
Knowledge-Based Systems 203 (2020) 106140

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Generating attentive goals for prioritized hindsight reinforcement
learning
Peng Liu a, Chenjia Bai a, Yingnan Zhao a, Chenyao Bai b, Wei Zhao a,∗, Xianglong Tang a

a School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
b Department of Public Education, Shanghai Customs College, Shanghai 201204, China

a r t i c l e i n f o

Article history:
Received 18 June 2019
Received in revised form 10 June 2020
Accepted 12 June 2020
Available online 17 June 2020

Keywords:
Attentive goals generation
Prioritized hindsight model
Hindsight experience replay
Reinforcement learning

a b s t r a c t

Typical reinforcement learning (RL) performs a single task and does not scale to problems in which
an agent must perform multiple tasks, such as moving a robot arm to different locations. The multi-
goal framework extends typical RL using a goal-conditional value function and policy, whereby the
agent pursues different goals in different episodes. By treating a virtual goal as the desired one, and
frequently giving the agent rewards, hindsight experience replay has achieved promising results in the
sparse-reward setting of multi-goal RL. However, these virtual goals are uniformly sampled after the
replay state from experiences, regardless of their significance. We propose a novel prioritized hindsight
model for multi-goal RL in which the agent is provided with more valuable goals, as measured by the
expected temporal-difference (TD) error. An attentive goals generation (AGG) network, which consists
of temporal convolutions, multi-head dot product attentions, and a last-attention network, is structured
to generate the virtual goals to replay. The AGG network is trained by following the gradient of TD-
error calculated by an actor–critic model, and generates goals to maximize the expected TD-error
with replay transitions. The whole network is fully differentiable and can be learned in an end-to-end
manner. The proposed method is evaluated on several robotic manipulating tasks and demonstrates
improved sample efficiency and performance.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Reinforcement learning (RL) [1] provides a framework for
training an agent to perform a task by trial and error. RL has
been successfully applied to a wide range of problems, including
human-level performance on Atari games [2,3], the board game
Go [4,5], and challenging robotic tasks [6,7]. In each of these tasks,
the RL algorithm learns a policy to perform a single task and
optimizes a single reward function. However, in many real-world
scenarios, the agent needs to perform a diverse set of tasks, such
as moving a robot arm to different target positions. In this case,
each target position is regarded as a specific goal, and the agent
pursues different goals in different episodes. The multi-goal RL [8]
algorithm learns a policy to achieve all possible goals in the whole
goal space by extending the value function, policy, and reward
to become goal-conditional functions. The performance of multi-
goal RL algorithm is evaluated by the average success rate of all
possible goals.

∗ Corresponding author.
E-mail addresses: pengliu@hit.edu.cn (P. Liu), bai_chenjia@stu.hit.edu.cn

(C. Bai), ynzhao_atari@hit.edu.cn (Y. Zhao), baichenyao@shcc.edu.cn (C. Bai),
zhaowei@hit.edu.cn (W. Zhao).

In multi-goal RL, the agent only receives a reward if it suc-
cessfully reaches the desired goal. It is almost impossible to reach
the goal by chance, even in the simplest environment. Hindsight
experience replay (HER) [9] has achieved promising results in
the sparse-reward setting of multi-goal RL by treating a virtual
goal as the desired one, and frequently giving the agent rewards.
Specifically, whereas a typical RL agent learns nothing if it fails to
achieve the original goal, the HER agent obtains information from
the already-achieved goals by substituting them for the original
goal. Because the achieved goals have been completed under
the current policy, the agent receives rewards more frequently
than when using the original goal, thus accelerating the learning
process. HER can be combined with off-policy methods that use
a replay buffer to reuse experiences.

However, the virtual goals in HER are uniformly sampled from
experience after the replay state, regardless of their significance.
The HER agent only considers those goals that easily result in re-
wards, but does not consider which goals might be more valuable
for the agent to pursue. It would be more efficient to prioritize
different goals and use the more important goals in the training
process.

We adopt the principle of prioritized experience replay [10] in
a multi-goal RL setting. The proxy of prioritized experience replay
is the magnitude of a transition’s temporal-difference (TD) error

https://doi.org/10.1016/j.knosys.2020.106140
0950-7051/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2020.106140
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106140&domain=pdf
mailto:pengliu@hit.edu.cn
mailto:bai_chenjia@stu.hit.edu.cn
mailto:ynzhao_atari@hit.edu.cn
mailto:baichenyao@shcc.edu.cn
mailto:zhaowei@hit.edu.cn
https://doi.org/10.1016/j.knosys.2020.106140

2 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

is suitable to indicate how valuable the transition is. Transitions
with a higher magnitude of TD-error are more important for
learning. In this study, we measure the importance of goals by
their expected TD-error, which is calculated by the TD-error of re-
play transitions with the specific goal. However, naively sampling
goals with high expected TD-errors from the replay buffer has
two limitations: (i) the goals included in the replay buffer all lie
in the trajectories generated by previous policies, thus restricting
the search space of appropriate goals, which may be anywhere
in the goal space; (ii) constructing a prioritized replay buffer is
known to be computationally expensive. Thus, we propose an
independent module to generate goals rather than sample them,
which enables us to overcome both limitations. We find that goals
with high expected TD-errors are not randomly distributed in the
goal space, but are gathered in some specific areas that change as
the policy updates. It should be possible to use a neural network
to learn how to generate goals with high expected TD-errors.

In this paper, we propose a prioritized hindsight model for
multi-goal RL in a sparse-reward setting. The attentive goals
generation (AGG) network is structured to generate the replay
goals. The AGG network consists of temporal convolution net-
works (TCNs), multi-head dot product attention (MHDPA) [11],
and a last-attention network. TCNs have a large receptive field
and position-sensitive properties, enabling the AGG network to
capture long-term information and position-dependence from
episodic experience. MHDPA, proposed in [11], allows the AGG
network to use the attention mechanism to perform relational
reasoning involving various time steps in an episode. The last
attention network converts the feature sequence to a single ele-
ment by extracting related features of the particular replay state,
and then finally outputs the goal. The generated goal is used
to recompute the reward and forms the input to an actor–critic
model. The AGG network is trained to maximize the expected
TD-error of the generated goals by following the gradient of the
actor–critic model, and is thus updated as the policy changes.
A fully differentiable gradient back-propagation process is de-
rived so that the AGG network can be trained in an end-to-end
manner. We evaluate the proposed method on several robotic
manipulation tasks, and demonstrate the improved performance
and sample efficiency of our approach.

The main contributions of this paper are as follows: (i) a
novel prioritized hindsight model is proposed for multi-goal RL
in a sparse-reward setting; (ii) a multi-goal RL agent learns from
virtual goals generated by an AGG network, which uses temporal
convolution and attention mechanism to reason goals; (iii) the
AGG network is trained to maximize the expected TD-error of
the generated goals and the whole network is fully differentiable;
and (iv) several robotic manipulation experiments demonstrate
the effectiveness of the proposed method.

The remainder of this paper is organized as follows. Section 2
reviews some related work. Section 3 introduces the background
knowledge used in subsequent sections. In Section 4, we describe
the proposed prioritized hindsight method and AGG network in
detail. Section 5 presents the experimental results. A discussion of
the results and the conclusions to this study are given in Sections
6 and 7, respectively.

2. Related work

The multi-goal RL framework generalizes the typical RL policy
in terms of both states and goals. Multi-goal RL was first em-
ployed in the development of Horde [12], which uses several sub-
policies learned by sub-agents to represent the goal-conditional
knowledge. Universal value function approximators (UVFAs) [13]
formally describe the multi-goal RL problem and provide goal-
conditional value functions and policies. HER [9] encourages the

agent to learn from previous information in sparse-reward envi-
ronments, with achieved goals substituted for the original goal to
provide the agent with frequent rewards. The knowledge gained
in this way can be generalized from replay goals to the whole
goal space, and so the agent finally learns to achieve arbitrary
goals. Hindsight policy gradient [14] extends HER to on-policy
RL domains by adding importance sampling. RIG [15] extends
HER to image-based observation environments by constructing
a latent space learned by a variational auto-encoder [16], and
randomly samples goals from the latent space rather than the
observation space. ARCHER [17] analyzes the bias caused by HER
and uses aggressive rewards for hindsight transitions. GHER [18]
proposes to use guided goals with high policy level to improve
generalization. Dynamic HER [19] extends HER to handle dynamic
goals by automatically assembling successful experiences from
two relevant failures.

Curriculum RL [20] is another research direction that learns
goal-conditional policies. However, the purpose of curriculum
RL is to solve a final task, rather than a task set. The final
task is usually the most complex or comprehensive one, and
is typically difficult to solve directly. Curriculum RL learns to
solve simple tasks first, and then gradually solves more complex
tasks. Powerplay [21] is a classic curriculum method that con-
tinually adds new tasks and task solvers to the current policy,
enabling the agent to learn new skills without forgetting previ-
ously learned skills. This idea has been extended to the creation
of increasingly hard initial points and goal points in navigation
tasks [22,23]. An asymmetric self-play curricula method has been
developed to explore the environment before training for the
main task [24]. The task solver explores the environment using
intrinsic motivation [25] from the task setter.

Hierarchical RL [26,27] uses the concept of goals to decompose
hard problems into several hierarchies. In the two-layer hierarchy
architecture [28], the high-level agent proposes subgoals with
temporal abstraction, and the low-level agent learns a policy to
solve the subgoal in each time step. Recent achievements [29,30]
in hierarchical RL also follow the option framework to learn hier-
archical policies, where the high-level agent learns from external
rewards and the low-level agent learns from intrinsic rewards.
The hindsight idea has also been used in hierarchical RL to con-
struct hierarchies with more than three levels [31]. In each level,
the agent substitutes hindsight goals for the original goal to
obtain rewards more frequently.

