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A B S T R A C T

Self-Organizing Networks (SON) is a collection of functions for automatic configuration, optimization, and
healing of networks and mobility optimization is one of the main functions of self-organized cellular networks.
State of the art Mobility Robustness Optimization (MRO) schemes have relied on rule-based recommended
systems to search the parameter space; yet it is unwieldy to design rules for all possible mobility patterns in any
network. In this regard, we presented a Deep Learning-based MRO solution (DRL-MRO), which learns the re-
quired parameter's appropriate values for each mobility pattern in individual cells. Optimal mobility setting for
Handover parameters also depends on the user distribution and their velocities in the network. In this frame-
work, an effective mobility-aware load balancing approach applied for autonomous methods of configuring the
parameters in accordance with the mobility patterns in which approximately the same quality level is provided
for each subscriber. The simulation results show that the function of mobility robustness optimization not only
learns to optimize HO performance, but also it learns how to distribute excess load throughout the network. The
experimental results prove that this solution minimizes the number of unsatisfied subscribers (Nus) and it can
also guarantee a more balanced network using cell load sharing in addition to increase cell throughput out-
perform the current schemes.

1. An overview of son functions

Self-organization Networking is a wide ranging research and stan-
dardization trend the scope of modern wireless networking. The op-
timal cell radius in next-generation cellular networks is continuously
decreasing and this has increased operational expenses (OPEX) and
caused the exponential enhancement of network operation complexity
[1]. Self-organization networking (SON) as an effective approach in
network resource management is introduced as a viable solution for
minimizing such challenges by automating network operations. SON
functions are defined based on NGMN standards [2] and represent the
functions that should be automated. Some examples of the most effec-
tive SON models can be listed as:

• Robust Mobility Optimization,
• Load Balancing,
• Inter/Intra-Cell Interference Coordination (ICIC)
• Capacity and Coverage Optimization (CCO).

These models are traditionally introduced as recommender

controllers using rule-based fuzzy engines in which knowing behavioral
information of functions is essential for designers. The presented ap-
proach applies self-organized functions to cognitive wireless networks
and implements them in a reinforcement learning platform using
learning-based agents in which the feedback of the agents’ actions is
used to learn.

Each SON function is specified through a set of thresholds that be-
gins the execution of an associated self-organization networking algo-
rithm.

The primary SON function is a control agent with three main tar-
gets:

1) Network performance monitoring, considering threshold and trigger
conditions.

2) Execution of self-organization algorithms and optimization of af-
fected indices.

3) Checking the feedback relevant to effects of the taken actions.

However, traditional SON functions are developed mostly in the
form of recommended systems as rule-based controllers that apply
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specific rules on target parameters.
Some efficient rule-based controllers for handover relation optimi-

zation are presented in [3–6]. Two SON functions relevant to physical
characteristics, like as tilt adjustments to achieve load balancing, are
introduced in [9] and [10]. In these functions, the rule designer should
completely understand the impacts of each action on each scenario. In
practice, these approaches aren't applicable, even for an expert system.
The most critical issue is that their control procedures make complex
structures which are so complicated to plan and to implement as SON
rules [7]. Hence, they are usable exclusively for general actions and are
not applicable for particular conditions of the network [8].

To resolve the functional issues of previous approaches, the self-
organization networking technique is applied to cellular cognitive
networks by empowering cognitive SON functions. The cognitive cel-
lular networks apply self-organization networking beyond traditional
rule-based controllers, in which cognitive SON functions autonomously
learn how to move toward the optimal configuration. Particularly, it is
suggested that cognitive rules be planned as learning agents which act
based on the feedback of agents’ actions. Learning has traditionally
been used in some self-organization networking functions and achieved
appropriate results, for example, in [11–13], although herein, a
learning approach is suggested, which is effective for all self-organi-
zation functions. Reinforcement learning is applied in some self-orga-
nized networks, for example, COO [11,20], Load Balancing
[21,22,34,35,38], Handover Control [23,30,31], User Quality of Ex-
perience and QoS assurance [16,19,32,33] and Resource Allocation
[12,13,17,18,26-28]. This research generalizes this concept by con-
sidering SON functions as learning automata frameworks. Some ad-
vantages of using such reinforcement learning methods with efficient
results are compared and the results discussed in [14] and [15].

In actual cellular networks, subscribers are seldom uniformly dis-
tributed, and this is considerable when a serving sector s is congested,
while the network has available resources in adjacent sites. The only
viable solution for this issue is to automatically redistribute the load
among all sites. Mobility load balancing minimizes the number of
subscribers which are not satisfied (Nus) by moving some of the edge
users served by overloaded cells towards one or more adjacent sites, or
so called target sites. In this paper we propose a cognitive cellular
network (CCN) empowered by an efficient self-organization networking
approach which enables the SON functions to separately learn and find
the best configuration setting. An effective learning approach is pro-
posed for the functions of the cognitive cellular network, which exhibits
how the framework is mapped to SON functions. One of the main
functions applied in this SON framework is mobility load balancing. In
this paper, a novel Stochastic Learning Automata has been suggested as
the load balancing function in which approximately the same quality
level is provided for each subscriber. This framework can also be ef-
fectively extended to cloud-based systems, where adaptive approaches
are needed due to unpredictability of total accessible resources, con-
sidering cooperative nature of cloud environments. The results de-
monstrate that the function of mobility robustness optimization not
only learns to optimize HO performance, but also it learns how to
distribute excess load throughout the network.

The structure of the paper is as follows. Section I briefly introduce
an overview of SON functions and studies the current schemes in
learning framework, Complexity Analysis, Convergence, Policy
Gradient Prediction and Multi-Agent Learning Approach. Section II
presents a novel approach to deep learning–based mobility robustness
optimization in which Handover Performance Metrics, Handover
Control Indexes & Sensitivity Degree and Search Method in Self-orga-
nization Parameters are studied. The mobility load balancing solution
using stochastic learning automata and its application as a function of
cognitive cellular networks are introduced in section III. Also, Section
III characterizes the execution of SON functions in the mobility robust
optimization framework. We discuss about the evaluation scenarios and
the achieved simulation results in section IV. The conclusions drawn

and recommendations made for future researches are discussed in
section V.

2. Deep learning based mobility robustness optimization

One of the most critical issues in cellular network operation is de-
termination of optimal handover settings considering hysteresis and
time-to-trigger as the most effective control parameters. These two
parameters should be configured based on the common subscriber ve-
locity throughout the cell coverage, which can be relevant to both large
state-space and large parameter-space. Thus, large spaces cannot be
accurately assessed manually, which mobility robust optimization aims to
resolve this problem . In this section, an effective novel Deep
Reinforcement Learning Mobility Robustness Optimization called DRL-
MRO is proposed.

