
Knowledge-Based Systems 207 (2020) 106366

C

f
a
s
s

c
w

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Heuristic algorithms based on deep reinforcement learning for
quadratic unconstrained binary optimization
Ming Chen, Yuning Chen ∗, Yonghao Du, Luona Wei, Yingwu Chen
ollege of Systems Engineering, National University of Defense Technology, Changsha, 410073, China

a r t i c l e i n f o

Article history:
Received 10 March 2020
Received in revised form 28 June 2020
Accepted 3 August 2020
Available online 8 August 2020

Keywords:
Unconstrained binary quadratic
programming
Heuristic algorithm
Deep reinforcement learning
Neural network

a b s t r a c t

The unconstrained binary quadratic programming (UBQP) problem is a difficult combinatorial opti-
mization problem that has been intensively studied in the past decades. Due to its NP-hardness, many
heuristic algorithms have been developed for the solution of the UBQP. These algorithms are usually
problem-tailored, which lack generality and scalability. To address these issues, a heuristic algorithm
based on deep reinforcement learning (DRLH) is proposed in this paper. It features in inputting
specific features and using a neural network model called NN to guild the selection of variable at
each solution construction step. Also, to improve the algorithm speed and efficiency, two algorithm
variants named simplified DRLH (DRLS) and DRLS with hill climbing (DRLS-HC) are developed as
well. These three algorithms are examined through extensive experiments in comparison with famous
heuristic algorithms from the literature. Experimental results show that the DRLH, DRLS, and DRLS-HC
outperform their competitors in terms of both solution quality and computational efficiency. Precisely,
the DRLH achieves the best-quality results, while DRLS offers a high-quality solution in a very short
time. By adding a hill-climbing procedure to DRLS, the resulting DRLS-HC algorithm is able to obtain
almost the same quality result as DRLH with however 5 times less computing time on average. We
conducted additional experiments on large-scale instances and various data distributions to verify the
generality and scalability of the proposed algorithms, and the results on benchmark instances indicate
the ability of the algorithms to be applied to practical problems.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear integer programming is one of the most difficult
ields in mathematical programming and operations research. As
typical nonlinear integer programming problem, the uncon-

trained binary quadratic programming (UBQP) has been inten-
ively studied over the years.
The objective function value (OFV ) of the UBQP can be ex-

pressed by:

Maximize : f (x) = xTQx =
n∑

i=1

n∑
j=1

qijxixj, xi ∈ {0, 1},∀i = 1, 2, . . . , n (1)

where x is the column n-vector of binary (0-1) variables, xT is
the transpose of x and Q = qij is a n × n symmetric matrix of
constants.

A large number of combinatorial optimization problems can
be modeled as the UBQP, such as the set partitioning prob-
lem [1,2] and graph coloring problems [3]. The UBQP can be used

∗ Corresponding author.
E-mail addresses: chenming_nudt@163.com (M. Chen),

ynnudt@hotmail.com (Y. Chen), duyonghao15@163.com (Y. Du),
lnelysion@163.com (L. Wei), ywchen@nudt.edu.cn (Y. Chen).
ttps://doi.org/10.1016/j.knosys.2020.106366
950-7051/© 2020 Elsevier B.V. All rights reserved.
to model many real-world applications including traffic man-
agement, financial analysis, economics, computer science, and
machine scheduling. Hence, it is significant to develop proper and
effective algorithms for addressing the UBQP problem.

The commonly used algorithms for UBQP problems can be
briefly divided into two categories: (1) Exact algorithms, such
as branch and bound, and branch and cut [4,5]. Since the exact
algorithms are acknowledged to be time-consuming in large-
scale optimization, they are not able to obtain satisfying solutions
within limited computing time. (2) Heuristic algorithms, such as
hill climbing (HC) [6], variable neighborhood search (VNS) [7],
tabu search (TS) [8–13], simulated annealing (SA) [14,15], scatter
search (SS) [16], ant colony optimization (ACO) [17–19], evo-
lutionary algorithm (EA) [20,21], memetic algorithm (MA) [22,
23] and hybrid algorithms [24,25]. These heuristic algorithms
can obtain near-optimal solutions within an acceptable time for
large-scale UBQP instances.

Regarding those heuristic algorithms, on the one hand, they
often lack generality and scalability [26]. Indeed, their perfor-
mance is usually encouraging for some particular instances, while
unsatisfactory for the other. On the other hand, these algorithms

https://doi.org/10.1016/j.knosys.2020.106366
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106366&domain=pdf
mailto:chenming_nudt@163.com
mailto:cynnudt@hotmail.com
mailto:duyonghao15@163.com
mailto:wlnelysion@163.com
mailto:ywchen@nudt.edu.cn
https://doi.org/10.1016/j.knosys.2020.106366


2 M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366
Fig. 1. The graphical abstract.
often require an intensive computational overhead, which is not
suitable for practical use.

To address these issues, we resort to neural networks and rein-
forcement learning. With the development of deep reinforcement
learning (DRL) and parameter optimizer [27–33], the training of
large-scale model becomes feasible. Some DRL based methods
were studied for classical combinatorial optimization problems.
Oriol Vinyals et al. [34] proposed a pointer network, which can
output satisfactory solutions of the computing planar convex
hulls, Delaunay triangulations, and the symmetric planar trav-
eling salesman problem (TSP). Irwan Bello et al. [35] proposed
a framework to tackle TSP problems using neural networks and
reinforcement learning. MohammadReza Nazari et al. [36] pre-
sented an end-to-end framework for the vehicle routing problem
(VRP). These studies have shown the ability of the DRL to self-
obtain complex heuristic rules and guide the optimization search-
ing when solving a problem. However, we find that the previous
problems they addressed are all linear, and whether the DRL can
be applied the nonlinear UBQP problems has not been studied.