Temporal convolution was first used in Wavenet [32] for
speech generation. Recent research [33] indicates that temporal
convolution can achieve good results in audio synthesis, language
modeling, and machine translation by using dilated convolu-
tion [34] to enlarge the receptive field for learning long-term
dependencies. It has been shown [35] that temporal convolution
has a longer memory than recurrent neural networks [36,37], and
is thus suitable for our problem of reasoning goals from both
current and past experiences. The temporal convolution network
has been used in RL domains to solve imitation learning [38] and
meta-learning [39] problems.

The attention mechanism [40,41] aims to extract useful
problem-related information while removing redundant informa-
tion. Transformer [42], which is based solely on attention [11], has
achieved state-of-the-art results in machine translation. Recently,
the attention architecture has been used in RL to solve partial
observation problems [43], discover controllable elements of ob-
servations [44], derive relational inductive biases of states [45],
and develop interpretable agents for deep Q-learning [46].

3. Background

In this section, we introduce the background to the proposed
method. Specifically, we discuss the Markov Decision Process
(MDP), multi-goal RL, HER, and prioritized experience replay.

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 3

3.1. Markov decision process

The RL problem is formed as an MDP. We assume that the
environment is fully observable. In each time step, the agent
obtains the current state st ∈ S , takes action at , interacts with
the environment, receives a reward rt , and updates to the next
state st+1. The action is chosen based on the current policy π (a|s).
The return at time step t is the cumulative discount reward in
the future:

∑T
i=t γ

i−t ri, where γ is the discount factor. The value
function Vπ (s) represents the expected return when starting in
state s and following policy π thereafter. The action value func-
tion Q π (s, a) represents the expected return starting from state s,
taking action a, and thereafter following policy π until the end of
the episode.

The actor–critic model [47] is a kind of RL algorithm that
is suitable for environments with a continuous action space,
such as robotics. The actor–critic model consists of an actor
to parameterize the policy and a critic to represent the value
function. Deep deterministic policy gradient (DDPG) [48] is a
type of actor–critic method that uses a deterministic policy. The
actor outputs an action according to the current state, and then
Gaussian noise is added to the action to encourage exploration.
The agent interacts with the environment through exploratory
actions, determines the next state, and receives a reward. In the
training stage, the critic calculates a Q function and then updated
to minimize the TD-error. The actor is updated by maximizing the
Q function calculated by the critic. DDPG uses a target network
and experience replay to stabilize the learning process, as in
deep Q-learning [49–51]. The proposed method uses DDPG as the
fundamental algorithm.

3.2. Multi-goal RL

We consider multi-goal RL in which an agent learns a policy
to achieve multiple goals. Each episode starts with a specific goal
g , which is uniformly sampled from the goal space G. The goal
is fixed for the whole episode, and the agent uses this goal as
part of the input to the actor–critic model to interact with the
environment. The action at is chosen by following policy π (st , g),
which is conditioned on both the state and the goal. The reward
function r(st , at , st+1, g) is a binary reward that becomes 0 only
when the state reaches the pre-specified goal; otherwise, it is −1.
The reward function indicates that the agent must reach the goal
as soon as possible. The definition of the reward is

r(st , at , st+1, g) = 1{d(f (st+1), g) < ϵ} − 1, (1)

where ϵ is the tolerance distance, d(·, ·) is the Euclidean distance
function, and 1{·} is the indicator function. f (·) projects the state
from the state space S to the goal space G. In robotics, the
goal space is usually a subspace of the state space. For example,
the state space in robot reaching tasks may include the joint
position, joint angles, joint velocities, and so on. However, the
goal space only consists of three-dimensional space coordinates,
because these are sufficient to determine whether the robot arm
has reached the desired position. Therefore, the goal space has
fewer dimensions than the state space. The projection function
only needs to extract specific elements of the state space.

A multi-goal RL agent tries to maximize the cumulative reward
in the whole goal space, and should be evaluated by sampling
goals from the goal space according to the uniform distribution,
i.e., g ∼ unif (G). The Q -function Q (st , at , g) implies the expected
return of state, action, and goal, as

Q (st , at , g) = Es∼ρ,a∼π [

T−1∑
i=t

r(si, ai, si+1, g)], (2)

where T is the episode length and ρ is the distribution of state
determined by the environment. The objective of multi-goal
RL is to find a policy π∗(s, g) that optimizes the value func-
tion in both the goal space and the state space: π∗(s, g) =

argmaxπ Q (s, a, g) [13].
The Q-learning algorithm in multi-goal RL is trained by min-

imizing the square of the TD-error of replay experience. The
absolute value of the TD-error is computed as

|δ| = |Q (st , at , g) − yt |, (3)

where yt = r(st , at , st+1, g) + γ maxa′ Q ′(st+1, a′, g) and Q ′ is
computed by the target network. The Q network is trained to
minimize E[|δ|2].

The reason for using binary rewards rather than shaped re-
wards [52] is that they are more suitable for practical tasks.
Shaped rewards need to be carefully hand-crafted through some
heuristic method, and often result in biased learning. Binary
rewards more naturally reflect the original purpose of the task, as
there are only two kinds of results: success or failure. However,
the binary reward function may make it difficult for the agent
to obtain rewards and can hamper the learning process. The HER
algorithm is used to overcome this problem.

3.3. Hindsight experience replay (HER)

The HER algorithm [9] is used to solve the sparse-reward prob-
lem in multi-goal RL settings. Each episode starts with an original
goal og and follows policy π (st , og). The episodic transitions
stored in the replay buffer are represented as:

E = {(st , at , rt , st+1, ag t , og)}
T−1
t=0 , (4)

where ag t = f (st) indicates the achieved goal at time step t
and f (·) is the projection function. og is the original goal, which
is fixed in E. The reward rt is computed with og using Eq. (1).
If the transition (st , at , rt , st+1, ag t , og) is sampled for training,
then the reward rt will be almost −1 because the agent finds it
difficult to reach og , and the policy will update slowly.

The idea of HER is to present a virtual goal gHer that is easier
to achieve than og . gHer is sampled after the replay time step
from the same episode as the replay transition. For example, if
the replay transition is sampled from E at step t , then gHer is
randomly sampled from the achieved goals after step t ,

gHer = unif (ag t+1, ag t+2, . . . , agT−1). (5)

The goal-conditional reward function is then recomputed as
r(st , at , st+1, gHer). Because gHer is in the same episode as the
replay state, the probability of d(ag t+1, gHer) < ϵ will generally
be greater than that of d(ag t+1, og) < ϵ. The virtual goal used in
HER allows the agent to receive rewards more frequently, thus
accelerating the learning process.

However, the substitute goals are uniformly sampled from
the achieved-goal sequence in the future, regardless of their sig-
nificance. The HER algorithm only considers which virtual goals
easily produce rewards, but does not consider which goals are
more important for the agent to learn. It would be more efficient
if we could prioritize goals and use more valuable goals for
training.

3.4. Prioritized experience replay

Deep RL requires massive amounts of data for training. In off-
policy RL methods, such as DQN and DDPG, the experiences are
stored in the replay buffer to reuse. Although randomly sampling
from the replay buffer is an easy default choice, the performance
of RL algorithms can be further improved by introducing some
sampling guidelines. Prioritized experience replay [10] is based

4 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

Fig. 1. Visualization of the distribution of expected TD-error in the goal space of the FetchSlide task. We sample 10000 goals equidistantly in the goal space. For
each goal, the policy executes for 50 episodes, then the TD-errors in all time steps are averaged. The distribution changes when the policy is updated; we visualize
the distribution at training steps 100 and 500.

Fig. 2. The AGG network parameterized by φ uses current state st and episodic
memory Mt as input, then outputs g t = Gφ(st ,Mt). The actor parameterized by
θ calculates an action according to πθ(st , g t). The action has exploration noise
added, and is then input to the critic. The critic parameterized by ψ outputs the
action value function Qψ(st , at , g t), and then the TD-error is computed.

on the idea that the TD-error provides a good proxy for the utility
of an experience. High TD-errors indicate that an experience
is more surprising and unexpected to the agent; therefore, the
probability of this experience being sampled again should be
higher than that of an experience associated with a low TD-error.

We integrate the principle of prioritized experience replay
into multi-goal RL by using goals that have high expected TD-
errors for training. Prioritized experience replay is an approxi-
mate means of accomplishing this by sampling the transitions
of a specific goal and averaging them to get the expected TD-
error. However, the process can restrict the search space and
is computationally expensive. Thus, we propose an independent
AGG network to generate goals with high expected TD-errors,
rather than sample goals from the replay buffer. The AGG network
can be updated to follow the changes in TD-error distribution and
policy.

4. Proposed method

This section describes the proposed method in detail. In Sec-
tion 4.1, we discuss our motivation for generating goals based
on TD-error. In Section 4.2, we introduce the overall process
of the proposed method and derive the training rules of the
model. Section 4.3 presents the architecture of the proposed AGG
network. The algorithmic description of the proposed method is
given in Section 4.4, and the relationship between our method
and HER is discussed in Section 4.5.

4.1. Motivation

To analyze the distribution of expected TD-error in the goal
space, we visualize the value of TD-error with sampled goals

in the FetchSlide task. This task requires the robot’s arm to hit
and push a slider into the target position. The goal space is
represented by a three-dimensional vector (x, y, z) that describes
the position of the slider in space; z is fixed to imply that the
slider is always lying on the table. The goal space of FetchSlide
only varies in the x and y dimensions, making it convenient for
visualization.

We denote the x, y, and z axes of the goal space as Gx, Gy, and
Gz , respectively. Because the z-axis is fixed, we only consider the
variation in Gx and Gy. We sample 100 values equidistantly in the
range of Gx; these values are denoted as {gx1 , gx2 , . . . , gxi , . . . ,

gx100}. Similarly, we sample 100 values equidistantly in the range
of Gy; these values are denoted as {gy1 , gy2 , . . . , gyj , . . . , gy100}.
Then, we combine each gxi and gyj with a fixed g z to obtain the
sampled goals in the whole goal space, which are denoted as

{(gx1 , gy1 , g z), . . . , (gxi , gyj , g z), . . . , (gx100 , gy100 , g z)}.