For all handover events, relevant to hysteresis and time-to-tigger
(called the "Trigger Point" from now on) in occurrence of a handover
success, a ping pong or a radio link failure, the mobility robustness op-
timization algorithm tries to optimize robustness of the radio con-
nectivity among the mobile subscriber devices and the serving network;
for example, minimization of radio link failures decrease the number of
ping-pongs and the useless handovers concurrently [2]. Many studies
have investigated mobility robust optimization and some of the main
results have been described in [28–32]. Most of these studies applied a
recommender system as an automatic controller to find the best solu-
tion in accordance with the parameter space. The mentioned studies
make two basic hypotheses, which are not adaptive to practical en-
vironments:

1) The mobility pattern is assumed not to be dynamic so that a basic
scan is enough to obtain the optimal profile, while networks with a
static velocity profile are impractical.

2) The underlying dependence between the handover indices and the
control parameters is assumed. In addition to being uncertain to
error in cases of inaccurate assumptions about this dependence, the
necessary rules are very complicated, even with the correct model.

In order to resolve these challenges, the proposed DRL-based mo-
bility robust optimization doesn't rely specifically on expert knowledge or
command sequences; its agents learn the optimum trigger points
(OTPs). It categorizes user equipments’ speed to a list of mobility pro-
files in order to learn the optimum trigger points for each profile.

2.1. Handover performance metrics

The increment of hysteresis and/or time-to-trigger delays handover
triggering by reducing handover attempts and ping-pongs.
Nevertheless, when the handover is over-delayed, the signal-to-noise
+interference decreases so much that is equivalent to occurrence of a
radio link failure, specifically the radio link failure because of late
handovers (RLFLs). Conversely, the degradation of hysteresis and/or
time-to-trigger provokes earlier handovers. So, the handover includes a
candidate cell which its signal strength is not permanently appropriate,
and the user equipment re-initiates a handover back to the serving cell,
resulting in a ping-pong. In a more severe state, the ratio of signal-
strength-to-interference+noise in the candidate cell is so weak that the
user equipment faces link failure during the inverse handover, which
means a radio link failure because of early handover (RLFE).

Herein, some crititical metrics have been introduced that must be
considered in the evaluation of the handover performance, such as
radio link failure and ping-pong event.

1) Radio Link Failure: A failure in the radio access link happens if the
level of the signal-to-noise/interference of the user equipment is
below a certain amount for a period of time [27]. The rate of radio
link failure, because of either too early handovers (FE) or too late
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handovers (FL), is counted as the number of failures in a second in
each cell.

2) Ping-pong rate: A ping-pong occurs if a handover success from cell X
to cell Y happens in a time less than the “PP time” just after a
former successful handover from Y to X. The ping-pong rate is also
calculable as the number of ping-pong occurrences per second in a
cell area. PP time is not standardized, so in this research, it is
considered approximately equal to the longest time-to-trigger.

3) Number of handover candidates: During execution of the
scenario, all rates in each cell will be normalized to
#handover candidates to guarantee that all sectors have compar-
able conditions for assessing their events and statistics. However,
the real number of handover candidates is related to two handover
parameters, hysteresis and time-to-trigger, which specify if user
equipment is a good candidate for handover or not. It is obvious that
there will be a cyclic dependency between handover parameters,
such that hysteresis and triger time are dependent to the number of
handover candidates, although the number of handover candidates is
needed in order to measure the hysteresis and time-to-trigger in-
dices. To resolve this issue, the definition of handover candidate is
modified in this research, so that the candidate has either initiated a
handover or experienced a radio link failure during the assessment
time, ensuring that all subscribers are counted exactly once, even if
they experience several events during a time interval.

4) Performance of handover aggregate: To make a significant com-
parison among trigger points so as to choose the best one, the in-
dividual assessment of all three expressed metrics is not reliable. For
this reason, one weighted aggregated metric is defined to include all
three introduced metrics (radio link failure, ping-pong rate, number
of handover candidates), which is formulated as Equation (1).

= + + =HOAP w P w F w F w; 1E L i1 2 3 (1)

The following conditions should be considered regarding the
handover aggregate performance:

1) Handovers and handover success rates are not directly included in
the handover aggregate performance, because minimizing ping-pongs
also minimizes unessential handover events and successful hand-
overs.

2) Handover failures due to radio link failures, which happen in a
handover interval, are supposed to be considered due to radio link
failures.

3) As well as improper handover settings, radio link failure can be
caused by other reasons, such as poor coverage problems. In this
paper, the factors that do not exist or their impacts are insignificant
have been ignored. This seems a reasonable assumption according to
the obtained outcomes which demonstrated that if handover is
started early enough (hysteresis=0 dB and time-to-trigger=0 s),
radio link failures are removed (with significantly more ping-pongs).

4) The determination of weight coefficients wi is subjective. Actually,
these coefficients are selected so as to identically balance impacts of
early handovers (ping-pong, link failure) against impacts of late
handovers (link failure), that is w3 equal to w1 and w2 combined.
Because radio link failures are less desirable than ping-pongs,
w2 must be bigger than w1. The mutually selected weight coefficients
are as a vector =w (0: 2; 0: 3; 0: 5), which were applied in all sce-
narios in which handover performance was assessed.

2.2. Handover control indexes: sensitivity degree

The main goal of the mobility robustness optimization algorithm is to
obtain the optimum trigger points as an ideal setting for networks with
dynamic mobility pattern. In this scheme, to achieve an adaptive

learning framework, the sensitivity of the main parameters to the speed
of user equipment should be investigated. In the current study, all ef-
fective handover parameters have been assessed in four scenarios with a
different velocity pattern. In which, user equipment is moving with a
constant velocity pattern. The optimum trigger points change with
velocity and the relation of handover aggregate performance with hys-
teresis and time-to-trigger is linear.

As is obvious, a very high value of hysteresis is not acceptable for all
velocity patterns; however, a low value of time-to-trigger with moder-
ately high hysteresis could provide satisfactory results. In the same
vein, setting a high value for time-to-trigger could be acceptable only at
light velocities with medium to low hysteresis. Also, the best result in
low velocities is achievable with moderate hysteresis and low to mod-
erate trigger time, in which handover processes can efficiently be de-
layed without causing a critical issue, because the risk of radio link
failure and the possibility of ping-pong are significantly low in lower
velocities. It is obvious with a velocity equal to 10 km/h without con-
sidering the values of trigger time, the handover performance is good
considering hysteresis equal to 2 dB.

