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A B S T R A C T

This paper adapts the success of the teacher–student framework for reinforcement learning to a continuous
control environment with sparse rewards. Furthermore, the proposed advising framework is designed for the
scaling agents problem, wherein the student policy is trained to control multiple agents while the teacher
policy is well trained for a single agent. Existing research on teacher–student frameworks have been focused
on discrete control domain. Moreover, they rely on similar target and source environments and as such they do
not allow for scaling the agents. On the other hand, in this work the agents face a scaling agents problem where
the value functions of the source and target task converge at different rates. Existing concepts from the teacher–
student framework are adapted to meet new challenges including early advising, importance of advising, and
mistake correction, but a modified heuristic was used to decide on when to teach. The performance of the
proposed algorithm was evaluated using the case study of pushing, and picking and placing objects with a dual
arm manipulation system. The teacher policy was trained using a simulated scenario consisting of a single arm.
The student policy was trained to handle the dual arm manipulation system in simulation under the advice of
the teacher agent. The trained student policy was then validated using two Quanser Mico arms for experimental
demonstration. The effects of varying parameters on the student performance in the advising framework was
also analyzed and discussed. The results showed that the proposed advising framework expedited the training
process and achieved the desired scaling within a limited advising budget.

1. Introduction

After obtaining great success in performing basic tasks such as
solving classic control problems, designing stable legged locomotion
gaits, and playing classical Atari games (Brockman et al., 2016), re-
inforcement learning (RL) associated with deep neural networks has
been gaining success in solving highly nonlinear problems without
using explicit mathematical modeling. These problems are not suited
for hand-engineered/heuristic solutions and are hard to be expressed
through explicit mathematical models, making them difficult to be
solved using traditional approaches. For instance, a physical Shadow
Dexterous Hand could perform vision-based object reorientation solely
based on simulated training without any demonstration (Andrychowicz
et al., 2018). This approach surpassed all existing non-learning-based
approaches. Another work (Riedmiller et al., 2018) explored the use
of active scheduling and execution of auxiliary policies to perform
a sequence of correct actions to complete tasks with sparse rewards
using a Kinova. Apart from performing complicated single agent tasks,
reinforcement learning was also applied in multi-agent tasks, where
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multiple robots cooperate with each other to complete one specific task
with action optimization Munemasa et al. (2018). Despite these great
successes, solving complicated problems and achieving shorter conver-
gence time remain major challenges in the domain of reinforcement
learning research.

This work focuses on addressing the challenges associated with
training multiple agents to collaboratively solve a given problem. This
problem hereon referred to as "scaling agents problem" in this paper,
comes up mainly when trying to transfer knowledge from a single agent
to multiple agents. Existing research has focused on teaching a single
agent to complete tasks with a high level of complexity. However,
complicated tasks in general require multiple agents to cooperate,
which requires learning toward scaling agents. The different existing
techniques to control multi-agent systems can be broadly classified into
three categories: (1) training the agents from scratch, (2) building a
hierarchical structure and reusing a well-trained single agent neural
network and (3) transfer learning approach which involves transfer-
ring the knowledge from a well-trained agent in an old environment to
a new training agent in a new environment so that it is provided with
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a basic understanding to quickly start the learning process. There are
many methods that address the above problem, but a comprehensive
discussion summarizing all of the existing work in this domain is
beyond the scope of this work. Interested readers should refer to Silva
and Costa (2019) for more details.

Training from scratch without any guidance will be computation-
ally expensive, especially as more agents become involved in the target
tasks. Based on existing literature, learning from scratch can gain faster
convergence either through a careful design of the reward function
(Pong et al., 2018; Popov et al., 2017) or through demonstration data
that could be expensive to be collected (Ghalamzan and Ragaglia,
2018). Using model guidance (Levine et al., 2015), or inverse RL
(Vasquez et al., 2014) could also benefit learning to perform compli-
cated tasks. Building a hierarchical structure is also a traditional
approach, for example, a global and local planner/controller will be
built and connected together. The global planner/controller (high-
level scheduler) generates a sequence of tasks according to an overall
schedule, while the local one solves the planned sub-tasks in a small
time period (Riedmiller et al., 2018). The transfer learning approach
aims to reduce the need for samples from the target tasks by using prior
knowledge obtained from the source tasks. Existing work succeeded in
generalizing or imitating well-trained behaviors from prior experience
and gaining faster learning in the target tasks (Parisotto et al., 2016; Ho
and Ermon, 2016; Gupta et al., 2017); however, existing work focuses
majorly on learning among single agent tasks.

Each of the above-mentioned approaches have their own specific
strengths and weaknesses. As such, the specific application require-
ments needs to be taken into consideration before choosing any of
the above methods. The motivating application behind this work is
semi-autonomous victim extraction from disaster scenarios. Casual-
ties in natural and man-made disaster scenarios are often in need
of immediate evacuation and medical attention. Autonomous and/or
semi-autonomous rescue robotic systems such as the Semi-Autonomous
Victim Extraction Robot (SAVER) (Williams et al., 0000) is an ideal
solution in such scenarios. Use of rescue robotic systems helps to
minimize the risk to the lives of human rescue personnel. The overall
SAVER concept is shown in Fig. 1, where a robotic mobile stretcher
drives up to a casualty and then performs casualty pose manipulation
and extraction based on high level instructions given by a remote
operator. In order to realize safe casualty interaction, this work will
focus on developing a framework to teach a dual-arm manipulation
system using a well-trained single arm manipulation system. As an
initial step in this direction, the proposed work aims to enable dual-arm
pick and place tasks as well as push tasks without internal collisions
between the arms, using a trained single arm architecture.