Furthermore, g ij = (gxi , gyj , g z). We obtain 10000 sampled goals
because i ∈ [1, 2, . . . , 100] and j ∈ [1, 2, . . . , 100]. For each
sampled goal g ij, we compute the expected TD-error Eπ[δg ij] of
g ij with a specific policy π . In particular, we use π at training
epochs 100 and 500 of the HER algorithm. The distributions of
the absolute values of Eπ[δg ij] are shown in Figs. 1(a) and 1(b),
respectively.

To compute Eπ[δg ij], the policy π is executed with g ij for
50 episodes, and the TD-error is computed in each time step.
Subsequently, all TD-errors are averaged to describe the expected
TD-error of the goal, as follows:

Eπ [δg ij] =
1

50T

[50∑
e=0

T−1∑
t=0

[
ret + γQ (set+1, a

e
t+1, g ij)−Q (set , a

e
t , g ij)

]]
.

(6)

We compute the expected TD-error of 10000 sampled goals
using Eq. (6); thus, we obtain 10000 expected TD-errors as
{Eπ [δgij]}, where i ∈ [1, 2, . . . , 100] and j ∈ [1, 2, . . . , 100].
Each point in Fig. 1(a) or Fig. 1(b) represents an absolute value
of Eπ [δgij] for a specific goal gij under the policy π at epoch 100
or 500. We arrange these 10000 values as a square image of size
100 ∗ 100 according to its position in the goal space, as shown
below. The coordinate in the figure indicates the relative position
of goals in the goal space; the correspondence between the afore-
mentioned coordinates and the actual physical coordinates can be
obtained using the definition of gij. We analyze the visualization
shown in the aforementioned figure as follows.

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 5

1. The choice of goals can significantly affect the value of
the TD-error. Because the reward function ensures that the
agent only receives rewards when the goal is reached, the
trajectory of the whole episode exhibits some tendency to-
wards the goal. The goal significantly affects the states and
actions chosen in the trajectory, and thus impact greatly
on TD-error. For example, if the goal lies in an area that
the agent can reach easily, then the average TD-error of
the whole episode becomes low because the value-function
estimation is accurate in this area. The goals with low
expected TD-errors are less useful for improving the agent’s
skills.

2. The TD-error distribution changes when the policy is up-
dated. As shown in Fig. 1(a), in the early stages of training,
the goals with high expected TD-errors are scattered in
blocks across the goal space. As the policy improves, more
and more goals can be accurately estimated by the value
function. The goals with high expected TD-errors that are
yet to be learned become clustered at the edge of the goal
space, as shown in Fig. 1(b).

Based on the above analysis, the distribution of expected TD-
error is not random or irregular in the goal space. Randomly
sampling goals from each episode, as in HER [9], fails to utilize
the structure of the TD-error distribution and is less efficient
for learning. It would be better if we could use the structure of
the TD-error distribution and replay goals with high expected
TD-errors during training. Naively sampling goals with high TD-
errors only searches through those goals that are stored in the
replay buffer, rather than over the whole goal space. Thus, we
propose the use of a neural network to learn how to generate
goals with high expected TD-errors in the whole goal space. This
overcomes the restriction of the search space when sampling
goals and is more computationally efficient. Moreover, the pa-
rameters of the network can update with changes in the TD-error
distribution, by connecting the proposed network with the actor–
critic model, ensuring that the generated goals change as the
policy is updated.

4.2. Prioritized hindsight model

The architecture of the proposed method is shown in Fig. 2.
The replay goal g t used in our architecture is not sampled from
experience, but generated by the AGG network (the dotted box
in Fig. 2). The AGG network parameterized by φ uses the current
replay state st and episodic memory Mt as input, then outputs g t
as according to

g t = Gφ(st ,Mt), (7)

where

Mt = [ag0, ag1, . . . , agT−1, og]. (8)

The first T elements of Mt are the achieved-goal sequence of
replay episode E, from which st is taken. The last element of Mt
is the original goal of E. The reasons for using the achieved-goal
sequence as episodic input Mt , rather than the state sequence,
are as follows: (i) the goal space is a subspace of the state
space, which is usually low-dimensional compared to the state
space, and thus has lower computational complexity; and (ii) the
goal sequence has a better long-term structure than the state
sequence because it only contains the essential elements of the
state.

The goal g t generated by the AGG network is used to re-
compute the reward r(st , at , st+1, g t) of the replay transition
according to Eq. (1). The generated goal and state are then con-
catenated as [st , g t] and input into the actor–critic network,

which is defined by DDPG. The actor, parameterized by θ, com-
putes the deterministic action πθ(st , g t) according to the state
and goal. The action has Gaussian noise N added to encourage
exploration, resulting in

at = πθ(st , g t) + N . (9)

The action, state, and goal are then concatenated to form the
input to the critic network, which is parameterized by ψ. The
critic network calculates the action value function Qψ(st , at , g t)
and the TD-error as |Qψ(st , at , g t) − yt |, where yt is the target
value given by

yt = r(st , at , st+1, g t) + γQψ′ (st+1, πθ′ (st+1, g t), g t), (10)

and Qψ′ is the target network. As usual, the proposed method also
contains a target network for stable training. The target network
is not involved in the backward propagation.

4.2.1. Update rule
The AGG network is trained to generate goals by maximizing

the expected TD-error of goals with replay states and actions.
During training, parameter φ of the AGG network follows the
gradient of TD-error from the actor–critic model and updates
the parameters to maximize the TD-error. The AGG network is
updated by applying the chain rule to the expected TD-error
calculated by the actor–critic model with respect to the AGG
network:

∆φ ∝ Es∼ρ,a∼π [∇g (Qψ(st , at , g t) − yt)2|g t=Gφ(st ,Mt)∇φGφ(st ,Mt)].

(11)

According to Eq. (11), the gradient calculation has two stages: (i)
we calculate the gradient of the square of the TD-error (Qψ(st , at ,

g t) − yt)2 to the generated goal g t , where g t is the output
of the AGG network with the replay transition and parameters
φ. We denote the first gradient item as ∆g t ; (ii) ∆g t is back-
propagated to parameter φ of the AGG network according to g t =

Gφ(st ,Mt). Because the AGG network is differentiable, this process
can be easily implemented using automatic differentiation. The
final gradient of the TD-error with respect to φ is denoted as ∆φ.

After computing the gradient ∆φ, the parameter φ is updated
to maximize the TD-error as φ := φ + ∆φ. As a result, the AGG
network follows the gradient of the actor–critic model and the
whole network is fully differentiable. The AGG network is trained
with the updates to the actor–critic model, thus not only learns to
find goals with high TD-errors, but also learns to adapt following
policy changes.

The other modules in the proposed model still follow the
update rule defined in DDPG. The critic, parameterized by ψ, is
trained to minimize the TD-error. The gradient is calculated as

∆ψ ∝ Es∼ρ,a∼π [∇ψ(Qψ(st , at , g t) − yt)2], (12)

where yt is calculated by Eq. (10). The parameter of the critic is
updated as ψ := ψ−∆ψ. The actor is trained to maximize the Q
value by applying the chain rule to the Q function with respect
to the actor parameter:

∆θ ∝ Es∼ρ[∇aQψ(st , at , g t)|at=πθ (st ,g t)∇θπθ(st , g t)]. (13)

The parameter of the actor is then updated as θ := θ +∆θ.

4.2.2. Exploration of goals
The proposed AGG network follows a deterministic process

to generate goals by using TCNs and MHDPA to extract features
from episodic memory and the last-attention module. A concern
with regard to deterministic goals is that they can overfit the
value estimate. When the critic is updated, a learning Q-function
that employs deterministic generative goals is highly susceptible

6 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

Fig. 3. Architecture of the proposed AGG network. (a) The overall architecture including N1 temporal convolution network (TCN) blocks, N2 multi-head dot product
attention (MHDPA) and position-wise fully connected layer blocks. The replay state st is integrated by the last attention block to output the goal g t . (b) Computation
graph of a single TCN block. (c) Computation graph of a single head self-attention block. The query, key, and value all come from the same input, and the output is
a sequence of features. (d) Computation graph of the last-attention block. The key and value both come from the same previous features, but the query comes from
replay state st . The output of the last-attention block is a single goal rather than a sequence.

to inaccuracies induced by the function approximation error in
deep learning, which can increase the variance of the Q-value.
This induced variance can be reduced through regularization. We
propose the addition of Gaussian noise to the generated goals as
a means of regularization. Our approach enforces the notion that
similar goals should have similar expected Q-values. Whereas
the function approximation does this implicitly, the relationship
between similar goals can be enforced explicitly by modifying the
training procedure. The Gaussian noise is added to the generated
goal, and the TD-error in the critic update becomes

δ = r + γQψ ′ (st+1, πθ ′ (st+1, g̃ t + ϵ1), g̃ t + ϵ2)−Q (st , at , g̃ t + ϵ3),

(14)

where ϵ1, ϵ2, ϵ3 ∼ N (0, σ ∗Grange). σ is a scalar and keeps same in
all dimensions of the goal space and remains fixed in the training
process, Grange is the range of the goal space, which is computed
by Gmax−Gmin, and g̃ t is the generated goal before the noise added.
The noise added to the target policy is chosen independently of
the policy and AGG network. The Q-value estimate is learned with
respect to a noisy policy defined by the parameter σ .

This update rule will smoothen the value estimate by boot-
strapping it from similar state–action–goal value estimates, which
is beneficial. Furthermore, the addition of Gaussian noise provides
diverse goals, which is vital for effective learning in the initial
stage of training. Upon the initialization of training, the trajectory
generated by the agent will concentrate near the starting point

owing to the random policy. The episode memory that is input to
the AGG network will also be similar, causing the generated goals
to lack diversity. Using Gaussian noise enables the AGG network
to increase the variety of generated goals, which leads to better
generalization in the goal space and helps the agent explore the
surrounding environment.

To avoid introducing stochastic nodes into the AGG network
and destroying the differentiability, reparameterization [16] is
applied. We first sample the Gaussian noise ϵ ∼ N(0, I), and then
compute the exploratory goal g t as

g t = g̃ t + σ ∗ ϵ ∗ Grange, (15)

The exploration process is considered part of the AGG network.