Table 2 and 3.
With increasing the velocity, the handover delay should be de-

creased, especially when using trigger time. The handover aggregate
performance is more sensitive to trigger time in comparison with the
optimum trigger points. in other words, the handover functionality will
significantly change with time-to-trigger, but it is almost constant with
changes in hysteresis. It should be noted that at very high velocities,
trigger time and hysteresis both have a great effect on handover control,
and both of these parameters should be low. With velocities equal to 60
and 90 km/h, optimum trigger points are limited to the lower left
corners of the grid, while the range of trigger time is 0-0.64 seconds.
Also, with such a small value of trigger time, although there is great
variation in the handover aggregate performance, this variation is dark
in areas near the optimum point.

The clearest conclusion obtained from the result is that as demon-
strated in [29,30], the optimum trigger points do not lie along any one
diagonal in various speeds. Consequently, to specify the target trigger
point, any mobility robustness optimization model should scan at least

Table 1
DRL Mobility optimization: Velocity regimes

Target Area Initial speed (Kmph)
Mean Range

Office environment 4 2-6
Dense (Center area) 12 8-16
Cluster Edge 34 30-38
Cluster Suburb 56 50-62
Street 115 110-120

Table 2
Simulation Parameters

Parameter Value

etwork Bandwidth 20 MHz
Site-to-site distance 1000 m
interval 65 ms
# Subscribers 380 mobile, 80 static
User speed Variable, mean speed=2, 8, 25, 50 or 130 kmph
Mobility pattern Random walking model
Pathloss formulation +A B d km. log [max( [ ], 0.035)];10 A=128.1 and B=37.6
Shadowing effect Extent of deviation =5.5 dB; Correlation factor=45 m
transmit power BS 45 dBm
Antennas type 3 direction eNB, antenna gain 14.5 dBi, & antenna

height=32 m
User antennas 1 Omni directional, antenna gain 1.9 dBi & antenna

height=1.3m
Default data rate 1024 kbps
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more than half of the state-space.

2.3. Deep learning based mobility robustness optimization (DRL-MRO)

The main target of Qlearning-based mobility optimization is to de-
termine the optimum hysteresis and trigger time and to maximize the
handover aggregate performance in any mobility profile in the coverage
area.

It should be noted that with this process, only cell performance will
be affected, and these actions don't change the mobility states of the
user equipments. Accordingly, that is sufficient for learning an action a
relevant to state x, which improves the predicted immediate reward r at
time t.

= ++Q x a Q x a x a( , ) (1 ) ( , ) [( , )]t t t t t t t t1 (2)

In this equation, α represents the learning rate defined in the previous
section.

The components of the Qlearning-based mobility optimization algo-
rithm are described in the following.

1) State-Space of mobility robustness optimization: The essential hand-
over setting in the radio access network is performed according to
the mobility pattern of the user equipment in the coverage area as
exhibited in the analysis of section V-B. State x is introduced as a
degree of mobility which is a continuous variable indicating the
average velocity during the self organization networking execution.
We have described x as special bands for each of which the proper
handover settings should be learned.

The mapping of mobility states and velocity profiles is considered,
in which velocities are categorized into mobility states. Estimates of the
default setting are used in the manual optimization process. It is sup-
posed that the velocity is either calculable or estimated by the base
stations. A simple model of speed estimation in cells can be based on the
ratio of approximate cell size to average user equipment's stay time
within the cell range. This parameter can be calculated accurately
considering the Doppler peaks (Sacharov peaks) in the angular power
spectrum effect [33]. In any case, with an appropriate estimation of
velocity, the algorithm (Deep learning-based mobility optimization) is
able to learn and set the optimal setting for all cells. The main simu-
lation parameters and their values are listed.

2) Action Space of Deep-learning mobility robustness optimization: The
action of each cell in this algorithm is to submit the optimal values
of hysteresis and time-to-trigger to its associated subscribers.
Without a self-organization networking solution, an operator
manually sets default parameters which are achieved through trial
and error; Based on a local search in the self-organization

networking approach. However, a specific set of settings will be
implemented, just like as items denoted in the following.
Nevertheless, considering the dependence between optimum trigger
points and velocity, the settings must be modified according to the
immediate velocity changes in the cell. It is obvious from the results
that when the hysteresis is higher than 5, the performance level for
all real velocities is almost always sub-optimal. Thus, this study
focused only on the hysteresis level up to 5 dB. However, differences
in handover aggregate performance for some trigger-time settings
are not satisfactory, particularly at low time-to-trigger levels. But
there are no significant changes in the performance at any speed in
most levels of hysteresis at a time-to-trigger equal to:08s; 0:1s;
0:16s. As such, not all time-to-trigger values are considered. For
example, the possible time-to-trigger is a set of 12 values
(0.04, 0.10, 0.128, 0.256, 0.32, 0.48, 0.512, 0.64, 1.02, 1.28, 2.56,
5.12) in second. The overall actions# called the resulting action space
for each state is equal to 143 feasible combinations of the de-
termined hysteresis and time-to-trigger.

3) Reward function of Deep-learning mobility optimization: The aim of
this study is to minimize radio link failures without extremely in-
creasing ping-pongs and handovers. Because the learner is a reward-
maximizing agent, the reward rx, tmust not be the positive HO-ag-
gregate-performance index assessed during the execution of the self
organization networking. As mentioned before, all individual rates
should be normalized to the number of handover candidates, which
is formulated as:

= + +r w P w F w F NH( )/ ;x t E L, 1 2 3 (3)

Note that the weight vector used in this learning procedure should
be adjustable, because the weight coefficients may need to be modified,
particularly with regard to the small assessment period relevant to the
SON operation interval. In other words, when no radio link failure
occurs due to early handover, the results could be tilted in favor of too
many ping-pongs. Then, the vector of weight coefficients is maintained
as =w (0: 2; 0: 3; 0: 5) for the usual condition and will be modified to

=w (0: 4; 0: 0; 0: 6) when no radio link failure due to early handover is
observed.

4) Cooperative learning in Qlearning mobility optimization: Channel
condition, which is considered by the level of reference signal re-
ceived power, can affect handover triggering. Although applying
algorithm A3 decreases this dependence on the signal strength va-
lues, likewise, decisions are made according to signal strength dif-
ferences among all neighbor cells. In this case, handover KPIs de-
pend on subscriber mobility pattern as well as degree of the control
parameters. Considering mobility-handover states, a state occurring
in one cell may be repeated in other cells at some other time. Also,
there is no requirement that the cells learn independent policies, but
they should learn a singular policy function according to the mo-
bility states. The result is a cooperative deep learning problem in
which each cell performs actions independently but update an ex-
clusive Q-table, which indicates the shared learning policy.

