
Knowledge-Based Systems 205 (2020) 106302

d
t
c
e
t
p
p
t
I
u
o
w
o
o
s

w
m

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Spatio-temporal feature fusion for dynamic taxi route
recommendation via deep reinforcement learning
Shenggong Ji a, Zhaoyuan Wang a, Tianrui Li a,b,∗, Yu Zheng a,c,d,∗

a School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
b National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong
University, Chengdu 611756, China
c JD Intelligent Cities Research, JD.com, Beijing 100176, China
d JD Intelligent Cities Business Unit, JD Digits, Beijing 100176, China

a r t i c l e i n f o

Article history:
Received 29 February 2020
Received in revised form 6 July 2020
Accepted 20 July 2020
Available online 25 July 2020

Keywords:
Spatio-temporal feature fusion
Sequential decision making
Taxi route recommendation
Deep reinforcement learning
Transportation

a b s t r a c t

Dynamic taxi route recommendation aims at recommending cruising routes to vacant taxis such that
they can quickly find and pick up new passengers. Given citizens’ giant but unbalancing riding demand
and the very limited taxis in a city, dynamic taxi route recommendation is essential for its ability to
alleviate the waiting time of passengers and increase the earning of taxi drivers. Thus, in this paper we
study the dynamic taxi route recommendation problem as a sequential decision-making problem and
we design an effective two-step method to tackle it. First, we propose to consider and extract multiple
real-time spatio-temporal features, which are related with the easiness degree of vacant taxis picking
up new passengers. Second, we design an adaptive deep reinforcement learning method, which learns
a carefully designed deep policy network to better fuse the extracted spatio-temporal features such
that effective route recommendation can be done. Extensive experiments using real-world data from
San Francisco and New York are conducted. Comparing with the state-of-the-arts, our method can
increase at least 15.8% of average earning for taxi drivers and reduce at least 29.6% of average waiting
time for passengers.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Taxi is an important commuting mode in our daily lives. Every
ay, in cities like New York and Beijing, there are hundreds of
housands of people waiting to take taxis [1,2]. In contrast to
itizens’ giant riding demand, the number of taxis in a city, how-
ver, is very limited. Even worse, after dropping off passengers,
axis need to spend a lot of time on cruising vacantly to find new
assengers, since passengers’ riding demand is spatially and tem-
orally unbalancing [3,4]. Consequently, the difficulty of taking
axis has become a common phenomenon in big cities [3,5,6].
mproving the transportation efficiency of taxis has become an
rgent issue. Dynamic taxi route recommendation [3,7], i.e., rec-
mmending cruising routes to vacant taxis, provides an feasible
ay. Specifically, as shown in Fig. 1(a), dynamic taxi route rec-
mmendation is to recommend a route (defined as a sequence
f road segments, e.g. routes r1, r2, r3, r4) to the vacant taxi 1
uch that by following the recommended route, taxi 1 can quickly

∗ Corresponding authors.
E-mail addresses: shenggongji@163.com (S. Ji),

ang_zhaoyuan@foxmail.com (Z. Wang), trli@swjtu.edu.cn (T. Li),
syuzheng@outlook.com (Y. Zheng).
ttps://doi.org/10.1016/j.knosys.2020.106302
950-7051/© 2020 Elsevier B.V. All rights reserved.
Fig. 1. Dynamic taxi route recommendation.

find a new passenger. It is a sequential decision-making prob-
lem [8] and perhaps more than one round of route recommen-
dation is necessary before a vacant taxi picks up new passengers.
Taxi route recommendation has many benefits, e.g. bringing taxi
drivers more revenues, reducing waiting time for passengers.

https://doi.org/10.1016/j.knosys.2020.106302
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106302&domain=pdf
mailto:shenggongji@163.com
mailto:wang_zhaoyuan@foxmail.com
mailto:trli@swjtu.edu.cn
mailto:msyuzheng@outlook.com
https://doi.org/10.1016/j.knosys.2020.106302

2 S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302

g
i
a
s
r
s
a
r

t
w
r
A
(
r

r
a
r
t

w
o
f
t
r
p
o
b

2

2

i
f
r
m
g
e
g
I
i

m
p
f
t
a
c
n
a
w
T
d
a
v
c
t
h
e
r
e
a
t
c

m
c

However, dynamic taxi route recommendation is challenging,
iven the following two reasons. First, taxi route recommendation
s related with multiple real-time spatio-temporal features, which
re non-trivial to formulate. Although there have already been
everal literature studying dynamic taxi route recommendation,
eal-time spatio-temporal features have neither been comprehen-
ively considered nor formulated [3,7,9]. In this work, we consider
nd formulate the following internal and external features as our
eal-time spatio-temporal features.

• Real-time. The reason that we should consider real-time
features is that the dynamic recommendation will signif-
icantly affect the status of the system. For the example
in Fig. 1(b), road segments e3, e4, e5, e6 (in red) have high
pickup probabilities in history. However, after some vacant
taxis have been recommended to them, most passengers
have been picked up and then these routes’ real-time pickup
probabilities become small. At this moment, if we still con-
duct recommendation based on historical (static) pickup
probability, we will continuously recommend vacant taxis
to these road segments, making them cannot find any pas-
senger there. Therefore, we should consider the real-time
features.
• Internal. For each possible route for recommendation, the

real-time internal features are features related with the
easiness degree of vacant taxis picking up passengers on
the route, e.g. the number of vacant taxis currently on the
route, the (estimated) number of current waiting passen-
gers on the route. Note that prior literature considers his-
torical/static internal features [3,9], not real-time internal
features.
• External. The real-time external features of a route are fea-

tures related with the easiness degree of vacant taxis picking
up passengers in the future (not on this route). For example,
as shown in Fig. 1(c), the vacant taxi 2 is currently in a busi-
ness area at the rush hour of a weekday morning (e.g. 8:00
a.m.), during which most people go from residential areas to
business areas. The gray circle in Fig. 1(c) indicates the maxi-
mum length of a candidate route, e.g. five road segments [7].
In this case, all candidate routes (e.g. r5, r6) still locate in
the business area without any waiting passengers. That is,
all candidate routes have highly similar real-time internal
features, e.g. their real-time pickup probabilities are all close
to zero. As a result, if considering only the real-time internal
features on each route, recommending r5 or r6 makes no
difference. However, as Fig. 1(c) shows, r6 is clearly better
than r5 since r6 leads to a residential area with many waiting
passengers, while r5 leads to another business area with no
waiting passenger. That is, for a route, besides its real-time
internal features, the real-time external features are vital,
too. To our best knowledge, the real-time external features
have not yet been considered by the state-of-the-arts [3,7,9].

Second, to fuse the above spatio-temporal features so that bet-
er taxi recommendation can be done is challenging. In particular,
e do not have label data. Given the features of all candidate
outes, there is no labeled optimal recommendation decision.
s a result, supervised learning-based feature fusion methods
a mapping from features of each route to the corresponding
ecommended route) cannot be used in this problem.