4.3. AGG Network architecture

The overall architecture of the proposed AGG network is
shown in Fig. 3(a). The network takes episodic memory Mt =

[ag0, ag1, . . . , agT−1, og] ∈ RT+1,|G| as its input, where |G|

is the dimension of the goal space. The N1 temporal convolu-
tion network (TCN, Fig. 3(b)) blocks follow, and these output a
(T + 1, C)-dimensional feature sequence. Next, N2 multi-head
dot product attention (MHDPA, Fig. 3(c)) blocks and position-
wise fully connected layer blocks are used, and these output
a (T + 1,D)-dimensional feature sequence. Finally, the replay
state st is integrated into the model by the last-attention block
(Fig. 3(d)), which combines useful features in the sequence that

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 7

are related to st and converts the feature sequence to a single
element g t ∈ R1,|G| as the final output of the AGG network.

The TCNs are used in the AGG network to extract features
from episodic input Mt . The reasons for using TCNs are as follows:
(i) the input sequence Mt usually has more than 100 elements,
and the network needs to have a large receptive field to ex-
tract comprehensive information from the input. The receptive
field of TCNs increases exponentially through dilation convolu-
tion and increasing the dilation rate exponentially; (ii) the TCNs
are sensitive to position order, which is suitable for learning
position-dependence from episodic experiences that have tem-
poral orders; and (iii) the TCN model also exhibits a long useful
memory, and is thus suitable for our problem of reasoning goals
from both the current experience and the path using implicit
memory. Moreover, TCNs are simpler and clearer for sequence
modeling than recurrent networks, and are also computationally
efficient as they support parallel computing. Details of the TCNs
are discussed in Section 4.3.1.

MHDPA, proposed in [11], is a model architecture eschewing
recurrence and instead relying entirely on an attention mecha-
nism to draw global dependencies between the input and output.
An attention function can be described as mapping a query and
a set of key–value pairs to an output, where the query, keys,
values, and output are all vectors. The output is computed as
a weighted sum of the values, where the weight assigned to
each value is computed using a compatibility function of the
query with the corresponding key. Multi-head attention allows
the model to jointly consider information from different repre-
sentation subspaces at various positions. We adopt the MHDPA
network from [11] to perform relational reasoning across differ-
ent time steps in an episode. The reasons for using MHDPA are as
follows: (i) the feature sequence has T +1 time steps, and feature
vectors in different time steps may be related to one another. The
TCNs perform well in extracting the relationship between adja-
cent features, using convolution to provide a temporal context.
Thus, MHDPA is used to learn the relationship between features
that are far apart. The MHDPA blocks connect all the time steps
using a constant number of operations, allowing the model to
pinpoint specific knowledge from a large contextual space [11];
and (ii) because the feature sequence is long, it is inefficient
to consider all the features. We use the attention mechanism
to select useful features and remove redundant ones. However,
MHDPA also has limitations in dealing with RL problems. The
MHDPA blocks treat different steps separately in terms of query,
key, and value, regardless of their position order. In RL problems,
the positions of states are important because the agent reaches
them sequentially. Therefore, we use TCNs before MHDPAs to
learn position order features and position-dependence, thus over-
coming this shortcoming of MHDPA. Further details of MHDPA
are described in Section 4.3.2.

The computation process for the last-attention block is similar
to that for MHDPA. However, in MHDPA, the query, key, and value
all come from the same feature representation (referred to as
self-attention); in the last-attention block, the key and value also
come from the same feature representation, but the query comes
from replay state st . The last-attention block is used to extract
useful information related to the specific replay state st . Because
the query is a single position rather than a sequence, the last
attention converts the feature sequence to a single element that
only contains information related to st . The output g t ∈ R1,|G| of
the last attention is the final output of the AGG network. Details
of this module are described in 4.3.3.

4.3.1. Temporal convolution network
We use N1 TCN blocks to extract a feature representation from

an episodic memory of length T + 1. Each block employs dilated
convolutions to enlarge the receptive field. Dilated convolution
uses a filter f with kernel size k = 2r + 1 to convolute a
1D sequence M . The output is

∑r
i=−r f (i) · Ms+d·i, where d is the

dilation factor. When d = 1, the dilated convolution is equal to
regular convolution.

Each TCN block uses two convolution operations. After each
convolution, layer normalization [53] is used to scale the features
so that they lie in similar ranges across environments and units. A
rectified linear unit is then added, and spatial dropout is used for
regularization. A residual connection [54] is used in each block for
fast back-propagation. In addition, because the input and output
may have different dimensions, 1 × 1 convolution is used to
ensure that the skip connection is valid.

With the increase of TCN blocks, the dilation rate increases
exponentially (i.e., d = 2i) to increase the receptive field of the
network exponentially. The whole process exhibits below-up.

1: function TCNs(Input, n_blocks=N1)
2: x := Input
3: for i = 0, 1, 2, ...,N1 − 1 do
4: x := Conv1D(nfilters=D, dilation rate=2i)(x)
5: x := Dropout(Relu(LayerNorm(x)))
6: x := Conv1D(nfilters=D, dilation rate=2i)(x)
7: x := Dropout(Relu(LayerNorm(x)))
8: x := Relu(x + Input(or Conv1×1 (Input)))
9: Input := x

10: end for
11: return x
12: end function

4.3.2. Multi-head dot product attention
The MHDPA is applied after the TCN blocks to perform re-

lational reasoning over different time steps (see Fig. 3(c)). The
input to MHDPA also has T +1 elements. If the dimension of each
element is C and the input is M , then M ∈ R(T+1)×C .

First, the matrices W q, W k, W v are used to construct the
query (Q), key (K), and value (V), respectively, through a linear
projection function. The attention weight is computed through
the dot-product and softmax function of Q and K . Then the
attention weight is applied to weight average the different time
steps of V . Formally,

Attention(Q ,K ,V) = softmax(
QK T

√
dk

)V , (16)

where Q = MW q, K = MW k, and V = MW v . dk is a scaling
factor that is equal to the dimension of the key vector. The only
trainable parameters in a single-head MHDPA are W q, W k, and
W v . The dimensions of each variable are shown in Fig. 3(c).

We use MHDPA including multiple heads to perform complex
reasoning. Each head has the independent parameters W q

i , W
k
i ,

and W v
i to perform dot-product attention. The result from each

head is then concatenated. Multi-head attention allows the model
to jointly attend to information from different representation
subspaces at different positions, i.e.,

MHDPA(M) = concat([h1, h2, . . . , hn])W o, (17)

where

hi = Attention(Q i,K i,V i), (18)

8 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

and W o is used for the output projection. Layer normalization is
performed before each MHDPA, and residual connection is used
after each MHDPA.

A position-wise fully connected network (PFN) is employed
after each MHDPA. This operation is applied to each position sep-
arately and identically. Layer normalization and residual connec-
tion are also included in PFN. Formally, if the output of MHDPA
is denoted as M̃ , the process of PFN is

PFN(M̃) = M̃ + Dense(Relu(Dense(LayerNorm(M̃)))), (19)

where ‘‘Dense’’ is the fully connected network.

4.3.3. Last attention
The process of the last-attention module is similar to that of

MHDPA. However, the query does not come from the previous
feature sequence, but from the current replay state st , as shown
in Fig. 3(d). We denote the query, key, and value as Q l,K l,V l. Be-
cause st is a single element rather than a sequence, the attention
weights computed by Q lK

T
l form a (T + 1)-dimensional vector

rather than a (T + 1, T + 1) matrix, as in MHDPA. The output of
the last-attention block becomes a single element rather than a
sequence. Formally, if we denote the input feature sequence as
X l, then

LastAttention(X l, st) = softmax(
(stW

q
l)K

T
l

√
dk

)V l, (20)

where stW
q
l = Q l ∈ R1×E , K l = X lW k

l ∈ R(T+1)×E , and V l =

X lW v
l ∈ R(T+1)×E . The matrices W q

l ,W
k
l ,W

v
l are used to con-

struct the query, key, and value, respectively, in the last-attention
block. Layer normalization is used for preprocessing. In addition,
an entropy regularization loss is added to the attention weight
to encourage exploration and improve performance; details are
discussed in the experimental section.

We apply a position-wise fully connected layer after the last-
attention block to change the dimension of the output to that of
the goal space, |G|. A sigmoid function is then used to change the
range of each dimension to 0 ∼ 1. Finally, we project the output
into the goal space and obtain g t . Formally,

g t = Gmin + Grange ∗ sigmoid(Dense(LastAttention(X l, st))), (21)

where Gmin is the low boundary of the goal space, Grange is the
range of the goal space, and g t ∈ R|G| is the output.

The generated goal g t is the output of the whole AGG net-
work. This is used to recompute the reward function and as the
input to the actor–critic model. The gradient ∆φ calculated in
Eq. (11) is used to update the weights in the TCNs, MHDPAs, and
last-attention block.

4.4. Algorithmic description

The proposed method is formally described in Alg. 1. In lines
3–8, the agent interacts with the environment to identify expe-
riences. Each episode starts with an original goal, and all expe-
riences are stored in the replay buffer. In lines 9–22, the experi-
ences are replayed and used to train the model. In each training
step, n episodes are sampled. The achieved goal sequence and
current replay state are used as inputs to the AGG network. The
AGG network then generates goals according to the parameters of
the TCNs, MHDPAs, and last-attention module. Next, exploration
noise is added, and the goal-conditional reward function is re-
computed according to the generated goal. Finally, the gradients
are computed and the whole network is updated. We have in-
cluded a loop in lines 11–21 to ensure a precise description. In
practice, a batch operation is used to calculate the gradients and
update the network.

Algorithm 1 Prioritized hindsight model

1: Initialize the AGG network (φ), actor (θ), and critic (ψ).
2: for episode i = 1, 2, ...,M do
3: Sample the original goal go ∈ G uniformly.
4: for t = 0, 1, ..., T − 1 do
5: Get action from actor at = π (st , go) + N .
6: Execute action at and observe a new state st+1.
7: end for
8: Store E(i)

= {(st , at , st+1, g t , go)}
T−1
t=0 in replay buffer D.