Based on the cooperative property of the learning approach, this
feature is established in cases where the values of the main parameters
are comparable among adjacent sites. In other words, cell size and the
applied transmission power are considered comparable in all network
cells. In addition, the profile of the reference signal received power at the
cell edges may cause different outcomes in different behaviors for dif-
ferent cells. If cells have simultaneously connected subscribers with
various behavioral patterns, the solution may fail. In other words, one
state for a site that covers a highway and an office park cannot be
considered for the entire cell. Such a cell has simultaneously covered
two user groups (low-speed office subscribers and fast-speed highway

Table 3
Defined Actions based on Mobility states

Mean speed
(kmph)

State (x) Default Hysteresis
(dB)

Default Time-to-Trigger
(s)

0-5 0 4.0 0.0-6.3
5-9 1 3.0 0.0-3.67
9-13 2 2.1 0.0-2.35
13-18 3 2.1 0.0-0.98
18-23 4 1.3-2.1 0.0-0.75
23-30 5 1.3-2.1 0.0-0.35
30-35 6 1.3-2.1 0.0-0.325
35-42 7 1.3 0.0-0.48
42-50 8 0.9 0.0-0.48
50-58 9 0.6 0.0-0.37
58-70 10 0.6 0.0-0.325
70-80 11 0.0-0.4 0.0-0.12
80+ 12 0.0-0.4 0.0-0.12

A. Mohajer, et al. Reliability Engineering and System Safety 202 (2020) 107056

4



subscribers), each of which requires a different setting. Consequently,
because most cellular networks do not experience such particular states,
a cooperative learning approach as presented in this research will not
be completely practical.

2.4. Search method: Self-organization parameters

As mentioned, network cells have up to 160 feasible actions relevant
to mobility states. Even applying cooperative approaches, assessing
actions for consecutive times will be time consuming.

1) Methodology of parameter search: To speed up the algorithm's
convergence, the 160 actions are categorized into sub-groups. For
any state, 3 learning structures, R R1 3 (exhibited in Figure 1), are
applied that begin network-wide and move to local step-by-step. In
R1, actions are selected from all sections of the grid to specify the
area of desirable action. According to the sensitivity evaluation,
combinations of high trigger time and small hysteresis is not optimal
at all. In the same way, the target district will be excluded among
the possible candidates demonstrated by “R1 actions” in Figure 1.
The resulting trigger point of R1(RTP1) determines the area of the
optimal spot. The result has also been applied to describe the
search space relevant to the subsequent regime R2. In R2, actions
in the diagonal line which moves from grigger point 1, are obtained
in order to achieve the acceptable latency for detecting the move-
ment pattern. Subsequent actions differ in hysteresis by 1 dB to
explore an adequate large action space. For example, if trigger point
1 is achieved as =TP dB s(2: 0 ; 0: 2561 ), at R2 the agent explores the
area indicated as R2 actions. The achieved trigger point (TP2) is also
applied to describe the search space relevant to the subsequent
regime R2. Also, R3 improved the learned trigger point 2 by
searching its neighbor points. Trigger point 2 will be compared with
its 4 neighbor points towards the left, right, top, or below. Also, “R3

Actions” denotes the exploration district for R3, considering that
=Trigger Point dB s2 (5: 0 ; 0: 128 ).

2) The interval of the self-organization networking: All settings which
are used in a cell are monitored during a self-organization net-
working interval. Assuming that various subscribers# are located in
sites, various sites can experience variable number of events over
the identical time interval. In the same way, instead of setting the
self-organization networking interval based on a fixed time period,
it is better to set it in accordance with the minimum possible
handover statistics, which should happen considering the kind of
each action. This value can be defined as sum of the dropped
handover events (such as succeed handovers, radio link failures due to
earlier and late handovers). This value has been set to 100 events,
however, any value which guarantees that comparable counts of all
the essential statistics are detected will be acceptable.

3) The Qlearning-based mobility optimization algorithm: According to the

defined Q-learning elements, the optimization process is executed
based on Algorithm 1, so that in each feasible state, the action sets
are begun with R1 considering 0 for the initial entries of the table.
Afterward, the learning process is started during each self-organi-
zation networking duration t. Cell c monitors its surroundings
during duration t, in which c specifies if optimization is required or
not, for example, during the modification of speed state. In the
learning stage, c chooses an action as defined in former subsections;
otherwise, it chooses the optimal action which has been learned. c
also sends that action to all of the connected user equipments and
begins obtaining the performance profiles required in the next time
duration (t + 1). At the finishing point of time +t 1, c assesses its
handover aggregate performance and receives the reward rt for the
action at time t. Finally, it renews the learning-table before the re-
petition of the cycle.

3. Mobility load balancing: stochastic learning automata

In actual cellular networks, subscribers are seldom uniformly dis-
tributed, and this is considerable when a serving sector s is congested,
while the network has available resources in adjacent sites. The only
viable solution for this issue is to automatically redistribute the load
among all sites. Mobility load balancing minimizes the number of
subscribers which are not satisfied (Nus) by moving some of the edge
users served by overloaded cell s towards one or more adjacent sites, or
so called target sites. In the formulation of the problem, T represents the
set of adjacent target cells and ρs denotes the serving cell's load. One cell
in the list is indicated with t and other ones are called T-cells.
Considering A3 handover conditions given in the formulations, mobility
load balancing modifies the load distribution by virtually shrinking
serving overloaded s via simultaneously expanding the set of target
cells. As mentioned in the self-organization networking standards of
new generation mobile networks, this action can be performed by
modifying the handover relation parameters of the serving cell s and
target cell t and effective handover boundary thresholds such as cell
individual offsets (O and O t T; )t

s t
s
s t, , .

In continue, the proposed learning automata based load balancing
approach is presented as one of the main features enabled in the sug-
gested SON model.Fig. 1. The action space considering different learning scenarios R1, R2, R3.

Algorithm 1
The DRL Mobility Optimization Algorithm

Require: Subscriber velocity status during Self-organized networking execution
1: considering =R Ri 1; initialize action set Ax,, R1 for scenario 1 belong to all status x
Repeat in all self-organized networking duration t
2: If handover action is done at self optimization duration t 1 do
3: calculate HO Aggregated performance and determine reward r x a( , )t t t1 1 1
4: renew Q-table based on formulation (2)
end if
5: specify the mobility status xt (based on table I)
6: if learning process finished in status x, do
7: find =a ax t x

opt
, , as the best possible action relevant to the status x

8: else if the process of Ri exploration supposed imperfect do
9: consider ax, t (subsequently after ax t, 1) belongs to Ax,, Ri

10: else do
11: consider =a ax t x Ri

opt
, , , the most optimal value for status x at Ri

12: if all learning processes relevant to status x finished do
13: consider all learning stages completed for status x do
14: consider ax, t as the most optimal action relevant to status x
15: learning finished, unlimitedly apply ax, t in status x
15: else do
16: +R R 1i i
17: apply ax, t to determine Ax,, Ri. in other words reform action set A for Ri