In this paper, we select the diagonal elements and sum of row
vectors as the effective feature engineering and propose a heuris-
tic algorithm based on deep reinforcement learning (DRLH) to
solve the UBQP. Specifically, we employ an Actor–critic algorithm
to train a neural network called NN that, given a set of UBQP
variables, predicts a distribution over different orders of setting
variables from 0 to 1. This neural network serves as a complex
(black-box) heuristic rule which guild the solution construction
at each step of our proposed DRLH algorithm. To further improve
the algorithm effectiveness, two DRLH variants named simplified
DRLH (DRLS) and DRLS with hill climbing (DRLS-HC) are also
developed. We carried out extensive experiments to evaluate the
performance of the proposed algorithms. Computational results
indicate that the proposed DRLH presents better performance
than other well-known heuristic algorithms in the literature.
As a simplified version, DRLS is able to obtain slightly worse
solutions with significantly reduced computing time. By including
a hill-climbing procedure, DRLS-HC produces even better per-
formance than DRLH with much less computational expense,
which shows an interesting balance between solution quality and
computational efficiency. Also, the results on sensitivities and
benchmarks show a good generalization and scalability of our
proposed algorithms in different instance size and distributions.

The remainder of this paper is organized as follows. In Sec-
tion 2, the algorithm framework of DRLH, the structure of the NN
model, and two variants of the DRLH for UBQP are given. In Sec-
tion 3, computational studies are presented. Finally, conclusions
are drawn in Section 4.
2. The DRLH

In this section, we present the general framework of the
proposed DRLH algorithm and its key ingredients including the
structure of the neural network model and the method used for
training the parameters of the NN model. Finally, two DRLH vari-
ants, DRLS and DRLS-HC, that strengthen the solution efficiency
and solution quality are described. The relationships of proposed
algorithms and their characteristics are shown in Fig. 1. Overall,
the DRLH obtains high-quality results, the DRLS produces a good
solution in a very short time and the DRLS-HC approaches the
DRLH solutions with the fastest computation speed.

2.1. Framework

Algorithm 1 shows the general framework of the proposed
DRLH. The algorithm is essentially a construction algorithm. It
first zeros all the variables in the initial solution. At each step,
a trained NN model is used to identify a 0-value variable which
is considered the most suitable to be included in the current
solution and set the variable to be 1. The construction process
proceeds until the solution can be no longer improved.

Algorithm 1 The general framework of DRLH

1: Input:
2: Strategy set: the trained DRL model;
3: Initialize the solution Xt = {x1, x2, · · · , xn|xi = 0; i =

1, 2, · · · , n};
4: while True do
5: Candidate Xcandidate ← Xt
6: Candidate variable set Ct ← all variables x ∈ Xcandidate, x =

0, x /∈ mask /∗ the mask in Section 2.2.4 ∗/
7: if Ct = ∅ then
8: break
9: end if

10: Select a variable xj ∈ Ct according to the NN model

/∗ Section 2.2 ∗/

11: Set xj in Xcandidate to 1
12: if f (Xcandidate) > f (Xt ) then
13: Xt ← Xcandidate
14: else
15: break
16: end if
17: end while
18: return Xt and f (Xt )



M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366 3

o

It is clear that the solution process of the DRLH can be viewed
as a Markov’s decision process. The next variable to be set 1 is
determined by the current state at each step. The inner working
logic is explained as follows.

In the UBPQ problem, we are given a n ∗ n matrix Q and a set
f binary decision variables X = {x1, x2, . . . , xn}.
Given current solution Xt and the NN model, we set the next

variable xt+1 to 1 at the current problem state. We use the chain
rule of probability to decompose the probability of generating
sequence X = {xt , t = 0, 1, . . . , T ′} in T ′’s iteration, as following:

P(X |Q ) =
T ′∏
t=0

P(xt+1|Xt ,Q ) (2)

Xt+1 = f (xt+1, Xt ) (3)

In this manner, we can get the probability distribution for
potential variables to be set 1. Let us denote the parameters of
our model as θ , the formulas above can be transformed to:

P(X |Q ; θ ) =
T ′∏
t=0

p(xt+1|Xt ,Q ; θ ) (4)

Parameters θ of the DRL model are obtained by maximizing the
conditional probability of the training set:

θ∗ = argmax
∑
X,Q

log p(X |Q ; θ ) (5)

θ should be set to an appropriate value say θ∗ to ensure that
the model fits the UBQP well. This can be done by using a
large amount of data to train the model such that θ = θ∗. In
what follows, we present the structure of the NN model and the
training method based on deep reinforcement learning.

2.2. The NN model

The proposed NN model consists of two parts: (1) an encoder–
decoder structure well establishes the relations between input
and output, which corresponds to inputting a set of potential
variables and outputting a variable with the highest probability
(which is considered the most suitable one) in UBQP problem.
(2) an attention model that comprehensively considers the rela-
tionship of the input variables in the encoder–decoder and gives
different degrees of attention to them.

2.2.1. Encoder
As a basis of network input, feature extraction determines

the static information from the problem. In the UBQP problem,
through the effective feature engineering, we extract two features
from matrix Q as the inputs to the network, including (1) major
diagonal elements of Q , and (2) sum of row vectors of Q , and ig-
nore other features like matrix eigenvalues, eigenvectors, etc. We
regard these two feature variables as the UBQP static parameters
and denote them as si = {diag i, sr i}.

Since the outputs of the network should be independent of
the order of data input, traditional recurrent neural networks
(RNNs) are not qualified to be our encoder. We propose to use an
embedding layer, which encodes the input to a code vector and
decreases the encoding complexity and computing time. Specif-
ically, the one-dimensional convolution is used to encode the
input parameters to a high-dimensional vector that shares across
all input steps. The number of in-channels equals the number
of characteristic variables. We set the numbers of channels and
filters in the encoder to be 2 and D (according to preliminary
experimental experience).

In the embedding layer, each hi is independent of the other,
but all these variables cannot reflect the relationship among static
Fig. 2. The structure of G.

features. For this reason, we need a structure to collect this
information. Inspired by Ref. [37], we find that the simple multi-
head attention can address this issue well. Therefore, we create a
new variable of G based on the encoder. It is an extension of static
information after the one-dimensional convolution, as shown in
Fig. 2. The G can be seen as a global variable for the problem, and
it contains all the interactive information of static inputs.

2.2.2. Decoder
It is easy to understand that former selections during the

construction process of our DRLH affect the later decisions. Hence,
it is necessary to take the former selections into account. Also
different from the Long Short-Term Memory [38] (LSTM) -based
decoder in Ref. [36], the information of former decisions which is
useless for solving UBQP, we do not use the LSTM in our decoder.
To include more information in our decoder, we set up a dynamic
parameter dit = {state

i
t , change

i
t} for each variable. The changeit

parameter is the increment of OFV (IOFV ) after xi is included in
the current solution. stateit is a label that indicates whether xi can
be selected or not. We simply use an embedding layer that takes
the dynamic parameter dit = {state

i
t , change

i
t} as the input.