9: for j = 1, ...,m do
10: Sample n episodes Dj

= {E(1), ..., E(n)
} from D.

11: for k = 1, ..., n do
12: Sample (s(k)t , a

(k)
t , s

(k)
t+1, g

(k)
t , g

(k)
o) from E(k).

13: Construct Mt = [g (k)
0 , ..., g

(k)
T−1, g

(k)
o], st = s(k)t .

14: Compute g t = Gφ(st ,Mt) as the substitute goal.
15: Add exploration noise to g t as Eq. (15).
16: Recompute goal-conditional reward as Eq. (1).
17: Compute the gradients ∆φ, ∆θ, and ∆ψ.
18: ▷ Eqs. (11), (12), and (13)
19: Use ∆φ to update TCN, MHDPA, last attention.
20: Use ∆θ and ∆ψ to update actor–critic network.
21: end for
22: end for
23: end for

4.5. Relation to HER

The HER algorithm [9] chooses goals after the replay state
from the replay trajectory. The hypothesis of HER is that there
exist some valuable elements in the interaction trajectory that
are important for the replay state to pursue. The HER algorithm
considers these elements to lie behind the replay state uniformly.
However, this hypothesis is relatively subjective. In this study, we
do not assume the positions of valuable goals, and instead use the
AGG network to learn the proxy automatically. The parameter
of the AGG network can be trained and changed along with
the policy updates. The TCNs and MHDPAs obtain the feature
representation of the replay trajectory, and the last-attention
block extracts specific information related to the replay state.

If all parameters of the TCNs and MHDPAs are set to zero,
these two modules approximately represent the identity map-
ping because of the use of the residual connection. Moreover, if
the last-attention block uses random parameters, the attention
weight will also be random. The final generated goal g t can be re-
garded as the mixture of different elements in different positions
of the initial input Mt , with equal probabilities. The whole model
is similar to the random sampling of elements from the original
achieved-goal sequence, which can be considered a variant of
HER. Hence, the HER method is included in the representation
space of our model.

5. Experiments

This section describes a series of experiments conducted to
evaluate the performance of our method. We first describe the
experimental environments and implementation details, and then
the architecture, hyper-parameters, and attention visualization
used in the experiments. Finally, the results are compared with
those from several baselines. The supplementary material is avail-
able online.1

1 https://sites.google.com/view/prioritized-her.

https://sites.google.com/view/prioritized-her

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 9

Fig. 4. Robot fetch environment.

Fig. 5. Robot hand block environment.

5.1. Environments

The proposed method is evaluated using the robot fetch and
hand block environments from OpenAI Gym [55].

5.1.1. Fetch environment
The robot fetch environment uses a seven degree-of-freedom

(7-DoF) robotic arm and a gripper to complete tasks. This envi-
ronment contains four tasks, as shown in Fig. 4.

• FetchReach. Move the gripper to the target position.
• FetchPush. Push the box to the target position on the table.

The gripper is not used in this task.
• FetchPickAndPlace. Move the gripper and use it to grasp the

box, then move the box to the target position, which may
be on the table or in the air.

• FetchSlide. Push and hit the slider to the target position.
Because the target position may lie beyond the reachable
limit of the arm, the gripper may need to hit the slider to
make it slide.

Goal. The goal indicates the desired position of the task. In the
above tasks, the goal space has three dimensions. The reward is 0
when the distance between the goal and the current state is less
than 5 cm, and is −1 otherwise.

State. The state is described by the angles and velocities of
the arm, and also the position of the box. The state space has 10
dimensions in FetchReach and 25 dimensions in the other three
environments.

Action. The action controls the movement of the arm and the
opening of the gripper. The action space has four dimensions.

5.1.2. Hand block environment
The robot block environment uses a 24-DoF anthropomorphic

robotic hand to manipulate a block to a target position or rotation.
This environment contains four tasks, as shown in Fig. 5.

• HandManipulateBlockRotateZ. Manipulate the box to meet
the z-axis of the target rotation. No target position required.

• HandManipulateBlockRotateParallel. Manipulate the box to
meet the x-axis and y-axis of the target rotation; no require-
ment for the z-axis. No target position required.

• HandManipulateBlockRotateXYZ. Manipulate the box to meet
all axes of the target rotation. No target position required.

• HandManipulateBlockFull. Manipulate the box to meet all
axes of the target rotation and also the target position.

Goal. The goal indicates the target position and target rotation
of the task. The goal space has seven dimensions in all tasks.

State. The state is described by the position, velocity, Cartesian
position, and Cartesian rotation of all joints. The state space has
61 dimensions in all tasks.

Action. The action uses absolute position control for all non-
coupled joints of the hand. The action space has 20 dimensions
in all tasks.

5.2. AGG Network details

Architecture details. The AGG network contains eight TCN
blocks. The dilation rate of each block increases exponentially.
The receptive field of the top layer is more than 100 to cover the
input sequence. Each convolution layer has 32 filters. A dropout
rate of 0.1 is applied after each convolution. After temporal con-
volutions, the network contains two MHDPA blocks. The linear
projection matrices W q, W k, W v are (32, 32)-dimensional. Each
MHDPA has four attention heads. The query, key, and value are
(T + 1, 32)-dimensional. A dropout rate of 0.1 is applied to
the attention weights. After each MHDPA, a position-wise fully
connected block with two layers is used, consisting of 64 and
32 units, respectively. A dropout rate of 0.1 is applied between
the two layers. The linear projection matrices W q

l , W
k
l , W

v
l are

(32, 32)-dimensional in the last-attention block. No dropout is
applied in this module.

The actor–critic network in our method is the same as in the
HER algorithm. The actor and critic both use three fully connected
layers, with 256 hidden units and ReLu. The actor network uses
L2 regularization to punish large actions; the ratio is set to 1.0.

Network scale ablation. The parameters used in our method
are compared with those of the HER algorithm in Table 1. Because
the dimensions of the goal space are different in the robot fetch
and hand block environments, the numbers of parameters are
also different. According to Table 1, although the AGG network
has several modules for temporal convolutions and attention, the
total number of parameters is only 24.6% greater than that of
HER in the robot fetch environment and 22.9% greater in the

10 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

Table 1
Parameter comparison.
Network Fetch Env Hand Env

Ours HER [9] Ours HER [9]

Actor 140,289 140,289 154,625 154,625
Critic 140,036 140,036 154,388 154,388
AGG-net 68,899 – 70,695 –
Total 349,224 280,325 379,708 309,013

Fig. 6. Performance comparison of Network scale ablation. We add layers to
the actor and critic networks in HER. The results show that simply increasing the
number of parameters does not improve the performance, and actually causes
adverse effects in ‘HER-critic+1’ and ‘HER-actor+1-critic+1’. The performance
improvement in our method is not due to the increase in network scale.

robot hand block environment. This is because temporal convo-
lution and attention both share weights in different time steps,
which reduces the number of parameters compared with a fully
connected actor–critic network.

To verify that the improved performance achieved by our
method is not the result of the increased number of parameters,
we increased the number of parameters in HER [9] to show
that the parameter scale is not the main reason to affect the
performance. A comparison was conducted using the FetchPush
task, as shown in Fig. 6. The proposed prioritized hindsight model
is denoted as P-HER. The HER model is added by additional layers
to increase the number of parameters:

• HER-actor+1: adding an additional layer in the actor net-
work, causing the total number of parameters to approach
that of our method;

• HER-critic+1: adding an additional layer in the critic net-
work, also causing the total number of parameters to ap-
proach that of our method;

• HER-actor+1-critic+1: an additional layer is added to both
the actor and critic networks, resulting in 18% more param-
eters than in our method.

The results in Fig. 6 show that increasing the number of
parameters in HER does not improve the performance, and ac-
tually causes adverse effects in ‘HER-critic+1’ and ‘HER-actor+1-
critic+1’. Thus, the performance improvement of our method is
not the result of an increase in the network scale, but comes from
considering the expected TD-error of goals and using the AGG
network to generate more valuable goals for training.

TCN ablation. TCNs are used in the AGG network mainly
because they have a large receptive field and enable the position-
dependence of episodic experiences to be learned. We performed

several comparative experiments in FetchPush to verify these
properties.

As shown in Fig. 7(a), we reduced the number of TCN blocks
to verify the importance of a large receptive field to the network.
The receptive field is halved when a TCN block is removed. For ev-
ery two TCN blocks removed, we add an additional MHDPA block
so that the total number of parameters is generally unchanged.
The receptive field for TCNs with 6 blocks is 26 (i.e., 64). This value
slightly exceeds the length of episode sequence Mt (51 in the
Fetch environment). The result shows that the performance de-
creases substantially when the number of TCN blocks is less than
6. We also employ more TCN blocks, specifically, 8 TCN blocks,
and achieve improved performance. However, when the number
of TCN blocks is increased to 10, we achieve a performance similar
to that achieved using 8 TCN blocks, which is because using more
blocks also increases the parameters of the network. Thus, we use
8 TCN blocks in all experiments.

As shown in Fig. 7(b), we replaced the TCNs with position
encoding (PE) to compare the ability of TCNs and PE to model the
positional information in multi-goal RL. PE uses sine and cosine
functions to encode the position information, and is often used in
sequence modeling to inject the relative or absolute positions of
tokens in a sequence. PE is computed as

PEpos,2i = sin(pos/100002i/d), (22)

PEpos,2i+1 = cos(pos/100002i/d), (23)

where pos is the position, i is the dimension, and d is the scale
factor. We conducted PE experiments with d = 102, 103, and 104.
In each case, we removed all TCNs and added four MHDPA blocks
so that the total number of parameters in the AGG network is
generally unchanged.

The performance with PE is relatively worse than that us-
ing TCNs. This is mainly because temporal convolution not only
learns the encoding of position order, but also learns the position-
dependence between each time step. Moreover, PE is unchanged
throughout the training process, but TCNs are updated along with
the policy. On the basis of these results, we do not use PE in our
model.