18: end if
19: end if
20: broadcast target action ax, t to all subscribers located in the cell
21: +t t 1, observe, roll up and calculate statistics, continue from step 2
22: end loop
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In this scenario, an learning automata is responsible for patching/
dispatching a request. So, the learning automata submits each request
to server i with probability pi(t). r denotes the number of servers each of
which modelled based on M/M/1 queue in which the Input is a poisson
process and its intensify is indicated by λi. Also, μi demonstrates the
service rate. In server i, based on the introduced framework, the mean-
response time (RT) is obtained as

=MRT t
µ t

( ) 1
( )

,i
i i (4)

In this formulation, λi(t) represents the average input rate of server i. in
accordance with M/M/1 model [12], we can consider =t p t( ) ( )i i if
{pi} is constant or with very slowly changes. For server i, consider si

(t) as the instantaneous RT and s t^ ( )i can be an estimation for the re-
sponse time. In which to estimate the average RT, we apply exponential
mobility model with learning rate α.

+ = +s t s t s t s t^ ( 1) ^ ( ) ( ( ) ^ ( )).i i i i (5)

The average RT for the other actions will be constant.

+ =s t s t for j i j n^ ( 1) ^ ( ) , [1, ].i i (6)

In this scenario, the reward and the penalty functions are defined as
the following:

• Reward if =s s^ ^i r k
r

k
1

1

• Penalty if > =s s^ ^i r k
r

k
1

1

We first should convert the markov process to being ergodic con-
sidering predefined lower bound pmin and the upper bound pmax. For
obtaining this goal, consider a minimal value as the lower bound of the
total power as 0 < pmin< 1

Each action selection probability is denoted as xi, in which 1 ≤ i ≤ r
and r represents the quantity of selected actions. Therefore, the most
major degree of each action-selection probability pi, is equal to

=p r p1 ( 1)max min, where 1 ≤ i ≤ r. The minimal degree pmin is
dedicated to other r 1 actions, although pmax will be taken with the
highest approximation. α(t) denotes the action index. The degree of pi(t)
is also updated at the specific time t based on the below rules.

+ +p t p t p p t( 1) ( ) ( ( ))i i max i

= =when t i and v( ) 1i

+ +p t p t p p t( 1) ( ) ( ( ))i i min i

= =when t j j i and v( ) , 1,i

In this formulation, θ and vi are user-defined indexes with a value
near to 0 and a reward function index. As 0 < θ < 1

3• =v 1i , reward, if =s t s t( ) ^ ( )i r k
r

k
1

1 .

3• =v 0i , penalty, if, > =s t s t^ ( ) ^ ( )i r k
r

k
1

1 .Algorithm 2 represents the
formalized framework as psudo-code step by step. The mean of all RTs
for all network nodes is described by s t^ ( ).

=
s t

r
s t^ ( ) 1 ^ ( )

k

r

k
1 (7)

3.1. Learning automata analysis

For the functional analysis of the scheme, we describe the approx-
imate behavior of the learning automata based load balancing solution.
So, the proposed approach will be analysed from the convergence and
stability perspectives. In this framework, for small values of α con-
sidering θ << α, s t^ ( )i will be estimated for all 1 ≤ i ≤ r. by

=MRT p t( ( ))i i µ p t
1

( )i i i

It should be noted that for 1 ≤ i ≤ r, s t^ ( )i converges to s p t¯ ( ( ))i i in
which s̄i demonstrates the MRTi. This is obvious upon the stochastic
probability theory [4]. We have θ ≪ α, and we know in comparison
with s sî , pi′s grow slower that warranties multi-time scale differentia-
tion. Applying the notation α(t) = i describes that action i is selected at
time t, therefore +s t M^ ( )i is calculated as

+ = + + +
=

+ + =s t M s t I s t k s t k^ ( ) ^ ( ) ( ( ) ^ ( ))i i
k

M

t k i i i
0

1

{ ( 1) }

According to the ruls of tiny-step processes theory, it can be sup-
posed that when α is sufficiently small, the probability vector [ŝ1(t),
ŝ2(t),...., ŝr(t)] will be kept fixed approximately during a discrete time
interval {t, t+1, . . ., t+M}. Hence, below probability equations are
obtained for 1≤ i ≤ r:

+ +s t M s t M R t M Q t M s t^ ( ) ^ ( ) ( ( , ) ( , )^ ( ))i i i i i (8)

For i ∈ [1, r], in the condition that the value of the approximations
{ŝ1(.), ŝ2(.),...., ŝr(.)} are constant at {ŝ1(t), ŝ2(t),...., ŝr(t)}, and M is
sufficiently large value, it's possible to estimate the quantities:

=
+= + + =R t M

I s t k
M

( , )
( )

,i
k
M

t k i i0
1

{ ( 1) }

And also,

= = + + =Q t M
I

M
( , ) ,i

k
M

t k i0
1

{ ( 1) }

The approximation vector p1(.), p2(.),...., pr(.) can be considered
fixed in the timing interval {t, t+ 1, . . ., t +M}, based on our study that
pi grows at slower time scale in comparison with ŝi. It should be noted
that the equation θ ≪ α allows the separation during this time interval.
Considering M is sufficiently large, Qi(t, M) is achievable as

= = + + =Q t M
I

M
( , ) ,i

k
M

t k i0
1

{ ( 1) }

Which indicates the part of time action i selected in time duration [t, t
+M], and will be converged to pi(t). If we suppose the action prob-
abilities constant, we have convergence of the RT processes si(.), to a
fixed distribution with the average s p t¯ ( ( )).i i

=
+= + + =R t M

I s t k
M

( , )
( )

i
k
M

t k i i0
1

{ ( 1) }

Which may be etimated by p t s p t( ) ¯ ( ( ))i i i . Applying the mentioned es-
timations, it's concluded from formulation (8), that the modification of
the vector [ŝ1(.), ŝ2(.),...., ŝr(.)] decreases to the below ODE system

Algorithm 2
Learning Automata Load Balancing

Loop
1: At time instant t, Consider the probability vector [p1, p2,...., pr] and select an action
2: Update the RT estimations
• For the selected action update the RT

+ = +s t s t s t s t^ ( 1) ^ ( ) ( ( ) ^ ( )).i i i i
• For the other actions in server i, the response estimation should be constant, so

+ =s t s t for j i j r^ ( 1) ^ ( ) , [1, ].j j

3: The function of Penalty/Reward is as

= =v Reward if s s1: ( ) : ^ ^ ,i i r k
r

k
1

1

=Otherwise v Penalty, 0 ( )i ,

4: Consider α(t) as the selected action's index, pi(t)will be updated at time t according to
the below ruls:
+ +p t p t p p t( 1) ( ) ( ( ))i i max i