To address the above issues, in this paper, we design a deep
einforcement learning method to fuse the real-time internal
nd external spatio-temporal features into the dynamic route
ecommendation of vacant taxis. Overall, our contributions are
hree-fold.
• To our best knowledge, we are the first to consider both the
real-time internal and external spatio-temporal features for
dynamic taxi route recommendation. In addition, we pro-
vide formal definitions and formulations for these features.
• We design a deep reinforcement learning method to fuse the

extracted features to do the dynamic route recommendation
for vacant taxis. Specifically, a deep neural network (deep
policy network) is carefully designed to fuse the extracted
features. Then we develop an adaptive deep reinforcement
learning method to learn the deep policy network to do
better recommendation.
• Extensive experiments are conducted using data collected

from San Francisco and New York. Experiment results show
that comparing with existing methods, our method is able to
improve at least 15.8% of earning for taxi drivers and reduce
at least 29.6% of waiting time for passengers.

The rest of this paper is organized as follows. In Section 2,
e introduce the related work. Section 3 provides an overview
f our method for dynamic taxi route recommendation. Section 4
ormally defines and formulates our real-time internal and ex-
ernal spatio-temporal features. In Section 5, we design a deep
einforcement learning method to learn a carefully designed deep
olicy network to fuse the extracted features and to do the rec-
mmendation. Experiments are conducted in Section 6, followed
y the conclusion of this paper in Section 7.

. Related work

.1. Taxi route recommendation

Prior taxi route recommendation methods can be categorized
nto two groups, according to different problem definitions. The
irst group of methods [3,7,9,10] aim at recommending a detailed
oute (i.e., a sequence of road segments) to each vacant taxi. The
ethod proposed in this work belongs to this group. The second
roup of methods [4,5,11] recommend an area to a vacant taxi,
.g. a grid [4], a zone [11], or a road cluster [5]. That is, the second
roup of methods do not recommend a detailed route to a taxi.
n the future, we plan to study a variant of our method such that
t can be applied to recommend an area to a taxi, too.

More specifically, Yuan et al. [3] proposed a probabilistic
odel to do the taxi route recommendation. They extracted the
robability of vacant taxis finding new passengers on each route
rom the data in history. Then they recommended a route with
he maximal pickup probability to a vacant taxi. Besides, they
lso recommended locations to passengers such that passengers
an be picked up quickly. Qu et al. [7] firstly calculated the
et profit of each candidate route using the data in history,
nd then provided an effective algorithm to recommend routes
ith more net profit. Garg et al. [9] developed a Monte Carlo
ree Search method aiming at minimizing the vacant driving
istance for drivers. Similarly, Luo et al. [10] also proposed
taxi route recommendation method to minimize the average
acant driving distance. Rong et al. [4] proposed a Markov de-
ision process method to recommend a grid for each vacant
axi. Based on the pickup probability and rewards obtained in
istory, they learned the state value and state–action value for
ach state and each state–action pair. Then they conducted the
ecommendation using the learned state–action value. Verma
t al. [11] developed a table Q-learning method to recommend
zone to each vacant taxi. To learn the state–action q-value,

hey leveraged Monte Carlo sampling method. Likewise, they
onducted recommendation based on the learned q-value.
Despite of the different problem definitions and the different

ethods used, prior taxi route recommendation methods have a
ommon drawback. That is, when conducting recommendation,

S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302 3
they do not consider real-time features in the taxi system. For
example, [3] recommends a route based on the pickup probability
of each route in history. Likewise, [7] recommends a route based
on the historical net profit of a route. Others [5,9,11] do not
directly consider any features at all. However, the real-time fea-
tures will significantly affect the recommendation performance.
Therefore, in this work we propose to consider the real-time
features (internal features and external features). To the best of
our knowledge, external features have not been considered. We
propose a deep policy network learned by deep reinforcement
learning to better fuse these features.

2.2. Taxi dispatching and taxi sharing

Besides taxi route recommendation, taxi dispatching [12–14]
and taxi sharing [15–17] can also improve taxis’ transportation
efficiency. Taxi dispatching is to select a vacant taxi to pick
up a passenger who has sent a request for riding. For exam-
ple, Zhang et al. [12] developed a combinatorial optimization
model to do the taxi dispatching such that the average driver
acceptance rate for all orders can be maximized. Xu et al. [13]
proposed to learn the state value for each hexagon grid and
then do the optimization considering the learned state value.
Taxi sharing is to select an occupied taxi to pick up a passenger
who has sent a riding request. In taxi sharing, different pas-
sengers can share one taxi. Ma et al. [15] proposed a T-share
system, which is able to do large-scale taxi sharing based on a
carefully designed spatio-temporal index. Santos et al. [16] mod-
eled the taxi-sharing problem as an optimization problem and
provided heuristic methods to maximize the number of shared
trips. Taxi dispatching and taxi sharing usually happen after a
passenger sends a riding request to online taxi platforms [12,17],
e.g. Uber, Lyft, and Didi. For online taxi platforms, taxi route
recommendation happens when there is no passenger sending
riding requests and vacant taxis need to cruise in empty before
new passengers come, especially at off-peak time. For traditional
taxi systems, passengers do not send their requests online but
call taxis by the roadside, thus taxi route recommendation is
always necessary [3,7]. In fact, taxi route recommendation, taxi
dispatching, and taxi sharing have different application scenarios
and thus can complement with each other to better enhance taxis’
transportation efficiency.

2.3. Transportation

The research on the taxi route recommendation belongs to
the transportation research in urban area. In addition, there ex-
ist many other transportation-related problems. For example,
Lee et al. [18] proposed to mine the traffic bottlenecks in the
road networks of a city using a three-phase spatio-temporal
traffic bottleneck mining model. The mining of the traffic bottle-
necks can help alleviate the traffic congestion in road networks.
Pan et al. [19] modeled the human behavior as a sequential
decision-making process, and proposed to study the dynamic hu-
man preference using inverse reinforcement learning. Using the
method, deeper analysis results for the behavior of taxi drivers
have been obtained. Yu et al. [20] proposed an effective deep
learning framework for traffic forecasting, which is able to ac-
curately predict the mid-and-long term traffic flow in a city.
The proposed framework can well fuse the spatial and temporal
correlations between data in different domains.
2.4. Deep reinforcement learning

Recent advances in deep learning [21,22] have significantly
spurred the success of deep reinforcement learning [8,23]. Many
effective deep reinforcement learning methods have been devel-
oped, such as deep Q-learning [24], deep double Q-learning [25],
dueling [26], proximal policy optimization [27], and so on. Deep
reinforcement learning has achieved excellent performance in
many decision making problems, for example, Go [28,29], robotics
[30,31], Atari 2600 games [24], early classification [32], ambu-
lance redeployment [33], energy saving [34], etc. In this work,
we design an adaptive and novel deep reinforcement learning
method to do the dynamic taxi route recommendation.

3. Overview

3.1. Preliminary

Definition 1 (Road Network). A road network is a directed road
network, denoted by G = ⟨V , E⟩, where V denotes all road
intersections (vertices) and E refers to all road segments (edges).
For each directed edge e ∈ E, it contains two vertices, i.e., e =
⟨vin, vout⟩, which means there is a directed edge from vertex vin
to vertex vout. Based on our definition, ⟨vin, vout⟩ and ⟨vout, vin⟩

are two different directed edges. Same with literature [7,9], the
dynamic taxi route recommendation problem in this work is also
defined on the road network G of a city.

Definition 2 (Request). A recommendation request req from a taxi
is a tuple, denoted by req = ⟨e, t⟩. e denotes the current located
edge of the taxi. e.vin is the vertex through which the taxi enters
the edge e and e.vout is the vertex through which the taxi will
leave the edge e. t refers to the time stamp at which the request
is sent to our backend. In this paper, for each vacant taxi, it will
continuously send its request until it picks up new passengers.
Usually, a vacant taxi has to send a few requests (i.e., a few rounds
of recommendation) before it picks up new passengers.