MHDPA and Last attention. The AGG network contains two
MHDPA blocks in all tasks. We increased the number of MHDPA
blocks to 3–5, but no significant performance increases were
observed. The network is not sensitive to the number of MHDPA
blocks.

The last-attention block converts the feature sequence to a
single element by using the replay state to construct the atten-
tion query. The last-attention block is indispensable to the AGG
network and is only used once.

5.3. Prioritized hindsight model detail

Training details. The training process of our model is almost
the same as for HER [9]. Each task is trained for 103 epochs, each
epoch has 50 cycles, and each cycle has two parallel interactions.
The actions are chosen by the policy network using an ϵ-greedy
strategy with a probability of 0.3. The actions have Gaussian noise
added with a factor of 0.2. After each cycle, the experiences of
two episodes are stored in the replay buffer, which has a size of
106. The experiences are then replayed for training. The original
goal of transition is substituted for the goal generated by the AGG
network, and then the reward is recomputed. The gradient of the
network is clipped by a norm of 5, and the batch size is set to 256.
The episode length is 50 in the robot fetch tasks and 100 in the
robot hand block tasks. The target value in TD-error is calculated
by the target network, which is updated by Polyak averaging with
a ratio of 0.95. The exploration factor σ of generated goals is set
to 10−3. The original goals and HER goals are used to enhance the

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 11

Fig. 7. Performance comparison of TCN ablation. (a) Comparing the different number of TCN blocks to verify the importance of the large receptive field. (b) Comparing
the ability of TCNs and position encoding (PE) to model positional dependence. The PE experiments were conducted with d = 102, 103 , and 104 .

Fig. 8. Performance comparison of Entropy regularization in the last-attention block. Adding entropy regularization with an appropriate scale improves the
performance, such as with α = 0.01. If α is too large (e.g., 0.1 and 1.0), the algorithm struggles to converge, especially in the FetchPush task.

Fig. 9. Attention visualization in FetchPush. The black dots are caused by dropout. (a) In low-level MHDPA, the features with high attention weights are gathered
together in adjacent time steps, which implies that goals with high TD-errors are reasoned from some local features rather than the whole sequence. (b) In high-level
MHDPA, the distribution of attention weights is more centralized and the network often focuses on several time steps.

12 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

performance. The ratio of original goals is set to 0.2, as in HER, for
a fair comparison. The HER goals are used to improve the diversity
of the replay goals, and we use the same proportion of AGG goals
and HER goals following a coarse search. The learning rates of the
actor, critic, and AGG networks are all set to 10−3. We use one
CPU core and one GPU to train each task.

Entropy regularization. The entropy regularization of the at-
tention weight is used in the last-attention module to encourage
exploration, and also to prevent premature convergence of the
AGG network. The attention weight in the last-attention block is
a vector w ∈ RT+1 indicating the weight of the focus on each
time step. The entropy of w is calculated by −α

∑T
i=0 wilogwi,

and this is added to the loss function. A comparison of different
α settings in entropy regularization is presented in Fig. 8. The re-
sults show that using entropy regularization with an appropriate
scale improves the performance. However, when α is too large,
the training is hindered and the algorithm struggles to converge.
We use α = 0.01 in all tasks.

5.4. Attention visualization

Every intermediate result in the computation process of the
AGG network can be represented as a real-valued tensor; this
tensor is extracted from the episodic memory and indicates the
features that are useful for training agents. However, it is widely
known that deep neural networks are similar to a black box,
and it is difficult to determine the specific meaning of features.
Recently, several visualization methods for networks or policies
used in RL have been proposed; these methods include t-SNE
embeddings [56], saliency maps [57], and Fisher vectors [58].
However, these methods are developed for environments with
image-based observations, which usually involve specific objec-
tives that are easy to describe. In our experiment with the robot
arm, the state is represented by the angles and velocities of the
arm; consequently, the visualization is more difficult in this case
than that of an image. An attention-based architecture for the
actor–critic network is proposed in [46] to visualize the policy of
the agent. We perform attention visualization in our experiment
to visualize the MHDPA in the AGG network. The attention weight
of the MHDPA in the FetchPush task for training step 500 is
visualized in Fig. 9. The black dots in the figure are caused by
dropout. Because the AGG network contains two MHDPA blocks,
we denote them as ‘‘low-level MHDPA’’ and ‘‘high-level MHDPA’’,
respectively. We analyze the attention visualization as follows.

In the low-level MHDPA, the features with high attention
weights are gathered together in adjacent time steps, which
implies that goals with high TD-errors are reasoned from some
local features rather than the whole sequence. Different attention
heads usually focus differently. Some heads are more centralized,
while others may be distributed. There often exists one attention
head (e.g., head 4 in Fig. 9(a)) that focuses on the last step,
which verifies that always choosing the last element of an episode
as the replay goal still achieves reasonable results in HER. The
features in the last time step usually have more comprehensive
information than those from other steps.

In high-level MHDPA, the distribution of attention weights is
more centralized. The maximum attention weight is 0.66, com-
pared with only 0.05 in low-level MHDPA. This is mainly because,
after several TCNs and an MHDPA block, the useful information
has gathered in specific time steps. The low- and high-level
MHDPAs play different roles in the learning process. The low-
level MHDPA tends to learn features from some area, whereas
the high-level MHDPA tends to focus on several specific time
steps. The attention weights change with the different replay
transitions, and also become more centralized as the training
process progresses.

We perform additional experiments to visualize the goals gen-
erated by the AGG network, which are shown in Fig. 10. For each
figure, we randomly sample 5 episodic trajectories, along with the
original goal and the goal generated by the AGG network during
training; subsequently, we employ PCA to reduce the dimension
to 2, for visualization. In the figures, each color represents an
episode. ‘s·’ denotes the start of an episode, ‘og·’ denotes the
original goal, and ‘g·’ denotes the goal generated by the AGG
network. From Fig. 10, it can be observed that the generated goal
provides a kind of guidance from the trajectory to the original
goal. The generated goals are usually located at a certain distance
from the trajectory. The TD-error near the generated goals is high
because such goals are not close to the trajectory the agent is
familiar with. Furthermore, the generated goals are also not very
far from the trajectory. Q-values are inaccurate and close to their
initial value in locations that are far from the trajectories; this
is because there are no transitions for learning, and TD-errors
in these locations also become low. Consequently, the generated
goal provides a moderately difficult learning task for the agent to
pursue. The goals make it easy for the agent to obtain rewards;
furthermore, they generate transitions with high TD-errors.

5.5. Result comparison

We compared the results from the proposed method with
those from the following baselines:

• HER [9]. We use HER implemented by OpenAI baselines [59].
The hyper-parameters are the same as in the original paper.

• HER with prioritized experience replay (HER-PER). We con-
struct a prioritized replay buffer in the HER algorithm as
a baseline. The TD-errors of transitions are stored and or-
ganized in the ‘sum-tree’. Several episodes are sampled ac-
cording to priority in each training step, and goals are cho-
sen using the HER rule. The hyper-parameter α used to
compute the sample probability is set to 0.6, and β , which
is used to correct the bias, is set to 0.4 following a coarse
search.

• HER with random goals (HER-RND) [15]. The result of RIG
[15] (in section 9.4) indicates resampling goals with prob-
ability 0.5 from the HER strategy and probability 0.5 uni-
formly from the goal space can enhance performance, mainly
because of the increase in sample diversity and bias elimi-
nation. We implement this idea as a baseline.

• HER with aggressive rewards (ARCHER) [17]. The HER algo-
rithm uses the substitute goals gHer to replace the original
goal og . This process overestimates the probability assigned
by the policy to gHer by assuming π (s, gHer) = π (s, og).
ARCHER analyzes the bias caused by hindsight goals and
performs bias-correction by amplifying the reward for hind-
sight transitions. We add this bias-correction to HER as a
baseline. The hindsight reward and ordinary reward factors
are set to λr and λh, respectively.

• DDPG with shaped rewards (DDPG-dense). We use DDPG
with heuristic shaped rewards as a baseline. The shaped
reward is the negative distance between the current state
and the original goal.

The proposed method and baselines all use a sparse-reward
setting, except DDPG-dense, which uses a shaped reward. Dur-
ing training, we evaluate the performance after each epoch by
performing 10 test rollouts and compute the average success
rate. Each test rollout follows the policy from the actor network
without exploration. Each baseline is evaluated several times with
different seeds, except HER-PER, which is very computationally
expensive. We compare the median test success rate as well as

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 13

Fig. 10. Visualization of goals and trajectory in FetchPush.

Fig. 11. Median test success rate in robot fetch tasks.

Fig. 12. Ablation study about ARCHER with different choice of λh and λr .

14 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

Fig. 13. Median test success rate in robot hand block tasks.

the interquartile range. HER-PER requires an average of five days
to train each task, which is much longer than the other baselines.
All models are trained using the same hardware, which includes
an RTX-2080Ti GPU and AMD 2990WX CPU. We record the train-
ing time for all environments and all methods for 500 epochs.
Moreover, the training time corresponding to each environment
is normalized with respect to HER and summarized in Table 2 for
comparison.

Table 2 shows that the training times of HER-RND and ARCHER
are similar to that of HER. DDPG-dense does not perform goal
substitution; thus, it requires less training time. HER-PER is com-
putationally expensive because a prioritized replay buffer is used.
In contrast, our method follows a principle similar to that fol-
lowed by HER-PER but only needs 16.5% more training time in
the Fetch environment and 15.3% more training time in the Hand
environment on average, compared to those required by HER.
Thus, our method does not incur an excessive time consumption.