2.2.3. Attention
Our brain often only pays attention to a few particularly im-

portant parts of our observations, which lead us to obtain the
required information and understand the environment. The brain
also learns to combine these parts. The attention mechanism
follows this principle. In our NN model, the attention layer is
attached by the encoder and decoder. It obtains the correlation
degree of the candidate variables to be selected. This correlation
is reflected by the probability distribution, and the model gives
higher attention to the variables with high correlation.

In our NN model, we propose an attention with two layers.
The first layer collects the dynamic information and the second
one combines static and dynamic information. The two layers of
the NN model are shown in Fig. 3 and Fig. 4.

In Fig. 3, the encoder embedding layer lies on the left while
the decoder embedding layer is on the right storing the current
information of the decoded sequence. Considering the interre-
lationship among static variables, the variable G is the input of
the first attention layer. In decoding step t , we use a dynamic
environment variable et to extract relevant information from
G. In fact, et shows the relevance between the inputs and the
next decoding. Here, we represent the embedded static input
and dynamic input by s̄i and d̄i , respectively. Then environment
t



4 M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366

v

u

e

w

l
a
c

c

e

P

w
t

t

2

c
a
e
a
g

2

i
A

a
o
a
b
t
t
s
o
a

Fig. 3. The first attention layer.
ariable et can be deduced by the softmax function as follows:
i
t = vT

1 tanh(W1[g i
; d̄it ]), g

i
∈ G (6)

t = (e1t , e
2
t , . . . , e

n
t ) = softmax(ut ) (7)

here [s̄it; ht ] means to concatenate the two vectors together.
After obtaining vector et , we put it into the second attention

ayer. Because et represents the relationship between each input
nd the output (best) variable, we obtain a context vector ct by
alculating eit and s̄i:

t =
∑

i=1 e
i
t s̄

i (8)

Context variable ct represents the weighted context vector of
ach xi.
After the following matrix operation, we normalize the ũt

values as follows.

ũi
t = vT

2 tanh(W2[s̄i; d̄it; ct ]) (9)

(xt+1|Xt ,Q ) = softmax(ũi
t ) (10)

here vT
1 , W1, vT

2 and W2 are the network parameters to be
rained.

In our DRLH algorithm, a mask mechanism is employed to fix
he selection probability to 0 if the variable has been selected.

.2.4. Selection strategy
With Eq. (10), we can get the probability distribution of each

andidate variable before selection. A strategy is needed for vari-
ble selection based on candidate probabilities. In this paper, to
nable good generalization of our network, and to obtain a stable
nd high-quality solution, we apply a random strategy and a
reedy strategy for training and testing, respectively.

.3. Model training method

We apply an Actor–Critic algorithm [39] based on the pol-
cy gradient method to train our model, which is presented in
lgorithm 2
There are two parts needed to be trained in the Actor–Critic

lgorithm. The first is an Actor network, which is the origin of
ur NN model and aims to obtain UBQP solutions. The second is
Critic network, which estimates the return expectation on the
asis of our problem case and is used for parameter update in
he Actor network. In our experiments, these two networks use
he same embedding layer. The Critic network is only inputted by
tatic variables. Also, the Critic network has two hidden layers:
ne dense layer with ReLU activation whose output is a vector
nd another linear one whose output is a single value.
Algorithm 2 Actor–critic training

1: Initialize actor network params θ

2: Initialize critic network params θc
3: for iterarion← 1, 2, · · · do
4: reset gradients: dθ ← 0, dθc ← 0
5: generate N problem instances from φ

6: for k = 1, 2, · · · n do
7: step counter t ← 0
8: while not terminated do
9: select next variable xkt+1 according to the probability

distribution P(ykt+1|Y
k
t , Xk

t )
10: update new state Xk

t+1 to Xk
t

11: t ← t + 1
12: end while
13: calculate OFV reward Rk

14: end for

15: dθ ← 1
N

N∑
k=1

(Rk
− V (Xk

0 ; θc))∇θ log P(Y k
|Xk

0 )

16: dθc ← 1
N

N∑
k=1
∇θ (Rk

− V (Xk
0 ; θc))

2

17: update θ using dθ and θc using dθc
18: end for

2.4. DRLH variants

Since the DRLH needs to calculate the IOFV of each candidate
solution before updating the current solution, the algorithm is
time consuming. To reduce the computing overhead, a DRLH
variant algorithm named DRLS is proposed. The difference of
DRLS with respect to the DRLH is that the dit in the NN model
of the DRLS only considers parameter stateit , which means the
DRLS solutions are directly obtained by the features of the UBQP’s
matrix Q itself. Since there is no search process in the DRLS, it can
be viewed as a complex black-box heuristic rule which is very
efficient.

To balance the solution quality and computational efficiency,
a hybrid algorithm that combines DRLS and a hill climbing al-
gorithm (DRLS-HC) is proposed. Specifically, the DRLS is used to
obtain the initial solution of the hill climbing algorithm. HC al-
ways selects the candidate solution with the largest IOFV at each
iteration, and the pseudo-code of HC is shown in Algorithm 3.



M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366 5

c
a
t
p

3

3

N
t
f
o
i
t
u
e

t
a
a
a
c
c

Fig. 4. The second attention layer.
t
t
r
t

Algorithm 3 HC Algorithm

1: Input solution Xt = {x1, x2, · · · , xn};
2: while True do
3: IOFVt ← the positive IOFV set of all variables x ∈

Xcandidate, x = 0
4: if IOFVt = ∅ then
5: break
6: end if
7: select the biggest IOFV ∗ with its corresponding variable x∗

in IOFVt
8: set x∗ in Xcandidate to 1
9: end while

3. Experimental study

In this section, the experiment setup is introduced first, in-
luding the dataset for model training, the competitors and the
lgorithm parameter setting. Then, a series of experiments and
he results are presented to examine the performance of the
roposed DRLH, DRLS, and DRLS-HC.