Definition 3 (Route). A recommendation route for a request req =
⟨e, t⟩ is a sequence of road segments (edges), denoted by r =
e1 → e2 → · · · → el (see Fig. 1(a)). That is, after a recommen-
dation request req from a taxi is sent to our taxi route recom-
mendation backend, we will return a recommendation route to
the taxi. l is the recommendation route length, i.e., the number
of road edges in r , e.g. l = 4. The edges e1, e2, . . . , el in r should
meet the following constraints:⎧⎪⎪⎪⎨⎪⎪⎪⎩

e1.vin = req.e.vout
e2.vin = e1.vout
e3.vin = e2.vout
· · ·

el.vin = el−1.vout

(1)

For a request req, we denote the entire candidate recom-
mendation routes by R(req) =

{
r1, r2, . . . , rQ

}
. Q refers to the

cardinality of R(req), and for different req, Q can be different.
Each route r ∈ R(req) satisfies the constraints (1). Besides, we
denote r∗(req) as the optimal recommendation route for request
req.

3.2. Problem definition

Dynamic taxi route recommendation problem: the dynamic
taxi route recommendation problem aims at finding the optimal
route r∗(req) from the candidate routes R(req) for each coming
recommendation request req, such that by following the rec-
ommended routes, taxis’ average vacant cruising time can be

4 S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302

m
r

o
b
v
n
t
b
s
r

3

⟨

t
E
p

d
s
c
p
t

t
A
t

f

w
r
t
S

L
s

s

w
w
r
n
p
t
o
t
s

p

Fig. 2. The general framework of our dynamic taxi route recommendation.
t
t

inimized. That is, we are going to learn an effective taxi route
ecommendation policy.

Besides minimizing taxis’ vacant cruising time, there exist
ther objective functions, e.g. maximizing taxis’ pickup proba-
ility [3], maximizing taxi drivers’ profit [7], minimizing taxis’
acant cruising distance [9], etc. Although in the problem defi-
ition, our objective is to minimize the average vacant cruising
ime of taxis, the proposed recommendation method can easily
e adapted to other objective functions. In our experiments, we
et other objective functions as the metrics to measure our taxi
oute recommendation method.

.3. Framework

As presented in Fig. 2, when a recommendation request req =
e, t⟩ comes to our backend, we have three main components
o do the recommendation, i.e., Candidate Generation, Feature
xtraction, and Deep Policy Network. Below, we detail each com-
onent.
Candidate Generation is to generate all candidate recommen-

ation routes R(req) =
{
r1, r2, . . . , rQ

}
for the request req, as

hown in Fig. 2. To generate all candidate routes is easy, and we
an directly use some search algorithms in graph [35], e.g. the
opularly used breadth-first and depth-first search methods. Note
hat, for different req, Q can be different.

Feature Extraction is to extract recommendation-related fea-
ures f (rq) for each candidate recommendation route rq ∈ R(req).
s discussed before, we consider the real-time internal and ex-
ernal spatio-temporal features of a route rq, i.e.,

(rq) =
⟨
fint(rq), fext(rq)

⟩
, (2)

here fint(rq) denotes the internal features of route rq and fext(rq)
efers to rq’s external features. We formally define and formulate
he real-time internal and external spatio-temporal features in
ection 4.
Deep Policy Network (learned with Deep Reinforcement

earning) maps each candidate route rq’s features f (rq) to the
core s(rq) of each route rq, that is,

(rq) = h
(
f (rq); θ

)
, (3)

here h denotes the nonlinear mapping of the deep policy net-
ork from a route rq’s features f (rq) to the score s(rq) of the route

q. The θ refers to the parameters in the deep policy network. The
etwork structure is detailed in Fig. 6 in Section 5. That is, we
rovide a deep policy network with a carefully designed structure
o fuse the real-time internal and external features. Next, based
n the obtained score s(rq) of each route rq, we can calculate
he probability p(rq) of recommending each route rq using the
oftmax function:

(rq) =
exp

(
s(rq)

)∑Q () . (4)

q′=1 exp s(rq′)
Fig. 3. Internal features fint(r) of r = e1 → e2 → e3 → e4 .

Finally, we recommend route r∗(req) to the vacant taxi according
o each route rq’s recommendation probability p(rq). The larger
he score s(rq), the higher probability rq is recommended. To
learn an optimal deep policy network, we will design a deep
reinforcement learning method in Section 5.

4. Feature extraction

4.1. Real-time internal spatio-temporal features

For each candidate route r = e1 → e2 → · · · → el ∈ R(req) of
a request req, we expect the real-time internal features fint(r) can
reflect the real-time pickup probability on r . Clearly, the pickup
probability on r is related with the pickup probability on r ’s
edges e1, e2, . . . , el. Thus, we first consider each edge ei’s real-
time pickup probability, and we propose to consider the following
pickup probability-related features for each edge ei:

1. Estimated number of current waiting passengers at this
edge, ei.#wp.

2. Number of current vacant taxis at this edge, ei.#vt .
3. Estimated number of net coming passengers at this edge in

the next time period (e.g. next half an hour), ei.#np+.

These features will be detailed later. Obviously, more waiting
passengers, less vacant taxis, and more net coming passengers
will lead to higher pickup probability on edge ei.

Then, we can define a route r ’s real-time internal features
fint(r) as the concatenation of features on e1, e2, . . . , el ∈ r , i.e.,

fint(r) =

⎡⎢⎣ e1.#wp e1.#vt e1.#np+
e2.#wp e2.#vt e2.#np+
· · · · · · · · ·

el.#wp el.#vt el.#np+

⎤⎥⎦ . (5)

Fig. 3 is an example of the internal features of a route r = e1 →
e2 → e3 → e4, where l = 4. Apparently, for a vacant taxi, we
expect to recommend it a route r with more waiting passengers
(i.e., larger e1.#wp, . . . , el.#wp), less vacant taxis (i.e., smaller
e1.#vt, . . . , el.#vt), and more coming net passengers (i.e., larger
e1.#np+, . . . , el.#np+). Below, we formulate these features in de-
tail.

S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302 5

v
n
p

s
r
c
c
b

e

4

t
g
r
e

o
t

4.1.1. ei.#wp
The number of current waiting passengers on edge ei is un-

known and should be estimated. We propose to utilize two values
to represent ei.#wp, one as the estimated number of arrived pas-
sengers in the last time period (e.g. the last half an hour), denoted
by ei.#ap−, the other as the number of passengers picked up in
the last time period, denoted by ei.#pp−. ei.#pp− is a knowable
alue. Then, the number of current waiting passengers is the
umber of arrived passengers minus the number of passengers
icked up in the last time period. That is, ei.#wp is

ei.#wp = ei.#ap− − ei.#pp−. (6)

To estimate the number ei.#ap− of arrived passengers at
an edge ei, many existing time series estimation methods can
be used, e.g. autoregressive integrated moving average (ARIMA)
models [36], linear regression models [37], deep neural net-
works [38–40], etc. Since the focus of this work is not on the
estimation method, we learn an ARIMA model to do the estima-
tion, which is effective, easy to implement, and widely used in
prior literature [36].