Fig. 11 shows the median test success rate for all fetch tasks.
Our method outperforms all the baselines in the FetchReach,
FetchPush, and FetchPickAndPlace tasks by improving the sam-
ple efficiency. HER-PER also performs better than HER, which
indicates the importance of replaying valuable goals with high
TD-errors. However, the HER-PER method is computationally in-
tensive. We find that DDPG-dense produces good results in the
FetchSlide task, possibly because the goals lie in a table, and the
shaped reward based on distance provides good guidance to the
agent. HER-RND [15] typically has a large variance and does not
perform well in these tasks. FetchSlide is the most difficult of all
the Fetch environments. To decide on a suitable action, the agent
must consider the friction of the table and slider as well as the

weight. This task is more challenging than other tasks such as
reach, push, and pick-place. All baseline models perform poorly
in this task. ARCHER [17] performs better than other methods in
FetchSlide, but does not perform well in the other three tasks. We
also perform an additional ablation study on ARCHER for various
λh and λr , as shown in Fig. 12. In particular, we set (λh, λr) to
(2.0, 0.5), (2.0, 1.0), (4.0, 0.5), and (4.0, 1.0), and the performance
is best when (λh, λr) = (2.0, 1.0). However, the performance is
highly sensitive to the setting of λh and λr . When λh and λr are
changed, the performance of ARCHER decreases rapidly. Thus, we
set (λh, λr) = (2.0, 1.0) to achieve the best performance.

Fig. 13 shows the results from the robot hand block tasks. By
replaying more valuable goals, the proposed method achieves a
significant improvement in performance in the HandManipulate-
BlockRotateParallel and HandManipulateBlockRotateXYZ tasks.
Our method also performs well in the HandManipulateBlockRo-
tateZ task. In the hardest task, HandManipulateBlockFull, none of
the methods achieves good results. HER-PER also performs well
in these tasks, but the performance is relatively unstable. In all
hand block tasks, HER and HER-PER are the strongest baselines.
HandManipulateBlockFull is the most difficult of all Hand en-
vironments. This is because the agent needs to manipulate the
box to achieve the target rotation in all axes and also satisfy the
target position requirement. However, in other tasks, the agent
only needs to achieve target rotation in various axes and no target
position requirement needs to be met. Thus, all baselines could
not achieve a reasonable performance in this task.

The performance of all methods can still be improved by using
multiple workers [8]. However, multiple workers can only be
employed in simulations. In real-world applications, we usually

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 15

Table 2
Wall-clock time normalized by HER (500 epochs).
Environment Baselines

HER HER-PER HER-RND ARCHER DDPG-dense Ours

FetchReach 100% 364.8% 75.0% 93.5% 75.0% 121.3%
FetchPush 100% 754.4% 97.3% 102.1% 90.6% 114.0%
FetchPickAndPlace 100% 773.0% 98.4% 106.3% 86.0% 113.6%
FetchSlide 100% 785.7% 97.1% 104.7% 88.0% 117.1%
HandManipulateBlockRotateZ 100% 702.8% 94.8% 99.7% 87.9% 114.7%
HandManipulateBlockRotateParallel 100% 717.2% 96.0% 102.3% 88.2% 113.8%
HandManipulateBlockRotateXYZ 100% 706.2% 95.2% 101.3% 89.6% 115.6%
HandManipulateBlockFull 100% 698.3% 98.0% 99.7% 91.2% 116.9%

have one robot arm to perform tasks. Thus, we believe that it
is crucial that the algorithm should achieve reasonable perfor-
mance using a single worker; therefore, we compared all methods
using a single worker. Imitation learning also enables the agent
to improve performance by using demonstrations [60]. In the
future, we aim to combine the proposed method with distributed
training and imitation learning.

The proposed prioritized hindsight model provides the agent
with more valuable goals, thus improving the performance and
sample efficiency in robot fetch tasks and hand block tasks. The
AGG network learns alongside the actor–critic network in an end-
to-end manner. Compared with HER, our method only increases
the number of parameters slightly and needs about 16% more
training time. As a result, our method is computationally efficient
and achieves improved performance in multi-goal RL.

6. Discussion

The AGG network uses the achieved-goal sequence of replay
episodes as its input. The achieved-goal sequence only contains
information about the current episode, which may not be suffi-
cient to reason goals. Thus, we have used temporal convolution
and attention mechanism, which have a form of implicit mem-
ory, to partly overcome this problem. However, because the RL
problem has a large number of experiences and long-time in-
teractions, such methods may still struggle to gather all of the
useful information for learning. Several measures can be em-
ployed to further solve this problem: (i) following DQN, which
uses several adjacent states as input, the AGG network can stack
the transitions of several recent episodes as input to obtain more
historical information; and (ii) change the network of actor–critic
to contain an explicit memory unit, and uses this memory unit
as an additional input to the AGG network. The memory unit
contains useful information for policy training, and thus provides
previous knowledge to the AGG network. There are several kinds
of neural networks that contain a dynamic memory unit, such as
Differentiable Neural Computer [61] and Relational RNN [43]. We
leave these extensions for future research.

The AGG network can be further used to generate goals with
other specific properties, not limited to maximizing the TD error.
The only requirement is that such a property can be expressed as
a differentiable loss function L. The AGG network is updated to
follow E[∇g (L(·, g t)|g t=Gφ(st ,Mt)∇φGφ(st ,Mt)]. For example, if we
set the loss function as L = [min(Q − a, 0)]2 + [max(Q − b, 0)]2,
then L = 0 if Q ∈ (a, b), and L > 0 otherwise. In other words, we
want the AGG network to generate goals that cause the expected
Q value to lie between a and b, which can be regarded as a
kind of difficulty control for the goals. For instance, if (a, b) =

(−20,−10), then the agent would expect to reach the goal in 10–
20 steps in the future. We leave this method as a topic for future
studies.

7. Conclusions

In this paper, we have described a prioritized hindsight model
for multi-goal RL in a sparse-reward setting. The AGG network
enables us to generate goals with high expected TD-errors, and
can be trained along with an actor–critic network in an end-
to-end manner. TCNs enable comprehensive information and
position-dependence to be captured from long episodic
sequences. MHDPAs use attention to perform relational reasoning
from specific areas and time steps, the last-attention module
captures useful information related to the replay transition. Ex-
periments show that our method is computationally efficient
and outperforms several baselines in robot fetch and hand tasks,
verifying that the proposed AGG network enables valuable goals
to be generated for multi-goal RL.

CRediT authorship contribution statement

Peng Liu: Writing - review & editing, Resources, Supervision.
Chenjia Bai: Writing - original draft, Conceptualization, Method-
ology, Software. Yingnan Zhao: Validation, Methodology, Writing
- review & editing. Chenyao Bai: Validation, Writing - review
& editing. Wei Zhao: Supervision, Writing - review & editing.
Xianglong Tang: Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This study is supported by the National Natural Science Foun-
dation of China (61671175), the Sichuan Science and Technology
Program, China (2019YFS0069), and the Lab of Space Optoelec-
tronic Measurement & Perception, China (LabSOMP-2018-01).

References

[1] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT press,
2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M.A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518
(2015) 529–533.

[3] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, D. Silver, Rainbow: combining improvements
in deep reinforcement learning, in: Proceedings of AAAI Conference on
Artificial Intelligence, AAAI, 2018.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L.R. Baker, M. Lai, A. Bolton, Y. Chen, T.P. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, D. Hassabis, Mastering the game of go
without human knowledge, Nature 550 (2017) 354–359.

http://refhub.elsevier.com/S0950-7051(20)30392-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb4

16 P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play,
Science 362 (2018) 1140–1144.

[6] X.B. Peng, P. Abbeel, S. Levine, M. van de Panne, Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills, ACM
Trans. Graph. 37 (2018) 1–14.

[7] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data
collection, Int. J. Robot. Res. 37 (4–5) (2018) 421–436.

[8] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell,
J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, W. Zaremba,
Multi-goal reinforcement learning: Challenging robotics environments and
request for research, 2018, arXiv:arXiv:1802.09464.

[9] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, W. Zaremba, Hindsight experience replay,
in: Proceedings of the 30th Advances in Neural Information Processing
Systems, NeurIPS, 2017, pp. 5048–5058.

[10] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay,
in: Proceedings of International Conference on Learning Representations,
ICLR, 2016.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł.
Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of Advances
in Neural Information Processing Systems, NeurIPS, 2017, pp. 5998–6008.

[12] R.S. Sutton, J. Modayil, M. Delp, T. Degris, P.M. Pilarski, A. White, D.
Precup, Horde: A scalable real-time architecture for learning knowledge
from unsupervised sensorimotor interaction, in: The 10th International
Conference on Autonomous Agents and Multiagent Systems, vol. 2, 2011,
pp. 761–768.

[13] T. Schaul, D. Horgan, K. Gregor, D. Silver, Universal value function approx-
imators, in: Proceedings of the 32nd International Conference on Machine
Learning, ICML, vol. 37, 2015, pp. 1312–1320.

[14] P. Rauber, F. Mutz, J. Schmidhuber, Hindsight policy gradients, in: Pro-
ceedings of International Conference on Learning Representations, ICLR,
2019.

[15] A.V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, S. Levine, Visual reinforcement
learning with imagined goals, in: Proceedings of Advances in Neural
Information Processing Systems, NeurIPS, 2018, pp. 9191–9200.

[16] D.P. Kingma, M. Welling, Auto-encoding variational bayes, 2013, arXiv
preprint arXiv:1312.6114.

[17] S. Lanka, T. Wu, ARCHER: aggressive rewards to counter bias in hindsight
experience replay, 2018, arXiv preprint arXiv:1809.02070.

[18] C. Bai, P. Liu, W. Zhao, X. Tang, Guided goal generation for hindsight
multi-goal reinforcement learning, Neurocomputing 359 (2019) 353–367.

[19] M. Fang, C. Zhou, B. Shi, B. Gong, J. Xu, T. Zhang, DHER: Hindsight
experience replay for dynamic goals, in: Proceedings of International
Conference on Learning Representations, ICLR, 2019.

[20] Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning, in:
Proceedings of the 26th Annual International Conference on Machine
Learning, ICML, 2009, pp. 41–48.

[21] J. Schmidhuber, Powerplay: training an increasingly general problem solver
by continually searching for the simplest still unsolvable problem, Front.
Psychol. 4 (2013) 313.

[22] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, P. Abbeel, Reverse cur-
riculum generation for reinforcement learning, in: Proceedings of the 1st
Conference on Robot Learning, CoRL, 2017.