= =when t i and v( ) 1,i
+ +p t p t p p t( 1) ( ) ( ( ))i i min i

= =when t j j i and v( ) , 1,i
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when α is significantly low:

=s t
dt

p t s p t s t
^ ( ) ( ). (¯ ( ( )) ^ ( )).i

i i i i (9)

The degree of formulation (9), decreases to have the running RT
approximation, given by s[ 1̂(.), ŝ2(.),...., ŝr(.)], modifying to a SS vector
s p t s p t s p t[¯ ( ( )), ¯ ( ( )), ¯ ( ( ))]r r1 1 2 2 , with considering α close to zero. In ac-
cordance with the features of M/M/1 queue model and the above as-
sumptions, s p t¯ ( ( ))i i is equal to

= =s p t MRT p t
µ p t

¯ ( ( )) ( ( )) 1
( )

.i i i i
i i i (10)

Actually, in this scenario, the reward is defined based on the event
that immediate RT detected whenever a server less than s t^ ( ) is selected.
which s t^ ( ) is the mathematical average of s t^ ( ) for 1 ≤ i ≤ n. In con-
tinue, it has been exhibited that the reward probability reduces with
increasing pi.

We can consider that Di(t) is slways severely decreasing as a func-
tion of pi. Reward probability =D t Prob s t s t( ) ( ( ) ^ ( ))i i that s t^ ( ) is
calculable via formulation (7). Based on the achieved results from the
previous assumption, if in comparison with s sî , pi′s grow slower that
warranties multi-time scale differentiation s t^ ( ) can be approximated by
the sum of the average RT relevant to each server, for example, sum-
mation of MRTi(t), 1 ≤ i ≤ r. Also, == =s t^ ( ) .s p t

r
MRT p t

r
¯ ( ( )) ( ( ))k i

r
i i k i

r
i i

The approximation of >s t s t( ) ^ ( )i is computable as [29]:

= =D t Prob s t s t exp s t µ t( ) ( ( ) ^ ( )) 1 ( ^ ( )( ( ))).i i i i (11)

It's demonstrated that this value decreases with increasing pi(t). To
obtain this goal, dD t

dp
( )i
i
exhibited by:

= +
=

dD t
dp

D t
p

D t
p

p
p

( ) ( ) ( ) .i

i

i

i j
j i

r
i

j

j

j1

For simplicity we defined an dummy constants bj ≥ 0 for j ≠ i, like
as [13], with considering these dummy parameters, it's given

= = … =p b p p b p p b p with b for j i, , , 0 .i i r r i j1 1 2 2

Hence,

=
… = …

=

=

p

p

p

b p
b

j
b p

b

r
b p

b

1
(1 )

(1 )

(1 )

i

m m

j i

m m

r i

m m

1

(12)

Because =p 1,m m therefore: = < 0
dp
dp

b
b

j

i

j

m j m
for all j ≠ iBased on

definition of Di(t), we have:

=D t s t µ t( ) 1 exp( ^ ( )( ( ))i i i

= exp
µ t

r µ t
1

( ) 1
( )

i i

k k k

=
=

exp
r r µ p t

1 1 1
( ( ))

.
k
k i

r

k k1

This definition is completely independent of pi, which shows
= 0D t

p
( )i
i

. Hence, D t
p
( )i
i

modified to dD t
dp

( )i
i
= =j

j i

r D
p

p
p1

i
j

j

i
. With some al-

gebraic manipulations the equation is simplified to

=D
p r µ p t

s t µ t
( ( ))

exp( ^ ( )( ( )) .i

j i i
i i2

So, < = <=0, 0
dp
dp

D t
p j

j i

r D
p

p
p

( )
1

j

i
i

i
i
j

j

i
.

When the lower bound of power pmin is very small, the learning
automata system has a specific equilibrium point as a solution.

+ =E p t p t p t p D p p[ ( 1) ( ) ( )] ( )[ (1 )]i i i i i i

+
=

p D p p p( ). [ ( )]
j
j i

r

j j j min i
1

Therefore,

+ = =
+ + =

E p t p t p t p
p D p p p p D p p p

[ ( 1) ( ) ( ) ]
( ). [ (1 1 )] ( )[ ( )]j

j i
1

i i

i i i max i
r

j j j min i

(13)

= + +
= =

p D p p p p D p p p( ). 1 ( )[ ( )].i i i max

r

j

r

j j j min i
j
j i

j
j i

1 1
(14)

Considering the fact that 1-pmax=(r-1) pmin, formulation (14) can be
modified as:

+ = =
=

E p t p t p t p p p D p D p[ ( 1) ( ) ( ) ] ( ( ) ( ))i i
j
j i

r

i j i i j j
1

+

=

+

=

=

=

p p D p

r p p D p

p p D p D p

p p D p p D p p

( )

( 1) ( )

( ( ) ( ))

( ( ) ( )) ( )

j
j i

j
j i

j
j i

1

1

1

min
r

j j j

min i i i
r

i j i i j j

min
r

j j j i i i i

Where ωi(p) is described as = p p D p D p( ( ) ( ))j
j i

r
i j i i j j1

Whenever pmin is close to zero, i.e., as pmin→ 0, the formulation E
[ +p t p t( 1) ( )i i | =p pj ] is calculable via:

+ = =E p t p t p t p p[ ( 1) ( ) ( ) ] ( ).i i i (15)

Hence,

+
=

dp t
dt

p
( 1)

( )i
i (16)

We can now continue with the achieved results.

a) There is an unique zero for = …p p p p( ) ( ( ), ( ), ., ( ))r1 2 as a
specific solution in the adjacency of = …p p p* ( *, , *)r1 .

The mentioned claims describe a system with r equalities:

=

=

=

=

=

=

p p D p D p

p p D p D p

p p D p D p

( ( ) ( )) 0

( ( ) ( )) 0

( ( ) ( )) 0

j
j

j
j

j
j r

1
1

1
2

1

r
j j j

r
j j j

r
n j r r j j

1 1 1

2 2 2
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=

=

=

=

=

=

p p D p D p

p p D p D p

p p D p D p

( ( ) ( )) 0

( ( ) ( )) 0

( ( ) ( )) 0.

j
j

j
j

j
j r

1
2

1
2

1

r
j j j

r
j j j

n
r

j r r j j

1 1 1

2 2 2

It should be noted that in this problem we applied the lower bound
of power pmin for the framework. Therefore, it guarantees that p1 ≠ 0,
p2 ≠ 0, …, pr ≠ 0. So, it's confidently divide the i'th formulation by pi,
yielding:

=

=

=

=

=

=

p D p D p

p D p D p

p D p D p

( ( ) ( )) 0

( ( ) ( )) 0

( ( ) ( )) 0.

j
j

j
j

j
j

1
1

1
2

1
1

r
j j j

r
j j j

r
j r r j j

1 1

2 2

with some algebraic manipulations, we will have:

=

=

=

=

=

=

D p p D p

D p p D p

D p p D p

( ) ( )

( ) ( )

( ) ( )

j
r

j j j

j
r

j j j

r r j
r

j j j

1 1 1

2 2 1

1

Which it guarantees = = … =D p D p D p( ) ( ) . ( )r r1 1 2 2 . In continue, it ex-
hibited that the obtained solution is unique.

a) The uniqueness of the equilibrium point to which the algorithm
converges p* must be checked. In this regard, we assume there is
existing = …q q q* ( *, , *)n1 , that is another solution of ω(q) so that
q* ≠ p*.