.1. Experiment setup

.1.1. Dataset
Considering the large amount of the data required for the

N model training, existing benchmarks are not enough for the
raining purposes. We thus propose an instance generator as
ollows. In the UBQP problem, the element of Q can be positive
r negative, so we abstract the problem and set the elements
n Q within (−1, 1). The value of each element in Q follows
he specific distribution Φ . To make the DRLH more general, we
se the uniform random distribution to generate datasets in the
xperiments.
The termination time in different DRLH and DRLS cases are not

he same. Especially in batch training, it is not clear at what time
standardized output matrix can be obtained. Therefore, we add
variable x0 valued 0 at the initial solution per case and add an
ll-zero row and column vectors to the Q matrix each case. This
an make the current case stay at the decoding point x0 while the
urrent case should stop but the other cases in the batch have not
been completed. No matter the value of x0, the final OFV of the
problem will not be affected.

3.1.2. Competitors
To examine the performance of the proposed DRLH, DRLS and

DRLS-HC, we employ the following three competitors:
To examine the adaptability of the DRLH, we used three

heuristic algorithms: the first acceptance heuristic algorithm (FA),
HC and Greedy (GY). HC is mention in Section 2.4. The GY is
from Ref. [40]. We zeroed the initialize solutions of these three
competitors. It can be seen that the algorithms in this part are all
based on the information of IOFV .

We compare DRLS with three construction algorithms: Rand,
Diag, and SR. The Rand algorithm randomly select a subset of
all variables from X = {x1, x2, . . . , xn} and set them to 1. The
Diag algorithm sets the variable xi ∈ X with a positive diagonal
elements qi,i in Q in Eq. (11) to be 1. The SR algorithm takes
he sum of the row vectors of matrix Q as features, and rowi
o present the result of the ith row vectors. Given each vector
owi, we set the solution by the Eq. (12) shows. Also to evaluate
he performance of variable G, based on the DRLS, we trained an
algorithm named DRLS-G without G. We only test the DRLS-G
on instances with 50 variables, using the same training data and
epoch setting as the DRLS.

xi =
{

1, qi,i ≥ 0
0, qi,i < 0 (11)

xi =
{

1, rowi ≥ 0
0, rowi < 0 (12)

To examine the performance of the DRLS-HC, we designed its
three competitors including Rand with hill climbing (R-HC), Diag
with hill climbing (D-HC) and SR with hill climbing (SR-HC). In
addition, to obtain a high-quality solution, we also combine DRLH
and HC, resulting in an algorithm called DRLH-HC. All the HC in
these algorithms have the same procedures of solution.

3.1.3. Algorithm parameter
To train the network parameters θ and θc in our Actor–Critic

network, we generated N instances with the Φ distributing men-
tioned above. For θ and θc , the Xavier initialization strategy [41]
are employed.

The parameter settings of the NN model are shown in Tables 1
and 2. We applied the Adam optimizer [27] with a learning rate
η of 0.0005 to train both Actor and Critic networks.



6 M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366

2
l
3

3

1

T
T

o
b
w
t

Table 1
Main parameters of the Actor network.
Actor network

Global: Q, K, V-dim = 256, Head = 8, Layers = 3
Encoder: Conv-1D(Dinputsize , Filter = 128, kernel size = 1, stride = 1)
Decoder: Conv-1D(Dinputsize , Filter = 128, kernel size = 1, stride = 1)

Table 2
Main parameters of the Critic network.
Critic network

Encoder: Conv-1D(Dinputsize , Filter = 128, kernel size = 1, stride = 1)
Conv-1D(256, Filter = 20, kernel size = 1, stride = 1)
Conv-1D(20, Filter = 20, kernel size = 1, stride = 1)
Conv-1D(20, Filter = 1, kernel size = 1, stride = 1)

Table 3
The results of different algorithms.
Method 50 100 150 200

OFV Time OFV Time OFV Time OFV Time

FA 96.88 10.90 272.81 34.46 501.96 114.85 769.99 188.53
HC 107.51 35.23 311.91 130.56 577.45 435.53 894.26 698.02
GY 108.89 34.58 314.99 120.09 580.65 397.44 898.17 624.03
DRLH-50 116.85 89.44 334.37 314.48 615.82 722.32 950.21 1198.82
DRLH-100 116.45 88.19 334.26 309.73 616.14 734.38 952.05 1182.92
DRLH-150 116.89 89.69 334.17 315.15 615.27 731.36 949.73 1201.38
DRLH-200 116.90 89.55 334.41 314.39 615.75 712.54 950.29 1198.66

All the experiments were conducted using a single GPU RTX
080-Ti, and a i9-9900 K CPU with 64GB RAM. We used the deep
earning framework embedded in Pytorch 1.02 coded in Python
.7.

.2. Experimental results

For the test data, we generate 1,000 instances with 50, 100,
50 and 200 variables respectively according to the φ distribution

which is the same as the training data. For each instance size,
we use the average OFV and the total running time of the 1000
instances to evaluate our model. The batch size is set to 1.

3.2.1. Results of DRLH
To validate the generalization capabilities of the DRLH, we

train 50-,100-,150-,200-size DRL model for DRLH. Since the train-
ing of DRL is computationally expensive, we generated 20,000
training data for each instance size and each model was trained
2 epoch. The batch size is set depending on the GPU memory.

The average OFV and total computing time of these methods
are shown in Table 3. It is clear that DRLH has achieved the
best result on each instance size. Obviously, the two feature
information extracted from Q , diag and sr , play a vital role in
guiding the selection and have been effectively utilized by the
NN model of DRLH. Besides, as it shows in Fig. 5, although the
NN in DRLH is obtained under 50-size training, it is able to
handle 200-size instance as well. It is worth noting that there is
no fundamental difference between different size NN models at
the same instance size. This means under the current instance
size, data distribution and problem background, the DRLH has
achieved a good generalization capability. As it shows in Fig. 6,
in addition to FA, the computing time of the other algorithms is
almost on the same level. Moreover, the computing time trend
of DRLH is similar to its competitors, but the computing time of
DRLH is slightly slower because of the variable selection in DRLH
is through the NN model. Simultaneously, the selection procedure
in its competitors are rules that do not need calculation, or
the computation is minimal. However, although the trained NN
model parameters are constant, they are enormous.
Fig. 5. The average OFV of different algorithms.

