networks are with 400, 300 hidden units. Here we display
the comparison results with other numbers of hidden nodes.
Table 4 shows the results for three tasks: Ant-v2, Walker2d-
v2 and HalfCheetah-v2. Table 4 includes the average maximum
return and the standard deviation over five trials.

From Table 4, the performance of 300 and 200 hidden nodes
is the worst. As we increase the number of the hidden nodes,
the performance does not improve obviously. 400–300, 400–400
and 400–500 hidden nodes achieve similar results. Considering
both the performance and the difficulty of training, we select the
400 and 300 hidden nodes. The full learning curves are shown as
Fig. 9.

Appendix C. Optimizer

In this paper, we use Adam as the optimizer for the actor
and critic networks. Here we list the comparison results with
other three popular optimizers: Adamax, RMSprop and SGD. Ta-
ble 5 shows the results for three tasks: Ant-v2, Walker2d-v2 and
HalfCheetah-v2. Table 5 includes the average maximum return
and the standard deviation over five trials.

Table 5 indicates that Adam achieves better performance than
three other optimizers. SGD is easy to implement but faces prob-
lems when finding a good learning rate and is not suitable for

Table 5
Average maximum return for different optimizers.
Method HCheetah Ant Walker2d

Adam 12217.7 ± 427.0 5198.1 ± 121.7 4995.6 ± 479.3
Adamax 9785.3 ± 285.3 3338.4 ± 952.3 4663.0 ± 680.0
RMSprop 10669.5 ± 606.8 2476.6 ± 227.5 3308.2 ± 371.7
SGD 7898.3 ± 717.8 1339.3 ± 523.3 2023.2 ± 245.4

Table 6
Average maximum return for different sizes of mini-batch.
Method HCheetah Ant Walker2d

50 10957.2 ± 385.0 4316.5 ± 707.9 4129.2 ± 355.8
100 12217.7 ± 427.0 5198.1 ± 121.7 4995.6 ± 479.3
200 11775.8 ± 616.1 4713.3 ± 211.3 4700.0 ± 707.6
300 12203.7 ± 372.6 5076.7 ± 608.8 5084.2 ± 623.2
400 11740.8 ± 351.6 4861.4 ± 715.0 5061.5 ± 476.4

training non-stationary data in reinforcement learning [56]. RM-
Sprop [57] is closely related to Adam; however, there are still a
few differences: RMSprop generates its parameter updates using
a momentum on the rescaled gradient, whereas Adam updates
are directly estimated using a running average of the first and
second moment of the gradient. Furthermore, RMSprop lacks a
bias-correction term, which leads to very large stepsizes and
often divergence [57,58]. Adamax is a variant of Adam based
on the infinity norm, which converges to the more stable value
but can easily get stuck at the suboptimal solution [57]. Adam
combines the advantages of AdaGrad and RMSprop: the ability
of AdaGrad to deal with sparse gradients and the ability of RM-
SProp to deal with non-stationary objectives [57]. Compared with
Adamax, Adam is well-suited to a wider range of optimization
problems. Therefore we select Adam optimizer. The full learning
curves are shown as Fig. 9.

Appendix D. Mini-batch size

In this paper, the mini-batch size we select is 100. The mini-
batch size plays an important role in reinforcement learning.
If the mini-batch size is large, then the estimated gradient is
stable and beneficial to all the transitions. For a small mini-batch
size, the estimated gradient is random and only valid for some
transitions. Thus, typically, larger mini-batch size leads to better
performance.

To justify that our selection of 100 transitions is optimal, we
choose five different sizes of mini-batch: 50, 100, 200, 300, 400.
Table 6 shows the results for three tasks: Ant-v2, Walker2d-
v2 and HalfCheetah-v2. Table 6 includes the average maximum
return and the standard deviation over five trials.

Table 6 indicates us that a small batch-size (50) cannot achieve
good performance, while 100 transitions achieves good perfor-
mance over the three tasks. Although, a larger mini-batch size is
good for training, the improvement is not obvious as the mini-
batch size is increased. This is because increasing the size of
mini-batch eliminates the difference between transitions and the
gradient descent directions cancel out. Furthermore, larger mini-
batch size requires more computing resources. Therefore, we
select 100 as our optimal mini-batch size. The full learning curves
are shown as Fig. 9.

Appendix E. Learning rate

In this paper, the learning rate we choose is 0.00025. Learning
rate is an important hyper parameter for our method. A low
learning rate reduces the convergence rate. A large learning rate
skips the optimal solution. Here we choose seven different learn-
ing rates, ranging from 0.01 to 0.00003. Table 7 shows the results
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Fig. 9. Learning curves for different hyper parameters.
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Table 7
Average maximum return for different learning rates.
Method HCheetah Ant Walker2d

0.01 −289.7 ± 204.4 −1892.3 ± 1250.7 869.3 ± 542.1
0.001 10618.6 ± 218.4 2465.4 ± 273.8 3234.9 ± 637.7
0.0003 12433.2 ± 283.9 3719.6 ± 379.5 4325.2 ± 627.4
0.00025 12217.7 ± 427.0 5198.1 ± 121.7 4995.6 ± 479.3
0.0002 11183.8 ± 1386.1 5047.7 ± 741.5 4692.4 ± 334.6
0.0001 10662.6 ± 648.8 5037.4 ± 201.1 3763.6 ± 458.1
0.00003 5506.9 ± 416.3 3029.1 ± 995.7 2423.5 ± 142.4

Table 8
Hyper parameter values.
Hyper parameter Value

Discount factor 0.99
Number of hidden nodes (400, 300)
Activation function (Relu, Relu, Tanh)
Batch size 100
Learning rate for critic 2.5e−4
Learning rate for actor 1e−4
Noise clip 0.5
Optimizer Adam
Target network update rate 0.005
Exploration noise 0.1
Evaluation frequency 5000
Replay Buffer size 1e6

for three tasks: Ant-v2, Walker2d-v2 and HalfCheetah-v2. Table 7
includes the average maximum return and the standard deviation
over five trials.

As evident, neither a high nor low learning rate can achieve
good performance. Considering both the average return and the
standard deviation, we select the learning rate of 0.00025. The
full learning curves are shown as Fig. 9.

There are also some other critic values, such as the exploration
noise, size of the replay buffer, discount factor and activation
function. These hyper parameters are always set based on the
experimental results and the experience. The exploration noise
is set as 0.1. A higher noise causes the agent to explore the
environment more but increases the training time, whereas a
lower noise causes the agent to get stuck at the suboptimal policy.
We set the size of the replay buffer as 1e6. The size of the
replay buffer determines the total size of the saved transitions.
A smaller size leads to a loss of diversity between the transitions,
while a larger size consumes more memory resources. All hyper
parameters for our algorithms are shown in Table 8.
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