4.1.2. ei.#vt
The number of vacant taxis at edge ei is a knowable value

ince all taxis are equipped with wireless sensors, probing their
eal-time GPS locations and status (occupied or vacant). Thus, we
an know the real-time number of vacant taxis at each edge. By
onsidering this feature, all vacant taxis can be cooperated to do
etter recommendation. For example, if the edge ei has enough

vacant taxis, we will not recommend a route covering this edge
to new vacant taxis. We can also avoid recommending the same
route to many vacant taxis.

4.1.3. ei.#np+
The estimated number of net coming passengers in next time

period at edge ei is

ei.#np+ = ei.#ap+ − ei.#dt+, (7)

where ei.#ap+ is the estimated number of arriving passengers at
edge ei in next time period, and ei.#dt+ refers to the estimated
number of taxis that will drop passengers at edge ei in next
time period. Thus ei.#np+ can reflect the future riding demand of
passengers at edge ei, i.e., the future pickup probability of edge
ei. The bigger the ei.#np+, the higher probability of a taxi picking
up a passenger in ei. We also learn an ARIMA model to estimate
i.#ap+ and ei.#dt+.

.2. Real-time external spatio-temporal features

As discussed before, the external features fext(r) of a route r are
o reflect the easiness degree of a vacant taxi picking up passen-
ers in the future after it reaches the end of the recommended
oute r . Thus, we propose to consider the features nearby the
nd of route r = e1 → · · · → el, i.e., nearby the vertex el.vout.

Formally, we consider the features in grids surrounding el.vout. A
city can be segmented into many grids, each one of which has
the same size (e.g. 300 m×300 m). For example, as shown in
Fig. 4, el.vout is in grid gij, and we consider grid gij’s k orders of
surrounding grids, k = 0, 1, 2, respectively. We denote G(r) as
the surrounding grids of a route r ’s end.

Same with the real-time features considered in each edge, for
each grid gi′j′ ∈ G(r), we consider the following features:

1. Estimated number of current waiting passengers in this
grid, gi′j′ .#wp.

2. Number of current vacant taxis in this grid, g ′ ′ .#vt .
i j
Fig. 4. Surrounding grids G(r) of route r ’s end, k = 0, 1, 2.

Fig. 5. External features fext(r), k = 1.

3. Estimated number of net coming passengers in next time
period in this grid, gi′j′ .#np+.

Clearly, these features also reflect the grid gi′j′ ’s real-time and
future pickup probability. Thus, if the surrounding grids of a route
r ’s end have higher pickup probabilities, after a taxi reaches route
r ’s end, it can easily find passengers in the future.

Formally, the real-time external features fext(r) of a route r are
defined as the concatenation of features in each grid gi′j′ ∈ G(r).
Fig. 5 shows a route r ’s external features fext(r) considering k = 1
order of surrounding grids being considered.

5. Deep reinforcement learning

In this section, we first introduce the structure of the proposed
deep policy network. Then, we detail how to use deep reinforce-
ment learning to learn the deep policy network to better fuse the
extracted features and to do better recommendation.

5.1. Deep policy network

To better fuse the proposed real-time internal and external
spatio-temporal features, we propose a deep neural network as
the policy network, as demonstrated in Fig. 6. The input of the
deep policy network includes the internal and external features of
a route r , i.e., the upper left part of Fig. 6. The output is the score
f the route, i.e., the s(r) at the bottom of Fig. 6. The structure of
he policy network is comprised of the following components.

6 S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302

f

g
t
i

g

(

g
t
r
A
r

s

t
A
a

5

w
r
n

5

p
w

Q
f

Fig. 6. The deep policy network: f (r) ↦→ s(r) = h (f (r); θ).

Flattening. Firstly, we transform the internal features fint(r)
rom a matrix Eq. (5) to a flattened layer.

Aggregation. For each grid gi′j′ ∈ G(r), it has three features
i′j′ .#wp, gi′j′ .#vt , and gi′j′ .#np+. Since the three features reflect
he real-time and future pickup probability (i.e., riding demand)
n grid gi′j′ , we can aggregate them as one:

i′j′ .#demand = (gi′j′ .#wp− gi′j′ .#vt)+ γ × gi′j′ .#np+. (8)

gi′j′ .#wp − gi′j′ .#vt) indicates grid gi′j′ ’s current riding demand,
while gi′j′ .#np+ indicates the future demand. γ is a discount rate
of future demand to current demand, and usually γ ∈ [0, 1]. After
aggregation, for each grid gi′j′ ∈ G(r), as shown at the top right
of Fig. 6, it contains only one feature gi′j′ .#demand, indicating
passengers’ riding demand (pickup probability) in gi′j′ .

Max pooling. For each order of surrounding grids, we conduct
max pooling operation. The bottom left corner of Fig. 6 shows
the max pooling operation on the riding demand of the 1st-order
rids. Max pooling can reduce the number of parameters needed
o learn and in the meantime can avoid over-fitting [21]. For sur-
ounding grids of the same order, the maximum demand is kept.
fter max pooling, we have k values, indicating the maximum
iding demand of surrounding grids in each order (k orders).

Concatenation. The flattened internal features and k orders of
urrounding grids’ maximum riding demand are concatenated.
Fully connected. Two fully connected layers are then added

o map the concatenated features into the score s(r) of route r .
fter the first fully connected layer, a Tanh activation function is
pplied to conduct nonlinear mapping [21].

.2. Learning deep policy network

To learn the parameters θ in the deep policy network (Fig. 6),
e first model the dynamic taxi route recommendation as a
einforcement learning task [8,41]. Then, we learn the deep policy
etwork using policy gradient [42].

.2.1. Reinforcement learning task
Reinforcement learning deals with sequential decision-making

roblems in decision-making systems [8,41]. The basic frame-
ork of reinforcement learning can be modeled as Fig. 7, in
 r
Fig. 7. Reinforcement learning framework.

which an agent interacts with the environment. More specifically,
based on the current state stat of the environment, the agent
makes an action act t according to the policy πθ . The θ in πθ is
the parameters, mapping the state–action pair (stat , act) into a
probability of taking action act . In this work, the θ in πθ is the θ
in our deep policy network (see Fig. 6). Then, the agent obtains
an instant reward rewt and the state of the environment evolves,
becoming stat+1. The goal of reinforcement learning is to learn
an optimal policy πθ , i.e., an optimal policy network in this work,
such that by following the policy πθ , the agent can obtain more
rewards.

The dynamic taxi route recommendation problem can be mod-
eled as a reinforcement learning task. The agent in reinforcement
learning is a taxi in our taxi route recommendation problemwhile
the environment is a taxi system in a city. Each taxi in the taxi
system shares the same policy πθ , i.e., the same policy network
in Fig. 6.

State. When a taxi sends a request req for recommendation,
we need to obtain the current state stat in the environment. The
state stat includes all information in the current environment,
e.g. the current recommendation request req, the current status
of each taxi, the current status of passengers, and so on. Thus, stat
can be denoted by

stat = (req, STATUSTAXIS, STATUSPASSENGERS, . . .) . (9)

Action. The action act t is a potential recommendation route rq
for the current request req, i.e.,

act t ∈ R(req), (10)

where R(req) is the set of all possible candidate recommendation
routes for the current request req.