Fig. 6. The total computing time (s) on 1000 instances of different algorithms.

able 4
he results of different methods.
Algorithms 50 100 150 200

OFV Time OFV Time OFV Time OFV Time

Rand 0.38 0.05 0.51 0.05 1.62 0.12 0.30 0.10
Diag 11.40 0.03 24.28 0.03 36.93 0.05 53.23 0.08
SR 79.82 0.01 228.25 0.01 422.18 0.01 654.61 0.07
DRLS-G-50 96.08 11.07 262.82 17.73 471.24 32.31 719.82 40.23
DRLS-50 96.08 10.65 263.02 17.98 473.21 31.05 721.82 41.29
DRLS-100 96.72 10.99 277.16 18.42 469.10 42.93 719.95 51.89
DRLS-150 95.96 10.71 262.87 17.95 474.06 32.83 720.01 40.46
DRLS-200 95.94 10.64 264.45 18.10 493.90 36.59 766.31 49.70

3.2.2. Results of DRLS
Also to validate the generalization capabilities of the DRLS, we

trained 50-,100-,150-,200-size NN model for DRLS. Different from
the DRLH, the training of DRLS is much cheaper. 100,000 training
instances are generated and the model was trained 10 epochs.
The batch size of each size model is also determined by the GPU
memory.

The average OFV and total computing time (s) of these meth-
ds are shown in Table 4. Apparently, the DRLS has achieved the
est result on each instance size among these heuristic rules,
hich illustrates the significant role of feature engineering in
his algorithm and the effective use of features by DRLS. It is



M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366 7

s
h
p
l

3

t

t
t
t
s
t

o
D
c
v

o
w
p
c
t
p
D

Fig. 7. The average OFV of different algorithms.

Fig. 8. The total computing time (s) on 1000 instances of different algorithms.

worth noting that these two feature-related algorithms Diag and
SR have achieved positive OFV , especially SR has found a feasible
solution. As it shows in Fig. 7, the DRLS has achieved a good
generalization ability. But different from DRLH, it is worth men-
tioning that NN models of DRLS we trained on different sizes have
performed better on the specific instance size. For example, DRLS-
200 brings better results at instance size 200 than other DRLS size
algorithms. In addition, from Table 4 shows, it can be seen that
after adding the variable G, the performance is improved.

As can be seen from Fig. 8, all these algorithms have extremely
hort computing time. Moreover, the computing time of DRLS
as an approximately linear relationship with the scale of the
roblem, which has indicated its advantages when dealing with
arge-scale problems.

.2.3. Results of DRLS-HC
The results are shown in Table 5. From Fig. 9, we can see

hat DRLH-HC has achieved the best OFV under all instance sizes.
It should be noted from Figs. 9 and 10 that the DRLS-HC has
achieved the approximate best OFV with a huge advantage in
ime consumption, and this trend becomes more apparent when
he instance scale increasing. It means that in real-applications
hat require high timeliness, DRLS-HC can obtain a high-quality
olution quickly. So it can be clearly found through experiments
hat the efficiency of DRLH is greatly improved.
Fig. 9. The average OFV of different algorithms.

Fig. 10. The total computing time (s) on 1000 instances of different algorithms.

The reason for such high-quality results is that, in the solution
of DRLS, each variable that has been set 1 will increase the OFV.
Different from other competitors, the DRLS is one-way construc-
tion. After applying a HC, it can obtain a good solution with a low
computational cost.

3.3. Large-scale experiments

To examine the performance of proposed algorithms at large-
scale problems, we generated 10 instances of each 500-, 1000-,
1500-, and 2000-size based on the distribution Φ . The batch size
is also set to 1 when examining.

The average OFV and total computing time (s) of these meth-
ds are shown in Table 6. In the single heuristic algorithms,
RLH has obtained the best solution but followed the biggest
omputational time, and DRLS can find a feasible solution in a
ery short time, but the quality of the solution is unsatisfactory.
In the hybrid heuristic algorithms, obviously, DRLH-HC has

btained the optimal solution among all the algorithms but also
ith the longest computing time. It is worth noting that, com-
ared to DRLH, the improvement of DRLH-HC is tiny and the
omputational cost increment is very low. This fully indicates
hat the DRLH has excellent performance for solving the UBQP
roblems. For DRLS-HC, the quality of its solution is very close to
RLH-HC but the computing time is much shorter.



8 M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366

a

D

D

D
e

D
e

D
e

o
d
p
h
b
g

Table 5
The results of different algorithms.
Algorithms 50 100 150 200

OFV Time OFV Time OFV Time OFV Time

R-HC 42.15 6.78 118.45 23.29 218.31 81.34 336.06 140.28
D-HC 48.37 6.35 134.52 22.64 241.96 79.46 369.32 137.60
SR-HC 84.15 2.46 240.19 7.22 444.04 23.77 688.54 41.05
DRLS-HC-50 115.59 18.73 331.50 53.53 611.30 142.70 944.53 237.05
DRLS-HC-200 115.62 18.79 331.41 53.31 606.80 137.43 927.71 198.31
DRLH-HC-50 117.59 91.08 336.70 319.22 620.28 732.85 957.57 1216.74
DRLH-HC-200 117.62 91.16 336.78 319.41 620.11 722.60 957.46 1198.66
Table 6
The results of different algorithms in large instance scale.
Algorithms 500 1000 1500 2000

OFV Time OFV Time OFV Time OFV Time

FA 2938.45 9.91 8691.84 35.15 15542.45 83.87 24633.99 190.08
HC 3463.73 48.68 10165.56 173.05 18467.85 409.56 28961.36 910.23
GY 3473.33 41.47 10208.91 147.58 18503.25 354.50 29069.54 825.69
R-HC 1320.59 10.63 3713.33 29.12 6894.55 69.99 10633.75 159.56
D-HC 1385.25 11.89 4101.79 29.51 7299.89 71.78 10916.57 157.45
SR-HC 2615.80 8.05 7961.00 8.42 14039.26 20.55 22279.30 42.57
DRLH-50 3647.68 81.23 10739.85 305.54 19489.34 745.80 30447.02 1355.13
DRLH-200 3632.29 71.30 10707.33 306.10 19390.70 744.65 30324.48 1341.31
DRLH-HC-50 3686.18 82.74 10837.00 310.76 19684.60 759.36 30749.83 1381.51
DRLH-HC-200 3668.73 72.13 10825.51 311.66 19618.03 758.77 30699.39 1370.48
DRLS-50 2513.87 1.24 7321.11 1.62 12960.33 2.55 20992.66 3.02
DRLS-200 2514.62 0.92 7380.45 1.59 13304.86 2.61 21156.10 2.95
DRLS-HC-50 3638.65 2.90 10731.88 58.29 19475.10 149.28 30454.81 266.70
DRLS-HC-200 3638.65 2.59 10720.99 59.37 19451.47 143.22 30430.64 284.59
Table 7
The results of different algorithms in different distributions.
Algorithms D0 D1 D2 D3 D4