Because p* and q* are two inequal probability vectors q* ≠ p*, it is
certainly obvious that each of them has at least two equilibrium points i
and j so that >p q* *j j or <p q* *j j . Obviousely, it is proven that with
increase any one entity of a probability vector, another entity must be
reduced because the sum of the entities must be constant. Now suppose
that >p q* *j j . So, with considering the uniformity of Di(.), it's achieved
that <D p D q( *) ( *)i i i i . Vice versa, if <p q* *j j it expresses that

>D p D q( *) ( *)j j j j , which this conclusion is obvious considering the
monotonicity of Dj(.). On the other hand, due to p* and q* are both the
zero solution, we must have =D p D p( *) ( *)i i j j , and also, =D q D q( *) ( *)i i j j .
And it is an contradiction! because it's not possible to simultaneously
obtain: <D p D q( *) ( *)i i i i that is equivalent to =D p D q( *) ( *)i i i i and

=D p D q( *) ( *)i i i i . Consequently, uniqueness of p* is proved.
The algorithm will be converged in an optimal zero point, which is

alternatively Lyapunov stable. For proving this theorem we should
follow the Lyapunov function:

=
=

V p t D z dz( ( )) ( ) .
k i

r pt

k
0

The derivation is as:

=
=

dV p t
dt

dV p t
dp

dp
dt

( ( )) ( ( )) .
i

r

i

i

1 (17)

Considering the integral derivation, = D t( )dV p t
dp i
( ( ))

i
. So, based on Eq.

(16), = p( )dp t
dt i

( ) . Thus

=
=

dV p t
dt

D t p( ( )) ( ) ( ),
i

r

k k
1 (18)

where ωi(p) is described as = =p p p D p D p( ) ( ( ) ( ))i j
j i

r
i j i i j j1 . So,

=
= =

dV p t
dt

D p p D D( ( )) ( )
i

r

i
j

r

i j i j
1 1

=
= =

p p D D D( )
i

r

j

r

i j i i j
1 1

2

=
= =

p p D D
2

( )
i

r

j

r

i j i j
1 1

2

Therefore, 0dV p t
dt
( ( )) As it's obvious, the value of the Lyapunov func-

tion should be equal to 0 at its equilibrium point. So, = 0dV p t
dt
( ( )) . And

for every i, j, =p p D D* * ( * *) 0i j i j
2 . Since >p p*i min and >p p*j min, the

formulation =D p D p* ( *) * ( *) 0i i j j is certainly true for all i, j

= =D p D p* ( *) * * 0.i i j j

Based on the Lyapunov theorem, it's obvious that p* is the optimal
point of the problem. The results denoted that, although all SON
functions apply a similar procedure, particular arrangements are
needed for each SON function based on its specific conditions. For ex-
ample, each SON function needs a special strategy to recognize its ac-
tion space. In practice, the higher performance achieved by the pro-
posed method demonstrates the effectiveness of the self-organized
cognitive approach. Moreover, learning automata provides an appro-
priate solution for developing self-optimization functions. It is note-
worthy that learning mobility optimization is capable to set the hand-
over parameters such as hysteresis and trigger time for each special
mobility pattern. Using the cooperative learning method, all base sta-
tions work based on learning a single-policy function (unique Q-table).
Such an applicable approach is effective in various environments as
exhibited by the proper KPI results achieved through the practical
scenarios with subscribers with different and adaptively variable
speeds.

In the reinforcement learning load balancing, the agents are able to
set the best value of the cell individual offset required to decrease
overload in various load statuses. Learning-based load balancing also
learns the various cell individual offset adjustments which are needed
for different load conditions. One other impact of load redistribution is
increasing number of the satisfied subscribers from the perspective of
data rate. In terms of convergence and complexity, it is obvious that
with similar costs, the algorithm has a linear order of complexity to the
cell density. Also, there is always a trade-off between adaptation ve-
locity and complexity.

4. Simulation results

In this section, the presented approach was evaluated using
Network Simulator and LTE Mobile BroadBand simulator with the
ability of simulation up-link/down-link 3GPP LTE Advanced radio ac-
cess network described in [24,25]. This software plane is empowered
by the required SON features. For example, some independent classes
have been added for Mobility Optimization and Load Balancing func-
tions. The aims of mobility robustness optimization are to determine the
optimum network setting and to maximize the handover performance
in any mobility profile in the coverage area.

4.1. KPI assessment and User QoS

The achieved outcomes exhibited in the following plots, discuss
about load changes in cells to assess the dynamic performance of the

A. Mohajer, et al. Reliability Engineering and System Safety 202 (2020) 107056

8



proposed approach and the number of dissatisfied subscribers (Nus)
which is considered as the main impact of the algorithm and its effect
on subscribers’ quality of service. Furthermore, in the next stage of the
evaluation, the effectiveness of learning automata load balancing and
reactive load balancing algorithms in comparison with the reference is
investigated. Note that the Reference refers to the primary scenario in
which the network is not SON-empowered and works without any self-
mobility management capabilities.

In all of the scenarios, all user equipments have independent
random-varying speeds. This feature was deployed by assigning acci-
dental speeds to the user equipments at the beginning of the simulation
and by accidentally modifying the speeds at the beginning and during
every stage by up to 50% in each scenario. i.e. in a network with 300
assigned subscribers located in a suburb with a velocity of 80 km/h, and
the velocity vector is continuously changing.

Figure 2 describes the failed radio frequency link ratio during the
simulation scenario in comparison with [36] which applied a long short
term memory (LSTM) to detect the channel characteristics auto-
matically and suggests a novel solution for inter-cell coordination
(ICIC) and mobility load balancing together, in addition to a fixed
mobility load balancing approach [37] and the reference network in
two typical cases. As it is obvious in the achieved result, the proposed
DRL MRO approach has significant less radio link failure and applying
this algorithm, the RF link failure is kept less than 8%. Also, during the
simulation scenario, the results of the ICIC empowered by the Adaptive
LB are aften close to the results of DRL MRO.