State–action pair. For each state–action pair (stat , act t), we
need to extract corresponding features, denoted by φ(stat , act t),
based on which policy πθ calculates the probability of taking
action act t . As in Section 4, for each possible action actt = rq, we
extract route rq’s real-time internal and external features, i.e.,

φ(stat , act t = rq) = f (rq) = ⟨fint(rq), fext(rq)⟩. (11)

Policy. The policy πθ (stat , act t) is to output probability of
taking each action act t = rq ∈ R(req), based on the extracted
feature f (rq) of state–action pair (stat , act t = rq).

Actually, πθ (stat , act t) is exactly the recommendation method
introduced in Fig. 2. It first calculates the score s(rq) = h

(
f (rq); θ

)
for each possible action (route) actt = rq. Then, a softmax function
is applied to obtain the probability of each action. That is, as
Eq. (4) shows,

πθ (stat , act t = rq) = p(rq) =
exp

(
h
(
f (rq); θ

))∑Q
q′=1 exp

(
h
(
f (rq′); θ

)) . (12)

= |R(req)| is the number of candidate recommendation routes
or the current request req, which could be different for different
eq.

S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302 7

w

w

e
r

w

Fig. 8. State transition: an example.

Fig. 9. Long-term reward: an example.

State transition. After a taxi takes an action act t at state stat ,
the state evolves to next state stat+1, when there comes another
taxi sending a new recommendation request. For example, as
shown in Fig. 8, the current state is stat where taxi 2 sends a
request for recommendation at 08:25 am. After taxi 2 takes an
action, when next taxi (taxi 3) requires recommendation at 08:26
am, the state evolves to next state stat+1.

Reward. In this work, we directly define the long-term reward
of a taxi taking action act t at state stat , denoted by Rew(stat , actt).
The long-term reward of a state–action pair will be used during
the learning of policy πθ . Formally, Rew(stat , actt) is defined as
the time interval between now and the time when the taxi
succeeds in picking up a passenger. In math, it is

Rew(stat , actt) = −
(
timepickup − timet

)
, (13)

where timet denotes the time stamp of the current state stat and
timepickup denotes the time stamp at which the taxi successfully
picks up a passenger. For example, as shown in Fig. 9, taxi 1 takes
action actt0 at state stat0 at 08:23 am, action actt1 at state stat1 at
08:28 am, action actt2 at state stat2 at 08:35 am, and successfully
picks up a passenger in route actt2 at 08:38 am. Then, we can
obtain the long-term reward for each state–action pair, i.e., (see
Fig. 9) Rew(stat0, actt0) = −15, Rew(stat1, actt1) = −10, and
Rew(stat2, actt2) = −3. It should be noted that usually t1 ̸= t0+1.
For the same taxi 1 in Fig. 8, t0 = t − 1 while t1 = t + 2.

5.2.2. Policy gradient
The objective of a reinforcement learning task is to learn an

optimal policy πθ (i.e., an optimal deep policy network) such that
given any state sta, by taking actions following policy πθ , taxis can
obtain most long-term rewards (quickly pick up new passengers).
Formally, it is

max
θ

J(θ) = Esta∼πθ

[
Rew(sta)

]
, (14)

here Rew(sta) denotes the expected long-term rewards that a
vacant taxi can obtain at state sta by taking actions following
policy πθ [8]. sta ∼ πθ denotes sta is sampled by following πθ .

To learn the optimal θ , we leverage a policy gradient algorithm
called REINFORCE [42], which has been widely used in sequential
decision-making problems [8,41]. The algorithm is demonstrated
in Algorithm 1. The parameters θ in our policy network are
first randomly initialized. Then, we continue updating θ until
θ converges, i.e., the objective function J(θ) is maximized. The
update process further consists of three steps.

First, Monte-Carlo sampling is used to sample state–action
pairs (stat , actt) and corresponding long-term rewards Rew(stat ,
actt). Specifically, given an initial state sta0, we use policy πθ

(with the current θ) to select an action act0. And then the state
becomes sta according to the environment, and likewise action
1
Algorithm 1: Learning θ with REINFORCE
θ ← random initialization;
hile θ not converge do
MC-sampling: state–action pairs and rewards;
calculate: gradient ∇θ J(θ) (Eq. (15));
update: θ ← θ + α · ∇θ J(θ);

nd
eturn θ ;

act1 is selected still using πθ . The sampling is repeated until
a predefined number T of state–action pairs and rewards are
obtained.

Second, we calculate the gradient of J(θ) to θ , i.e., ∇θ J(θ). Based
on [8,42], it is

∇θ J(θ) = E(sta,act)∼πθ

[
(∇θ logπθ (sta, act)) · Rew(sta, act)

]
,

here Rew(sta, act) denotes the expected long-term rewards of
state–action pair (sta, act) by following policy πθ [8]. Rew(sta, act)
is an specific instance of Rew(sta, act). Thus [42], using the sam-
pled state–action pairs and rewards, ∇θ J(θ) is

∇θ J(θ) ≈
1
T

T−1∑
t=0

[(∇θ logπθ (stat , actt)) · Rew(stat , actt)] . (15)

Third, after having the gradient ∇θ J(θ), we can update θ :

θ ← θ + α · ∇θ J(θ), (16)

where α is learning rate, e.g. α = 0.001.

6. Evaluation

6.1. Dataset

To evaluate our dynamic taxi route recommendation method,
we use open data in real world collected from San Francisco
and New York. The taxi data used is publicly available from San
Francisco [43] and New York [1]. The map data of the two cities
is collected from OpenStreetMap [44].

6.1.1. Taxi data
San Francisco [43]. The taxi data in San Francisco contains GPS

trajectory records of 536 taxis, collected from May 17, 2008 to
June 10, 2008. In total, there exist 11,219,955 GPS points. Each
GPS point is comprised of four elements (latitude, longitude, sta-
tus, timestamp). The status denotes whether a taxi is occupied or
vacant, from which we can extract the time stamps and locations
of passengers being picked up and being dropped off. From taxis’
GPS trajectories, we extract 414,381 passenger trips in the Bay
Area of San Francisco.

New York [1]. New York has opened passengers’ trip data. We
collect 3 months of trip data from March 2015 to May 2015. Each
passenger trip consists of much detailed information, e.g. the ori-
gin (latitude, longitude), destination (latitude, longitude), pickup
time, drop-off time, and fare of a passenger. Thus we can also
know passengers’ information. In this work, we consider the trip
data of yellow taxis in Manhattan, where we collect 32,638,971
passenger trips (354,771 trips per day).

6.1.2. Map data
The map data of New York and San Francisco are both obtained

from OpenStreetMap [44]. For the Bay Area in San Francisco, after
data cleaning and filtering, we obtain 3,087 vertices and 5,648
edges. For the Manhattan Area in New York, we obtain 5,118

vertices and 7,843 edges.