OFV Time OFV Time OFV Time OFV Time OFV Time

Diag 11.40 0.03 20.20 0.03 7.57 0.03 4.68 0.03 1.10 0.03
SR 79.82 0.01 141.60 0.01 67.23 0.01 51.09 0.01 25.26 0.01
FA 96.88 10.90 170.39 12.23 81.88 14.24 62.35 14.71 27.42 17.48
HC 107.51 35.23 188.27 39.47 90.50 44.85 68.02 44.43 27.95 37.44
GY 108.89 34.58 190.93 38.93 91.78 43.60 69.19 42.18 28.14 32.78
R-HC 42.15 6.78 70.98 7.82 35.24 8.65 26.14 8.35 11.86 7.78
D-HC 48.37 6.35 84.41 7.24 56.27 13.47 55.87 20.08 31.42 27.70
SR-HC 84.15 2.46 148.48 2.66 70.59 2.95 53.56 2.98 26.25 2.63
DRLH 116.90 89.55 204.19 88.30 98.04 91.89 73.98 90.60 32.39 81.14
DRLH-HC 117.62 91.16 205.43 89.92 98.65 93.58 74.31 92.09 32.54 82.33
DRLS 95.94 10.64 168.91 12.63 80.37 10.63 60.18 10.29 27.69 9.57
DRLS-HC 115.62 18.79 202.42 22.06 96.98 18.83 73.31 18.76 35.15 19.17
3.4. Sensitivity experiments

To examine the sensitivity to data distribution of proposed
lgorithms, we tested with four different distributions as follow:

istribution 0 (D0): the uniform random distribution;

istribution 1 (D1): standard normal distribution;

istribution 2 (D2): the uniform random distribution but the
lements in Q has a probability of 0 for 30%;

istribution 3 (D3): the uniform random distribution but the
lements in Q has a probability of 0 for 60%;

istribution 4 (D4): the uniform random distribution but the
lements in Q has a probability of 0 for 90%;
The average OFV and total computing time (s) of these meth-

ds are shown in Table 7. Apparently, as shown in Fig. 11, data
istributions have little impact on the performance of our pro-
osed algorithms, which outperformed in all tests. Besides, DRLS
as approached the solutions of the local search FA and achieved
etter solution quality in distribution D4. It is clear that the strong
enerality of our proposed algorithms in different distributions
mainly because of the effective features extracted from the prob-
lem. As shown in Table 7, the two construction algorithm Diag
and SR, separately based on feature diag and sr , have achieved
the positive IOFV , and notably, the SR achieved a feasible solution
in all five distributions. Therefore, the trained DRLS and DRLH
have taken full advantage of diag and sr to ensure scalability and
high-quality solutions.

3.5. Benchmark experiments

To examine the applicability of algorithms to real-life condi-
tions, we tested UBQP benchmarks composed of 1 instance with
a size of 50, 100, 250, 500, 1000, 2500 from ORLIB [42].

The average OFV and total computing time (s) of these meth-
ods are shown in Tables 8 and 9. The performance of proposed
algorithms has a similar advantage as they did in other experi-
ments. It is worth noting that the generation of the benchmark
instances also follows a specific data distribution. In these ex-
perimental instances, the most noticeable trait is that nearly 95%
of the Q’s elements are 0. As shown in the previous experiment,
data distributions have little impact on the performance of our
proposed algorithms, so the results on benchmarks are justified.



M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366 9

T
T

o
c
b
l
i
n

g
q
t

Fig. 11. The average OFV of different algorithms on different distributions.

able 8
he results of different algorithms in benchmarks.
Algorithms bqp50.1 bqp100.1 bqp250.1

OFV Time OFV Time OFV Time

Diag 687 0.00 2773 0.00 −3062 0.00
SR 3057 0.00 9834 0.00 26,001 0.00
FA 3287 0.02 11,117 0.06 33,270 0.33
HC 3103 0.03 11,421 0.19 37,833 1.14
GY 3367 0.03 12,233 0.17 36,193 0.96
R-HC 408 0.01 4199 0.03 12,870 0.26
D-HC 3391 0.02 10,936 0.09 37,708 0.79
SR-HC 3065 0.00 9834 0.00 27,007 0.05
DRLH 3385 0.25 12,479 0.47 39,288 2.41
DRLH-HC 3393 0.25 12,547 0.47 39,786 2.46
DRLS 3385 0.01 11,297 0.01 25,109 0.04
DRLS-HC 3393 0.02 12,359 0.03 39,309 0.40

Table 9
The results of different algorithms in benchmarks.
Algorithms bqp500.1 bqp1000.1 bqp2500.1

OFV Time OFV Time OFV Time

Diag 19,115 0.00 31,151 0.00 26,8791 0.01
SR 88,833 0.00 257,314 0.00 1,093,556 0.00
FA 108,713 0.85 292,269 3.24 1,191,303 37.42
HC 122,538 3.46 328,580 14.81 1,407,737 184.85
GY 123,601 3.07 324,939 13.04 1,384,640 164.23
R-HC 52,236 0.57 124,983 2.66 491,316 30.29
D-HC 124,568 2.26 323,408 8.60 1,325,947 103.58
SR-HC 94,790 0.27 266,599 0.76 1,137,312 8.43
DRLH 128,567 7.42 344,798 31.29 1,450,217 329.77
DRLH-HC 129,550 7.55 348,296 31.67 1,462,856 335.29
DRLS 98,400 0.09 284,659 0.47 1,103,421 0.69
DRLS-HC 128,377 1.12 340,403 5.31 1,437,917 51.26