Learning Trend of DRL MRO: The DRL MRO method was used in
different speeds (15 km/h and 45 km/h). All results indicate that the
agent learns how to minimize radio link failure due to late handovers
(FL) by trading them off with ping-pongs that have less impact on the
subscriber's quality of experience (QoE). This exists until link failures
remain low due to early handovers. Although in some speed scenarios,
DRL MRO suffers from high radio link failure at the start, because it sets
the settings among a large parameter state. Nevertheless, in continue,
the agent continuously decreases link failures due to late handover by
trading such degradation with enhancements in ping-pong. Afterward,
as soon as it detects dropping returns, these trends are stopped, for
example, when each significant reduction in failure due to late handover

translates into an exceeding ping-pong, or it causes link failure due to
early handover. The outcomes indicate that with enough learning time,
DRL MRO is capable for learning the proper hysteresis and trigger time
setting for all mobility profiles.

Figure 3 exhibits the difference in performance between DRL MRO
and two other algorithms for variable speed case. Although the ob-
tained results proves the effective appropriateness of DRL MRO com-
pared with the Reference, but it is clear in that DRL MRO performs
poorly some times, which is equivalent to the Limitations of DRL MRO
to obtain a better radio link failure ratio, which causes little weakness
in load balancing, while ICIC with adaptive LB works without con-
sidering quality indexes. Also it can somewhat be relevant to learning
stage R1. Afterwards, the performance is increased during the next
learning stages as the DRL MRO focuses on the optimum trigger points.
In the next part of the simulation results, we will show how can resolve
this issue by enabling stochastic learning automata algorthm for load
balancing.

4.2. Mobility-aware load balancing: stochastic learning automata

In comparison with other mobility load balancing approaches for
cellular networks, we have compared the performance of the proposed
scheme, named Stochastic Load Balancing (SLA-MLB), with [36] which
applied a long short term memory (LSTM) to detect the channel char-
acteristics automatically and suggests a novel solution for inter-cell
coordination (ICIC) and mobility load balancing together, in addition to
a fixed mobility load balancing approach [37].

4.3. Robust load balancing: blocking rate

We have investigated on two major network KPIs for performance
comparison between different mobility load balancing approaches
which the achieved results shown in Figures 4(a) and 4(b). Hence, these
indexes have been simulated in user mobility scenario with Constant bit
rate traffic model whose call duration is geometric

• Blocking Rate
• Handover Failure Ratio

Fig. 2. The ratio of radio frequency link failure during the simulation time. Fig. 3. The number of unsatisfied subscribers during the simulation time.
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As shown in 4(a), the stochastic learning automata has a tangible
advantage over other algorithms in terms of traffic efficiency. It's
handover failure rate and blocking probability are significantly limited
compared to the other schemes. However, with limited resource con-
dition, we cannot see any significant difference between this approach's
functionality and other schemes.

4.4. Robust load balancing: handover performance

According to Fig 4(b) the load balancing approach based on sto-
chastic learning automata is able to reduce blocking rate about 15% in
addition to decreasing the handover failure rate more than 30%.

4.5. Robust load balancing: user satisfaction

The Load Distribution Indicator is a variable which indicates the de-
gree of similarity among cells. If the network load is balanced and the
users are distributed in the network, the value of load distribution in-
dicator is close to 1. On the contrary, if network load is distributed

completely unbalanced, this value will decrease to a proportion of the total
number of cells. Therefore, the goal of load balancing algorithms is
maximizing it. According to the obtained results, the proposed robust load
balancing approach has better performance in distribution of network load
among cells. One of the route cause is the proposed approach can adjust
the handover thresholds to load balancing execution although such ad-
justments is time consuming. Also, Figure 5 demonstrates user satisfaction
index which implies the quality of user experience based on the number of
satisfied users among all the subscribers. As it is obvious, the total number
of unsatisfied users when our proposed load balancing approach activated,
is effectively less than other two traditional balancing approaches.

The results denoted that, although all SON functions apply a similar
procedure, particular considerations are needed for each SON function
based on its specific conditions. For example, each SON function needs
a special strategy to recognize its action space. In practice, the higher
performance achieved by the proposed method demonstrates the ef-
fectiveness of the self-organized cognitive approach. Moreover, sto-
chastic learning provides an appropriate solution for developing self-
optimization functions. It is noteworthy that the DRL-MRO is capable to

Fig. 4. Evaluation of Stochastic-Learning-Automata load balancing with different service rates: Blocking Probability and Handover failure (%).

Fig. 5. Load distribution factor and the number of unsatisfied subscribers of three schemes with respect to time.
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set the mobility and cell load sharing parameters for each special mo-
bility pattern. when using the cooperative learning method, all base
stations work based on learning a single-policy function. Such a dy-
namic approach is effective in various environments as exhibited by the
proper KPI results achieved through the practical scenarios with sub-
scribers with different and variable speeds.

In the learning automata load balancing, the agents are able to set
the best value of the cell parameters required to decrease overload in
various statuses. Mobility load balancing also learns the various cell
individual offset adjustments which are needed for different load con-
ditions. One other impact of load redistribution is increasing number of
the satisfied subscribers from the perspective of data rate. In terms of
convergence and complexity, it is proven that with similar costs, the
algorithm has a linear order of complexity to the cell density. Also,
there is always a trade-off between adaptation velocity and complexity.

5. Conclusion

In this paper we presented a Deep Learning-based Mobility
Robustness Optimization solution (DRL-MRO), which learns the re-
quired parameter's appropriate values for each mobility pattern in in-
dividual cells. Optimal mobility setting for Handover parameters also
depends on the user distribution and their velocities in the network. In
this framework, an effective mobility-aware load balancing approach
applied for autonomous methods of configuring the parameters in
congruence to the mobility patterns in which approximately the same
quality level is provided for each subscriber. We compared the pro-
posed approach against the best static reference configuration (Ref) that
is obtained by sweeping the parameter space. Our results show that
DRL-MRO is able to learn parameter settings that achieve better per-
formance than Ref in a realistic network environment where users have
dynamically varying velocities. The results denoted that, although all
SON functions apply a similar procedure, particular considerations are
needed for each SON function based on its specific conditions. For ex-
ample, each SON function needs a special strategy to recognize its ac-
tion space. In practice, the higher performance achieved by the pro-
posed method demonstrates the effectiveness of the self-organized
cognitive approach. Moreover, stochastic learning provides an appro-
priate solution for developing self-optimization functions. It is note-
worthy that the DRL-MRO is capable to set the mobility and cell load
sharing parameters for each special mobility pattern.
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