8 S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302

a

I

I

W
o

m

I

#

r

6

m
b
t
a
a
c
a
i
c
f
o
i
t
m
t
w
t
w
i
f
d

6
m

m
1
o
O
P
m
D
w
s
s

6.2. Experiment settings

In this work, we use the first 2/3 of data to learn the pa-
rameters of the deep policy network via deep reinforcement
learning. The rest 1/3 of data is used to evaluate the learned policy
network. Similar to prior literature [3,4,7,9,11,45], we also apply
a simulated taxi system to do the evaluation. In our simulator,
the time stamps and locations of coming passengers are identical
to those in the collected real-world passenger trip data. For San
Francisco, the number of taxis is set as 536 (same with the real-
world dataset), while 10,000 taxis are used in New York. Taxis
are randomly distributed initially. If a taxi is vacant, we will
recommend a route for it. If the taxi does not find any waiting
passengers after reaching the end of the recommended route,
we will recommend a new route to it. The travel time of taxis
is given by the simulator, based on the travel distance and the
speed limit of each road segment. Our method is realized in C++
(for simulation) and Python (for learning deep policy network).
Experiments are conducted on a server with 2.60 GHz Intel(R)
Xeon(R) CPU and 126 GB.

6.3. Baselines

To evaluate our dynamic taxi route recommendation method,
we compare it with the following baseline methods.

• MPP [3]. This method recommends a route with the maxi-
mum pickup probability to a vacant taxi. The pickup proba-
bility of each edge is estimated using the historical average,
not the real-time pickup probability of an edge.
• MNP [7]. This method recommends a route with the maxi-

mum net profit, where similarly the net profit of an edge is
also obtained from historical data.
• PCD [10]. This method recommends a route with the mini-

mal potential cruising distance. Each candidate recommen-
dation route’s potential cruising distance is learned from
historical data, too.
• MDM [9]. This method recommends a route aiming at min-

imizing the vacant cruising distance of a taxi, using Monte
Carlo tree search. MDM [9] is the most state-of-the-art.
• TQL [11]. This method provides a table Q-learning method

to do the taxi route recommendation. Monte Carlo sam-
pling methods are used to learn the table q-value of each
state–action pair [8].

6.4. Metrics

Following the metric proposed in [9], we also use the improve-
ment ratio of our recommendation method over baseline meth-
ods as our evaluation metrics. The difference is that we consider
more metrics to do the evaluation more carefully. Specifically, we
apply the following four metrics.

Improvement ratio of taxi drivers’ average earning. For
each baseline method (denoted by basl), the improvement of taxi
drivers’ earnings using our deep reinforcement learning-based
recommendation method (denoted by DRL) over basl is defined
s

mproveEarnbasl =
EarnDRL − Earnbasl

Earnbasl
. (17)

EarnDRL and Earnbasl denote the taxi drivers’ average earnings
using our method and each baseline method basl ∈ [MPP,MNP,
MDM,QL], respectively.

Improvement ratio of taxis’ average vacant cruising time:

ImproveVCTbasl =
VCTbasl − VCTDRL

. (18)

VCTbasl
Table 1
Improvement ratios of our method over baselines. Our method: l = 4, k = 2.
Method SF dataset NY dataset

Earn VCT WT #PP30 Earn VCT WT #PP30

MPP 2.238 0.177 0.548 2.479 1.303 0.226 0.727 1.310
MNP 0.581 0.105 0.444 0.620 1.030 0.207 0.714 1.040
PCD 2.017 0.171 0.544 2.162 1.162 0.217 0.722 1.163
MDM 5.549 0.204 0.556 5.966 0.428 0.137 0.634 0.427
TQL 0.344 0.067 0.296 0.300 0.158 0.068 0.491 0.159

VCTDRL and VCTbasl denote taxis’ vacant cruising time using our
method and baseline method basl, respectively.

Improvement ratio of passengers’ average waiting time:

mproveWT
basl =

WTbasl −WTDRL
WTbasl

. (19)

TDRL and WTbasl denote passengers’ average waiting time using
ur method and baseline method basl, respectively.
Improvement ratio of passengers being picked up in 30
inutes:

mprove#PP30basl =
#PP30basl − #PP30DRL

#PP30basl
. (20)

PP30DRL and #PP30basl denote the number of passengers being
picked up in 30 min using our method and baseline method basl,
espectively.

.5. Effectiveness

The improvement ratios of our taxi route recommendation
ethod over baseline methods are presented in Fig. 10 and Ta-
le 1. As shown in Figs. 10(a) and 10(e), the improvement ratios of
axi drivers’ average earning using our method over baselines are
t least 34.4% (over TQL) and 15.8% (over TQL) in San Francisco
nd New York, respectively. In terms of taxis’ average vacant
ruising time (see Figs. 10(b) and 10(f)), our method can reduce
t least 6.7% and 6.8% of average vacant cruising time for taxis
n two cities, respectively. Similarly, for passengers, our method
an reduce at least 29.6% and 49.1% of average waiting time
or each passenger as shown in Figs. 10(c) and 10(g). The ratio
f passengers being picked up in 30 min is also significantly
mproved, i.e., 30% and 15.9% in Figs. 10(d) and 10(h), respec-
ively. Based on these results, we can safely conclude that our
ethod can significantly improve the transportation efficiency of

axis, increasing taxi drivers’ earnings and reducing passengers’
aiting time. The good performance of our method can be at-
ributed to two reasons. First, just as discussed in Introduction,
e consider more realistic and useful features, i.e., the real-time

nternal and external spatio-temporal features. Second, to better
use these features, we design a deep policy network learned by
eep reinforcement learning.

.6. Comparisons between different deep reinforcement learning
ethods

In this work, the proposed deep reinforcement learning
ethod is a REINFORCE policy-based method (see Algorithm
). To demonstrate its performance, we compare it with the
ther two deep reinforcement learning methods, Proximal Policy
ptimization (PPO) [27] and Deep Q-Learning (DQN) [23,24].
PO is also a policy-based method, while DQN is a value-based
ethod [8]. To make fair comparisons, the settings of the PPO and
QN are the same with the setting of our REINFORCE. Specifically,
e use the same features (i.e., the real-time internal and external
patio-temporal features) for both PPO and DQN. The network
tructures of the PPO and DQN are also the one in Fig. 6. The

S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302 9

T
T

s
N
(
T
p
i
r
s
p
s
p

Fig. 10. The improvement ratios of our method over baseline methods. Our method: l = 4, k = 2 .
able 2
he improvement ratios of REINFORCE, PPO and DQN over baseline TQL.
Method SF dataset NY dataset

Earn VCT WT #PP30 Earn VCT WT #PP30

REINFORCE 0.344 0.067 0.296 0.300 0.158 0.068 0.491 0.159
PPO 0.333 0.066 0.312 0.302 0.158 0.068 0.457 0.158
DQN 0.194 0.032 0.178 0.151 0.022 0.009 0.053 0.023

learning rates for PPO and DQN are also set as 0.001. The Monte
Carlo sampling method is also used in the DQN, in which the Q-
network is to estimate the long-term reward of each state–action
pair. Experimental results are demonstrated in Fig. 11 and Table 2.

As shown in the results, both the REINFORCE and the PPO have
ignificant improvement ratios over the baseline TQL method.
ote that the TQL method performs the best among all baselines
see Table 1), thus we calculate the improvement ratios over the
QL. Besides, the REINFORCE and the PPO achieve much better
erformance than the DQN. Thus, the policy-based RL method
s more suitable than the value-based RL method in this taxi
oute recommendation problem. This could be due to that the taxi
ystem has high uncertainty and randomness, such as the coming
assengers (time stamps and locations), the traffic conditions, and
o on. It makes the Q-network in the DQN hard to accurately
redict the long-term reward of an action. In addition, many
actions may have near-maximal long-term rewards, making the
prediction more difficult. These make the DQN cannot perform
well in the taxi route recommendation problem. In fact, existing
studies have shown that DQN performs poorly even in simple
problems [27,46,47].