4. Conclusion and future directions

Common heuristic rules are difficult to obtain good solutions
f general UBQP problems, especially when addressing large-scale
ases. Inspired by the DRL based studies, the DRLH algorithm
ased on a NN model including an embedding layer and a two-
ayer attention network is proposed in this paper. Also, to further
mprove the algorithm speed and efficiency, two DRLH variants
amed the DRLS and DRLS-HC are developed, respectively.
Experiments on the test data we generated show that our al-

orithms can obtain competitive results. The DRLH obtains high-
uality results, DRLS produces a feasible solution in very short
ime, and the DRLS-HC approaches the DRLH solutions with the
fastest computation speed. Our algorithms show greater out-
performance when addressing large-scale cases. In addition, the
NN models in our DRLH and DRLS were trained with data in
different sizes, but they show good adaptability and performance
when addressing the problems in other sizes; hence, the DRLH
also presents good performance in generalization. The results
on sensitivity experiment show good scalability of our proposed
algorithms in various distributions. Also, benchmark experiments
have verified the ability of the algorithms to be applied to prac-
tical problems. When encountered with a new UBQP problem, it
can be well addressed by the NN model in any size we trained in
a quick and proper manner.

In future studies, since the good performance of our feature
engineering, we would like to develop more effective features
that can further improve the algorithms. Current features are
based on experiments and manual selection, whether we can use
machine learning to learn the appropriate features is our future
direction. Also, Due to the training of the NN model especially
in DRLH requires considerable time, we would develop the effi-
ciency of training and optimization of NN parameters. The last, we
would find a good manner to further improve the optimization
quality and speed of our algorithms with limited training data.

CRediT authorship contribution statement

Ming Chen: Conceptualization, Methodology, Software, Vali-
dation, Writing - original draft, Writing - review & editing, Visu-
alization. Yuning Chen: Conceptualization, Methodology, Investi-
gation, Writing - original draft, Writing - review & editing. Yong-
hao Du: Formal analysis, Writing - original draft. Luona Wei:
Investigation, Writing - review & editing, Visualization. Yingwu
Chen: Validation, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The work is partially supported by the National Natural Sci-
ence Foundation of China, Grant 71701203 and Natural Science
Foundation of Hunan Province, Grant No. 2018JJ3618.

References

[1] Bahram Alidaee, Gary Kochenberger, Karen Lewis, Mark Lewis, Haibo
Wang, A new approach for modeling and solving set packing problems,
European J. Oper. Res. 186 (2008) 504–512.

[2] Mark Lewis, Gary Kochenberger, Bahram Alidaee, A new modeling and
solution approach for the set-partitioning problem, Comput. OR 35 (2008)
807–813.

[3] Mark Lewis, Gary Kochenberger, Bahram Alidaee, A new modeling and
solution approach for the set-partitioning problem, Comput. OR 35 (2008)
807–813.

[4] Alain Billionnet, Alain Sutter, Minimization of a quadratic pseudo-Boolean
function, European J. Oper. Res. 78 (1994) 106–115.

[5] P. Pardalos, G. Rodgers, Computational aspects of a branch and bound
algorithm for quadratic zero-one programming, Computing 45 (1990)
131–144.

[6] Endre Boros, Peter Hammer, Gabriel Tavares, Local search heuristics for
quadratic unconstrained binary optimization (QUBO), J. Heuristics 13
(2007) 99–132.

[7] Peter Merz, Bernd Freisleben, Greedy and local search heuristics for
unconstrained binary quadratic programming, J. Heuristics 8 (2000).

[8] Yang Wang, Zhipeng Lü, Fred Glover, Jin-Kao Hao, Backbone guided tabu
search for solving the UBQP problem, J. Heuristics 19 (2011) 1–17.

[9] Fred Glover, Gary Kochenberger, Bahram Alidaee, Mehdi Amini, Tabu
search with critical event memory: An enhanced application for binary
quadratic programs, 1999.

http://refhub.elsevier.com/S0950-7051(20)30512-8/sb1
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb1
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb1
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb1
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb1
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb2
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb2
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb2
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb2
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb2
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb3
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb3
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb3
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb3
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb3
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb4
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb4
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb4
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb5
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb5
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb5
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb5
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb5
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb6
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb6
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb6
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb6
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb6
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb7
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb7
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb7
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb8
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb8
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb8
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb9
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb9
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb9
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb9
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb9


10 M. Chen, Y. Chen, Y. Du et al. / Knowledge-Based Systems 207 (2020) 106366
[10] Fred Glover, Tao Ye, Abraham Punnen, Gary Kochenberger, Integrating tabu
search and VLSN search to develop enhanced algorithms: a case study
using bipartite boolean quadratic programs, European J. Oper. Res. 241
(2013).

[11] Gintaras Palubeckis, Multistart tabu search strategies for the uncon-
strained binary quadratic optimization problem, Ann. Oper. Res. 131 (2004)
259–282.

[12] Fred Glover, Zhipeng Lü, Jin-Kao Hao, Diversification-driven tabu search
for unconstrained binary quadratic problems, 4OR 8 (2010) 239–253.

[13] Ying Zhou, A decomposition-based multi-objective tabu search algorithm
for tri-objective unconstrained binary quadratic programming problem,
2017, pp. 101–107.

[14] Talal Alkhamis, Merza Hasan, Mohamed Ahmed, Simulated annealing for
the unconstrained quadratic pseudo-Boolean function, European J. Oper.
Res. 108 (1998) 641–652.

[15] Kengo Katayama, Hiroyuki Narihisa, Performance of simulated annealing-
based heuristic for the unconstrained binary quadratic programming
problem, European J. Oper. Res. 134 (2001) 103–119.

[16] Charles Fleurent, Fred Glover, Philippe Michelon, Z. Valli, A scatter search
approach for unconstrained continuous optimization, 1996, pp. 643–648.

[17] Wei Ping, Xiong Weiqing, Binary ant colony algorithm with control-
lable search bias for unconstrained binary quadratic problem, 2012, pp.
3414–3418.

[18] Murilo Zangari, Aurora Pozo, Roberto Santana, Alexander Mendiburu, A
decomposition-based binary ACO algorithm for the multiobjective UBQP,
Neurocomputing (2017).

[19] Murilo Zangari, Aurora Pozo, Roberto Santana, Alexander Mendiburu, A
decomposition-based binary ACO algorithm for the multiobjective UBQP,
Neurocomputing (2017).