[23] C. Florensa, D. Held, X. Geng, P. Abbeel, Automatic goal generation for
reinforcement learning agents, in: Proceedings of the 35th International
Conference on Machine Learning, ICML, 2018, pp. 1514–1523.

[24] S. Sukhbaatar, I. Kostrikov, A. Szlam, R. Fergus, Intrinsic motivation and
automatic curricula via asymmetric self-play, in: Proceedings of the 5th
International Conference on Learning Representations, ICLR, 2018.

[25] Y. Burda, H. Edwards, A. Storkey, O. Klimov, Exploration by random
network distillation, in: Proceedings of the 5th International Conference
on Learning Representations, ICLR, 2019.

[26] R.S. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning, Artif. Intell. 112
(1999) 181–211.

[27] P.-L. Bacon, J. Harb, D. Precup, The option-critic architecture, in: Pro-
ceedings of AAAI Conference on Artificial Intelligence, AAAI, 2017, pp.
1726–1734.

[28] T.D. Kulkarni, K. Narasimhan, A. Saeedi, J. Tenenbaum, Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic
motivation, in: Proceedings of Advances in Neural Information Processing
Systems, NeurIPS, 2016, pp. 3675–3683.

[29] K. Marino, A. Gupta, R. Fergus, A. Szlam, Hierarchical RL using an en-
semble of proprioceptive periodic policies, in: Proceedings of International
Conference on Learning Representations, ICLR, 2019.

[30] O. Nachum, S. Gu, H. Lee, S. Levine, Near-optimal representation learning
for hierarchical reinforcement learning, in: Proceedings of International
Conference on Learning Representations, ICLR, 2019.

[31] A. Levy, G. Konidaris, R. Platt, K. Saenko, Learning multi-level hierarchies
with hindsight, in: Proceedings of International Conference on Learning
Representations, ICLR, 2019.

[32] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A.W. Senior, K. Kavukcuoglu, Wavenet: a generative model
for raw audio, SSW 125 (2016).

[33] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y.N. Dauphin, Convolutional
sequence to sequence learning, in: Proceedings of International Conference
on Machine Learning, ICML, 2017, pp. 1243–1252.

[34] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions,
in: Proceedings of International Conference on Learning Representations,
ICLR, 2016.

[35] S. Bai, J.Z. Kolter, V. Koltun, An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling, 2018, arXiv preprint
arXiv:1803.01271.

[36] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput.
9 (1997) 1735–1780.

[37] K. Cho, B. van Merrienboer, Çaglar Gülçehre, D. Bahdanau, F. Bougares, H.
Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-
decoder for statistical machine translation, in: Proceedings of Empirical
Methods in Natural Language Processing, EMNLP, 2014.

[38] Y. Duan, M. Andrychowicz, B. Stadie, O.J. Ho, J. Schneider, I. Sutskever,
P. Abbeel, W. Zaremba, One-shot imitation learning, in: Proceedings of
Advances in Neural Information Processing Systems, NeurIPS, 2017, pp.
1087–1098.

[39] N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel, A simple neural attentive
meta-learner, in: Proceedings of International Conference on Learning
Representations, ICLR, 2018.

[40] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly
learning to align and translate, in: Proceedings of International Conference
on Learning Representations, ICLR, 2015.

[41] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, Y.
Bengio, Show, attend and tell: Neural image caption generation with visual
attention, in: Proceedings of the 32nd International Conference on Machine
Learning, ICML, 2015, pp. 2048–2057.

[42] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of
the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics, NAACL, 2019.

[43] A. Santoro, R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski, T. Weber, D.
Wierstra, O. Vinyals, R. Pascanu, T. Lillicrap, Relational recurrent neural
networks, in: Proceedings of Advances in Neural Information Processing
Systems, NeurIPS, 2018, pp. 7299–7310.

[44] J. Choi, Y. Guo, M. Moczulski, J. Oh, N. Wu, M. Norouzi, H. Lee,
Contingency-aware exploration in reinforcement learning, in: Proceedings
of International Conference on Learning Representations, ICLR, 2019.

[45] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D.
Reichert, T. Lillicrap, E. Lockhart, et al., Deep reinforcement learning with
relational inductive biases, in: Proceedings of International Conference on
Learning Representations, ICLR, 2019.

[46] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, D.J. Rezende, Towards
interpretable reinforcement learning using attention augmented agents,
in: Advances in Neural Information Processing Systems, NeurIPS, 2019, pp.
12329–12338.

[47] R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in: Advances in
Neural Information Processing Systems, NeurIPS, 2000, pp. 1057–1063.

[48] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, in: Pro-
ceedings of the 4th International Conference on Learning Representations,
ICLR, 2016.

[49] Y. Yuan, Z.L. Yu, Z. Gu, Y. Yeboah, W. Wei, X. Deng, J. Li, Y. Li, A novel multi-
step Q-learning method to improve data efficiency for deep reinforcement
learning, Knowl.-Based Syst. 175 (2019) 107–117.

[50] P. Liu, Y. Zhao, W. Zhao, X. Tang, Z. Yang, An exploratory rollout policy for
imagination-augmented agents, Appl. Intell. (2019) 1–16.

[51] Y. Zhao, P. Liu, C. Bai, W. Zhao, X. Tang, Obtaining accurate estimated action
values in categorical distributional reinforcement learning, Knowl.-Based
Syst. (2020) 105511.

[52] A.Y. Ng, D. Harada, S. Russell, Policy invariance under reward transfor-
mations: theory and application to reward shaping, in: Proceedings of
the 32nd International Conference on Machine Learning, ICML, 1999, pp.
278–287.

[53] J. Ba, R. Kiros, G.E. Hinton, Layer normalization, 2016, arXiv:arXiv:1607.
06450.

[54] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2016, pp. 770–778.

[55] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
W. Zaremba, Openai gym, 2016, arXiv:arXiv:1606.01540.

http://refhub.elsevier.com/S0950-7051(20)30392-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb7
http://arxiv.org/abs/arXiv:1802.09464
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1809.02070
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb32
http://arxiv.org/abs/1803.01271
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb51
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb51
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb51
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb51
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb51
http://arxiv.org/abs/arXiv:1607.06450
http://arxiv.org/abs/arXiv:1607.06450
http://arxiv.org/abs/arXiv:1607.06450
http://arxiv.org/abs/arXiv:1606.01540

P. Liu, C. Bai, Y. Zhao et al. / Knowledge-Based Systems 203 (2020) 106140 17

[56] T. Zahavy, N. Ben-Zrihem, S. Mannor, Graying the black box: understanding
dqns, in: International Conference on Machine Learning, ICML, 2016, pp.
1899–1908.

[57] S. Greydanus, A. Koul, J. Dodge, A. Fern, Visualizing and understanding
atari agents, in: International Conference on Machine Learning, 2018, pp.
1792–1801.

[58] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.-R.
Müller, Unmasking clever hans predictors and assessing what machines
really learn, Nat. Commun. 10 (1) (2019) 1–8.

[59] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J.
Schulman, S. Sidor, Y. Wu, P. Zhokhov, Openai baselines, 2017, https:
//github.com/openai/baselines.

[60] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, P. Abbeel, Overcoming
exploration in reinforcement learning with demonstrations, in: 2018 IEEE
International Conference on Robotics and Automation, ICRA, IEEE, 2018,
pp. 6292–6299.

[61] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S.G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al.,
Hybrid computing using a neural network with dynamic external memory,
Nature 538 (7626) (2016) 471.

Peng Liu is an associate professor at the School of
Computer Science and Technology, Harbin Institute of
Technology. He received his Ph.D. in microelectronics
and solid-state electronics from Harbin Institute of
Technology in 2007. His research interests cover image
processing, video analysis, pattern recognition, and the
design of large-scale integrated circuits.

Chenjia Bai received B.S. and M.S. degrees from Harbin
Institute of Technology, Harbin, China, in 2015 and
2017, respectively. He is currently working toward a
Ph.D. at the Pattern Recognition and Intelligent System
Research Center, Harbin Institute of Technology. His
main research interests include reinforcement learning
and neural networks.

Yingnan Zhao received B.S. and M.S. degrees from
Harbin Institute of Technology, Harbin, China, in 2015
and 2017, respectively. He is currently working toward
a Ph.D. in Harbin Institute of Technology. His main
research interests include reinforcement learning and
deep learning.

Chenyao Bai is a lecturer in Shanghai Customs College.
She received her M.Sc. degree in Electronic Systems
with Sensor Technology from University of Warwick,
UK, in 2012, and her Ph.D. study in School of Engi-
neering at University of Warwick in 2016. Her research
interests include machine learning, molecular commu-
nication, quorum sensing, nanonetworks, mathematical
modeling, error correction and detection codes and
communication protocols.

Wei Zhao is an associate professor at the School of
Computer Science and Technology, Harbin Institute
of Technology. She won a First Prize of Heilongjiang
Province Science and Technology Progress. Her research
fields include pattern recognition, machine learning,
and computer vision.

Xianglong Tang is a profess or at the School of
Computer Science and Technology, Harbin Institute of
Technology. He received his Ph.D. in computer applica-
tion technology from Harbin Institute of Technology in
1995. His research interest covers pattern recognition,
image processing, and machine learning.

http://refhub.elsevier.com/S0950-7051(20)30392-0/sb58
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb58
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb58
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb58
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb58
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/baselines
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30392-0/sb61

	Generating attentive goals for prioritized hindsight reinforcement learning
	Introduction
	Related work
	Background
	Markov decision process
	Multi-goal RL
	Hindsight experience replay (HER)
	Prioritized experience replay

	Proposed method
	Motivation
	Prioritized hindsight model
	Update rule
	Exploration of goals

	AGG Network architecture
	Temporal convolution network
	Multi-head dot product attention
	Last attention

	Algorithmic description
	Relation to HER

	Experiments
	Environments
	Fetch environment
	Hand block environment

	AGG Network details
	Prioritized hindsight model detail
	Attention visualization
	Result comparison

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