6.7. Discussion on parameters l and k

Fig. 12(a) presents the performance of our method under
different recommendation route lengths l. The experiment is con-
ducted in SF data and we demonstrate the improvement ratios
of our method over TQL method. Clearly, with the increase of
recommendation route length l, the performance of our method
also increases. This is due to that with a longer recommendation
route, more candidate routes will be generated, and our method
is more likely to recommend a better route to a vacant taxi.

Likewise, Fig. 12(b) discusses the situation where our method
considers different orders of surrounding grids k. As the fig-
ure demonstrates, considering more orders of surrounding grids
results in better recommendation results. This is due to that
with more orders of surrounding grids under consideration, our
method can know a route’s pickup easiness in a longer future.

10 S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302
Fig. 11. Improvement ratios of REINFORCE, PPO and DQN over baseline TQL.
Fig. 12. (a) Different recommendation route lengths l. k = 2. (b) Considering different orders of surrounding grids k. l = 4. (c) Running time of our method with
different k and l (in milliseconds).
6.8. Running time analysis

The box plot in Fig. 12(c) presents the running time needed
for our method to conduct one route recommendation for a
vacant taxi. It shows that our method spends less than 57 ms on
average for all settings. With the increases of l and k, our method
requires more running time, since for bigger l and k there are
more candidate recommendation routes to consider and more
features to extract. Fortunately, even under l = 4 and k = 4,
our method is still highly efficient (using ∼57 ms on average and
∼148 ms at most). Therefore, with the larger l and k, on one
hand the performance of our method will be better, on the other
hand the running will become slower. Fortunately, our method
can easily run in parallel, since each candidate recommendation
route’s score can be computed independently (Fig. 6) and thus can
be computed in parallel. Hence, the more computing resources
that a taxi system owner has, the larger l and k can be set,
and the better performance can be obtained. In fact, even when
l and k are small (e.g. l = 4 and k = 2) and without parallel
computing, the performance of our method has already largely
defeated baselines (Fig. 10), and the running time is undoubtedly
acceptable (Fig. 12(c)). Thus, our method is highly efficient and
taxi system owners can select proper parameters for l and k based
on the computing resources they have and the performance they
expect.

7. Conclusion and future work

In this paper, we designed an adaptive deep reinforcement
learning method to fuse the spatio-temporal features to do the
dynamic taxi route recommendation. Real-time internal and ex-
ternal spatio-temporal features are formally formulated and ex-
tracted. With our method, the transportation efficiency of taxis
can be significantly improved. Specifically, comparing with the
state-of-the-arts, our method is able to reduce at least 29.6% of
average waiting time for passengers and increase at least 15.8%
of average earning for taxi drivers. In the future, we are inter-
ested in the joint optimization of taxi route recommendation,

S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302 11

c
t

A

o
F

R

taxi dispatching, and taxi sharing, such that taxis’ transportation
efficiency can be jointly improved. In particular, we expect to
study how to use deep reinforcement learning to do the joint
optimization.

CRediT authorship contribution statement

Shenggong Ji: Conceptualization, Methodology, Software, In-
vestigation, Writing - original draft. Zhaoyuan Wang: Method-
ology, Writing - review & editing. Tianrui Li: Supervision, Con-
ceptualization, Writing - review & editing, Funding acquisition.
Yu Zheng: Supervision, Conceptualization, Writing - review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research was supported by the National Key R&D Program
f China (No. 2019YFB2101801) and the National Natural Science
oundation of China (No. 61773324).

eferences

[1] B. Donovan, D.B. Work, New York City Taxi Trip Data (2010-2013), 2016.
[2] J. Yu, P. Lu, Learning traffic signal phase and timing information from

low-sampling rate taxi GPS trajectories, Knowl.-Based Syst. 110 (2016)
275–292.

[3] J. Yuan, Y. Zheng, L. Zhang, X. Xie, G. Sun, Where to find my next passenger,
in: UbiComp 2011: Ubiquitous Computing, 13th International Conference,
ACM Press, New York, NY, 2011, pp. 109–118.

[4] H. Rong, X. Zhou, C. Yang, M.Z. Shafiq, A.X. Liu, The rich and the poor:
A Markov decision process approach to optimizing taxi driver revenue
efficiency, in: Proceedings of the 25th ACM International Conference on
Information and Knowledge Management, CIKM 2016, Indianapolis, in,
USA, October 24–28, 2016, pp. 2329–2334.

[5] R. Wang, C. Chow, Y. Lyu, V.C.S. Lee, S. Kwong, Y. Li, J. Zeng, TaxiRec:
Recommending road clusters to taxi drivers using ranking-based extreme
learning machines, IEEE Trans. Knowl. Data Eng. 30 (3) (2018) 585–598.

[6] Y. Zheng, L. Capra, O. Wolfson, H. Yang, Urban computing: concepts,
methodologies, and applications, ACM Trans. Intell. Syst. Technol. 5 (3)
(2014) 38:1–38:55.

[7] M. Qu, H. Zhu, J. Liu, G. Liu, H. Xiong, A cost-effective recommender system
for taxi drivers, in: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2018, ACM Press,
New York, NY, 2014, pp. 45–54.

[8] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, second
ed., MIT Press, Cambridge, MA, 2017, in progress.

[9] N. Garg, S. Ranu, Route recommendations for idle taxi drivers: Find me the
shortest route to a customer!, in: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD
2018, ACM Press, New York, NY, 2018, pp. 1425–1434.

[10] Z. Luo, H. Lv, F. Fang, Y. Zhao, Y. Liu, X. Xiang, X. Yuan, Dynamic taxi
service planning by minimizing cruising distance without passengers, IEEE
Access 6 (2018) 70005–70016.

[11] T. Verma, P. Varakantham, S. Kraus, H.C. Lau, Augmenting decisions of
taxi drivers through reinforcement learning for improving revenues, in:
Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June
18-23, 2017, pp. 409–418.

[12] L. Zhang, T. Hu, Y. Min, G. Wu, J. Zhang, P. Feng, P. Gong, J. Ye, A taxi order
dispatch model based on combinatorial optimization, in: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, pp. 2151–2159.

[13] Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, C. Liu, W. Bian, J. Ye, Large-
scale order dispatch in on-demand ride-hailing platforms: a learning and
planning approach, in: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2018, London,
UK, August 19-23, 2018, pp. 905–913.
[14] R. Zhang, M. Pavone, Control of robotic mobility-on-demand systems:
A queueing-theoretical perspective, I. J. Robotics Res. 35 (1–3) (2016)
186–203.

[15] S. Ma, Y. Zheng, O. Wolfson, T-share: A large-scale dynamic taxi ridesharing
service, in: 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, April 8-12, 2013, pp. 410–421.

[16] D.O. Santos, E.C. Xavier, Dynamic taxi and ridesharing: A framework and
heuristics for the optimization problem, in: IJCAI 2013, Proceedings of the
23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pp. 2885–2891.

[17] K. Lin, R. Zhao, Z. Xu, J. Zhou, Efficient large-scale fleet management via
multi-agent deep reinforcement learning, in: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2018, London, UK, August 19-23, 2018, 2018, pp. 1774–1783.