[20] Andrea Lodi, Kim Allemand, Thomas Liebling, Evolutionary heuristic for
quadratic 0-1 programming, European J. Oper. Res. 119 (1999) 662–670.

[21] Istvan Borgulya, A parallel evolutionary algorithm for unconstrained binary
quadratic problems, 33, 2008, pp. 603–604.

[22] Zhipeng Lü, Jin-Kao Hao, Fred Glover, A study of memetic search with
multi-parent combination for UBQP, 6022, 2010, pp. 154–165.

[23] Peter Merz, Kengo Katayama, Memetic algorithms for the unconstrained
binary quadratic programming problem, Bio Syst. 78 (2005) 99–118.

[24] Zhipeng Lü, Fred Glover, Jin-Kao Hao, A hybrid metaheuristic approach to
solving the UBQP problem, European J. Oper. Res. 207 (2010) 1254–1262.

[25] Arnaud Liefooghe, Sebastien Verel, Jin-Kao Hao, A hybrid metaheuristic
for multiobjective unconstrained binary quadratic programming, Appl. Soft
Comput. 16 (2014) 10–19.

[26] W. Michiels, E.H.L. Aarts, Jan Korst, Theory of local search, in: Handbook
of Heuristics, 2018, pp. 299–339.
[27] Diederik Kingma, Jimmy Ba, Adam: A method for stochastic optimization,
in: International Conference on Learning Representations, 2014.

[28] Yueting Xu, Huiling Chen, Luo Jie, Qian Zhang, Shan Jiao, Xiaoqin
Zhang, Enhanced moth-flame optimizer with mutation strategy for global
optimization, Inform. Sci. 492 (2019).

[29] Liming Shen, Huiling Chen, Zhe Yu, Wenchang Kang, Bingyu Zhang,
Huaizhong Li, Bo Yang, Dayou Liu, Evolving support vector machines using
fruit fly optimization for medical data classification, Knowl.-Based Syst. 96
(2016).

[30] Yueting Xu, Huiling Chen, Luo Jie, Qian Zhang, Shan Jiao, Xiaoqin
Zhang, Enhanced moth-flame optimizer with mutation strategy for global
optimization, Inform. Sci. 492 (2019).

[31] Huiling Chen, Qian Zhang, Luo Jie, Yueting Xu, Xiaoqin Zhang, An enhanced
bacterial foraging optimization and its application for training kernel
extreme learning machine, Appl. Soft Comput. (2019) 105884.

[32] Xuehua Zhao, Daoliang li, Bo Yang, Chao Ma, Yungang Zhu, Huiling Chen,
Feature selection based on improved ant colony optimization for online
detection of foreign fiber in cotton, Appl. Soft Comput. 24 (2014) 585–596.

[33] Mingjing Wang, Huiling Chen, Chaotic multi-swarm whale optimizer
boosted support vector machine for medical diagnosis, Appl. Soft Comput.
88 (2019) 105946.

[34] Oriol Vinyals, Meire Fortunato, Navdeep Jaitly, Pointer networks, Adv.
Neural Inf. Process. Syst. 28 (2015).

[35] Irwan Bello, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio,
Neural combinatorial optimization with reinforcement learning, 2016.

[36] Mohammadreza Nazari, Afshin Oroojlooy jadid, Lawrence Snyder, Mar-
tin Takáč, Deep reinforcement learning for solving the vehicle routing
problem, 2018.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan Gomez, Lukasz Kaiser, Illia Polosukhin, Attention is all you need,
2017.

[38] Klaus Greff, Rupesh Srivastava, Jan Koutní k, Bas Steunebrink, Jürgen
Schmidhuber, LSTM: A search space odyssey, IEEE Trans. Neural Netw.
Learn. Syst. 28 (2015).

[39] Jan Peters, Stefan Schaal, Natural actor-critic, Neurocomputing 71 (2008)
1180–1190.

[40] Yang Wang, Zhipeng Lü, Fred Glover, Jin-Kao Hao, Probabilistic GRASP-
Tabu Search algorithms for the UBQP problem, Comput. Oper. Res. 40 (12)
3100–3107.

[41] Xavier Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks, J. Mach. Learn. Res. 9 (2010) 249–256.

[42] John Beasley, Obtaining test problems via internet, J. Global Optim. 8
(1996) 429–433.

http://refhub.elsevier.com/S0950-7051(20)30512-8/sb10
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb10
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb10
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb10
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb10
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb10
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb10
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb11
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb11
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb11
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb11
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb11
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb12
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb12
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb12
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb13
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb13
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb13
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb13
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb13
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb14
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb14
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb14
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb14
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb14
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb15
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb15
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb15
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb15
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb15
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb16
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb16
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb16
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb17
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb17
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb17
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb17
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb17
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb18
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb18
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb18
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb18
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb18
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb19
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb19
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb19
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb19
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb19
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb20
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb20
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb20
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb21
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb21
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb21
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb22
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb22
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb22
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb23
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb23
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb23
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb24
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb24
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb24
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb25
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb25
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb25
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb25
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb25
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb26
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb26
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb26
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb28
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb28
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb28
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb28
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb28
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb29
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb29
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb29
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb29
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb29
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb29
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb29
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb30
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb30
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb30
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb30
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb30
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb31
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb31
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb31
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb31
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb31
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb32
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb32
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb32
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb32
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb32
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb33
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb33
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb33
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb33
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb33
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb34
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb34
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb34
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb35
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb35
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb35
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb36
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb36
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb36
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb36
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb36
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb37
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb37
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb37
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb37
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb37
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb38
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb38
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb38
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb38
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb38
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb39
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb39
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb39
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb41
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb41
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb41
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb42
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb42
http://refhub.elsevier.com/S0950-7051(20)30512-8/sb42

	Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization
	Introduction
	The DRLH
	Framework
	The NN model
	Encoder
	Decoder
	Attention
	Selection strategy

	Model training method
	DRLH variants

	Experimental study
	Experiment setup
	Dataset
	Competitors
	Algorithm parameter

	Experimental results
	Results of DRLH
	Results of DRLS
	Results of DRLS-HC

	Large-scale experiments
	Sensitivity experiments
	Benchmark experiments

	Conclusion and future directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