[18] W. Lee, S. Tseng, J. Shieh, H. Chen, Discovering traffic bottlenecks in an
urban network by spatiotemporal data mining on location-based services,
IEEE Trans. Intell. Transp. Syst. 12 (4) (2011) 1047–1056.

[19] M. Pan, W. Huang, Y. Li, X. Zhou, Z. Liu, R. Song, H. Lu, Z. Tian, J. Luo,
DHPA: Dynamic human preference analytics framework: A case study on
taxi drivers’ learning curve analysis, ACM Trans. Intell. Syst. Technol. 11
(1) (2020).

[20] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolutional neural network:
A deep learning framework for traffic forecasting, CoRR abs/1709.04875
(2017).

[21] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, URL
http://www.deeplearningbook.org.

[22] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444.
[23] K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep rein-

forcement learning: A brief survey, IEEE Signal Process. Mag. 34 (2017)
26–38.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518
(7540) (2015) 529–533.

[25] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double
q-learning, in: Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[26] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, N. De Freitas,
Dueling network architectures for deep reinforcement learning, 2015, arXiv
preprint arXiv:1511.06581.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, arXiv preprint arXiv:1707.06347.

[28] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T.P. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, D. Hassabi, Mastering the game of Go with deep
neural networks and tree search, Nature 529 (7587) (2016) 484–489.

[29] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, D. Hassabis, Mastering the game of go
without human knowledge, Nature 550 (2017) 354–359.

[30] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep
visuomotor policies, J. Mach. Learn. Res. 17 (2016) 39:1–39:40.

[31] H. Tang, Y. Wang, X. Liu, X. Feng, Reinforcement learning approach
for optimal control of multiple electric locomotives in a heavy-haul
freight train:A double-switch-Q-network architecture, Knowl.-Based Syst.
190 (2020) 105173.

[32] C. Martinez, E. Ramasso, G. Perrin, M. Rombaut, Adaptive early clas-
sification of temporal sequences using deep reinforcement learning,
Knowl.-Based Syst. 190 (2020) 105290.

[33] S. Ji, Y. Zheng, Z. Wang, T. Li, A deep reinforcement learning-enabled
dynamic redeployment system for mobile ambulances, Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 3 (1) (2019).

[34] G. Sun, D. Ayepah-Mensah, A. Budkevich, G. Liu, W. Jiang, Autonomous
cell activation for energy saving in cloud-RANs based on dueling deep
Q-network, Knowl.-Based Syst. 192 (2020) 105347.

[35] S.S. Skiena, The Algorithm Design Manual: Text, vol. 1, Springer Science &
Business Media, 1998.

[36] J. Durbin, S.J. Koopman, Time Series Analysis by State Space Methods,
second ed., 2012.

[37] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye, W. Lv,
The simpler the better: A unified approach to predicting original taxi
demands based on large-scale online platforms, in: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, August 13–17, 2017, pp. 1653–1662.

[38] J. Xu, R. Rahmatizadeh, L. Bölöni, D. Turgut, Real-time prediction of taxi
demand using recurrent neural networks, IEEE Trans. Intell. Transp. Syst.
19 (8) (2018) 2572–2581.

[39] L. Zhao, Y. Zhou, H. Lu, H. Fujita, Parallel computing method of deep belief
networks and its application to traffic flow prediction, Knowl.-Based Syst.
163 (2019) 972–987.

http://refhub.elsevier.com/S0950-7051(20)30473-1/sb1
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb2
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb2
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb2
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb2
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb2
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb3
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb3
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb3
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb3
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb3
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb5
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb5
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb5
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb5
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb5
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb6
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb6
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb6
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb6
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb6
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb7
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb7
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb7
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb7
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb7
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb7
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb7
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb8
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb8
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb8
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb9
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb9
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb9
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb9
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb9
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb9
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb9
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb10
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb10
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb10
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb10
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb10
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb14
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb14
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb14
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb14
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb14
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb18
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb18
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb18
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb18
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb18
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb19
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb19
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb19
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb19
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb19
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb19
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb19
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb20
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb20
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb20
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb20
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb20
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb22
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb23
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb23
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb23
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb23
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb23
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb24
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb28
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb29
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb29
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb29
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb29
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb29
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb29
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb29
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb30
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb30
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb30
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb31
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb31
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb31
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb31
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb31
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb31
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb31
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb32
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb32
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb32
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb32
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb32
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb33
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb33
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb33
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb33
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb33
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb34
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb34
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb34
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb34
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb34
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb35
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb35
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb35
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb36
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb36
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb36
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb38
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb38
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb38
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb38
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb38
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb39
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb39
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb39
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb39
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb39

12 S. Ji, Z. Wang, T. Li et al. / Knowledge-Based Systems 205 (2020) 106302
[40] L. Li, L. Qin, X. Qu, J. Zhang, Y. Wang, B. Ran, Day-ahead traffic flow fore-
casting based on a deep belief network optimized by the multi-objective
particle swarm algorithm, Knowl.-Based Syst. 172 (2019) 1–14.

[41] L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey,
J. Artificial Intelligence Res. 4 (1996) 237–285.

[42] R.S. Sutton, A.G. Barto, Simple statistical gradient-following algorithms for
connectionist reinforcement learning, Mach. Learn. 8 (1992) 229–256.

[43] M. Piorkowski, N. Sarafijanovoc-Djukic, M. Grossglauser, A parsimo-
nious model of mobile partitioned networks with clustering, in: The
First International Conference on COMmunication Systems and NETworkS
(COMSNETS), 2009.
[44] OpenStreetMap contributors, 2017, Planet dump retrieved from https:
//planet.osm.org.

[45] R. Wang, C. Chow, Y. Lyu, V.C.S. Lee, S. Kwong, Y. Li, J. Zeng, TaxiRec:
Recommending road clusters to taxi drivers using ranking-based extreme
learning machines, IEEE Trans. Knowl. Data Eng. 30 (3) (2018) 585–598.

[46] Y. Duan, X. Chen, R. Houthooft, J. Schulman, P. Abbeel, Benchmarking
deep reinforcement learning for continuous control, CoRR abs/1604.06778
(2016) arXiv:1604.06778.

[47] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
W. Zaremba, Openai gym, 2016, arXiv:arXiv:1606.01540.

http://refhub.elsevier.com/S0950-7051(20)30473-1/sb40
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb40
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb40
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb40
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb40
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb41
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb41
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb41
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb42
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb42
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb42
https://planet.osm.org
https://planet.osm.org
https://planet.osm.org
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb45
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb45
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb45
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb45
http://refhub.elsevier.com/S0950-7051(20)30473-1/sb45
http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/arXiv:1606.01540

	Spatio-temporal feature fusion for dynamic taxi route recommendation via deep reinforcement learning
	Introduction
	Related work
	Taxi route recommendation
	Taxi dispatching and taxi sharing
	Transportation
	Deep reinforcement learning

	Overview
	Preliminary
	Problem definition
	Framework

	Feature extraction
	Real-time internal spatio-temporal features
	ei.wp
	ei.vt
	ei.np+

	Real-time external spatio-temporal features

	Deep reinforcement learning
	Deep policy network
	Learning deep policy network
	Reinforcement learning task
	Policy gradient

	Evaluation
	Dataset
	Taxi data
	Map data

	Experiment settings
	Baselines
	Metrics
	Effectiveness
	Comparisons between different deep reinforcement learning methods
	Discussion on parameters l and k
	Running time analysis

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