Training a dual-arm manipulation system from scratch may fail
or become computationally expensive when using dedicated reward
functions as well as the collection of demonstration data. Applying a
hierarchical structure needs large memory for both global and local
planner/controller, which in turn limits real-life applications. Based
on the specific requirements of the application at hand, this work
explores the application of transfer learning approach to achieve faster
convergence on dual-arm learning.

The proposed transfer learning framework is based on teacher–
student frameworks, which help a knowledgeable agent to teach a new
agent to perform specific tasks. The teacher–student framework in re-
inforcement learning was first introduced by Torrey et al. along with a
set of heuristic teaching algorithms which only require an agreement on
the action set between teachers and students, and allows different state
representations (Torrey and Taylor, 2013). The convergence of these
teaching algorithms is guaranteed even if using sub-optimal teacher
policy (Zhan and Taylor, 2015). To avoid the manual parameter tuning
inside the heuristic teaching algorithms, learning-based teaching algo-
rithms were studied to determine when to give advice to the student
agent (Zimmer et al., 2014; Fachantidis et al., 2017). Fachantidis et al.
further explored the impact of the reward factor on the students’ learn-
ing performance using learning-based teaching algorithms (Fachantidis

et al., 2017). Even though learning-based teaching algorithms do not re-
quire manual parameter tuning, the computational expense associated
with these methods is still high. Compared to the slight improve-
ment obtained from using learning-based teaching algorithms, this
work explores heuristic-based approaches. Besides applying the teacher
heuristics in which the teacher decides when to provide advice, various
student heuristics were also explored as interactive training strategies
(Amir et al., 2016). However, most of the student heuristics performed
worse than the teaching heuristics. Multiple agents learning from each
other was also studied in Silva and Costa (2019), Leno Da Silva et al.
(2017) and Omidshafiei et al. (2019). Knowledge of individual agents
to perform the same task in a shared environment can be transferred
to each other and thereby achieve a faster learning and cooperative
behavior. This is similar to the idea of distributed learning using
multiple threads. All the frameworks mentioned above are designed for
learning among single agents. This work is proposed to improve the
learning performance of scaling agents. The main contributions of this
paper are as follows:

• We extend the success of the teacher–student framework in trans-
ferring knowledge between single agents toward multi-agents
problem. Different approaches are proposed and compared in
two case studies using an experimental setup with a dual-arm
manipulation system.

• Compared to existing work that focus on performing discrete-
control tasks, this work proposes procedures in the teacher–
student framework to solve continuous-control tasks.

• Experimental evaluation of the proposed framework is also pro-
vided. Based on the results, the proposed framework has a faster
learning rate in the training process as compared to training
from scratch. This makes it more suitable for real-life robotic
applications.

The rest of paper is organized as follows. Section 2 introduces the
background of RL along with the RL algorithms and techniques used in
this paper. The related work on teacher–student framework with a bud-
get is also presented. Section 3 presents the proposed teacher–student
framework toward scaling reinforcement learning agents. Following
that, implementations and results of the simulation and experiments
are presented and discussed in Section 4. Finally, Section 5 concludes
the work with directions for future research.

2. Preliminaries

In this section, we introduce the reinforcement learning background
and related algorithms that we developed in this paper. To perform
continuous control and stable learning, we chose an off-policy and
policy-gradient actor–critic algorithm as the main method used in
this work. Hindsight Experience Replay is presented to improve pos-
itive sampling in the sparse reward environment. One teacher–student
framework with a budget, which our work is based on, is also described
in this section.

2.1. Reinforcement learning

Considering a standard reinforcement learning setup, an agent in-
teracts with an environment 𝐸 in discrete time-steps, which can be
formalized as a Markov Decision Process (MDP) and defined by a
tuple (𝑆,𝐴, 𝑇 , 𝑅, 𝜌, 𝛾), where 𝑆 is a set of states that describes the
environment, 𝐸, and is assumed equal to the observation, 𝑂. In this
work, 𝐴 is a set of actions via which the agent interacts with the
environment. 𝑇 ∶ 𝑆×𝐴×𝑆 → [0, 1] presents the distribution of transition
to the next state, 𝑠′ ∈ 𝑆, after taking an action 𝑎 ∈ 𝐴 from the state
𝑠 ∈ 𝑆. 𝑅 ∶ 𝑆×𝐴 → R is the reward that the agent receives when starting
from the state 𝑠 and taking the action 𝑎, 𝜌 ∶ 𝑆 → [0, 1] is the distribution
of the initial state 𝑠0, and 𝛾 ∈ [0, 1] is the discounted factor for the
reward which determines the importance of the short-term reward over

2



H. Ren and P. Ben-Tzvi Engineering Applications of Artificial Intelligence 90 (2020) 103515

Fig. 1. Scenarios of Human–Robot Interaction using dual-arm manipulation for human extraction purposes: (a) dual arm for human pose manipulation, (b) dual arm for human
body rolling, (c) dual arm for human limbs manipulation during extraction.

Fig. 2. Diagram of actor–critic method in reinforcement learning.

the long-term ones. The accumulated discounted reward, 𝑅𝑡, is defined
as 𝑅𝑡 =

∑𝑇
𝑡′=𝑡 𝛾

𝑡′−𝑡𝑟𝑡′ , where 𝑟𝑡′ ∈ 𝑅 is the reward received at time 𝑡′

and 𝑇 is the time step at which the learning episode terminates. 𝜋 is
the policy that indicates how an agent acts in a certain state. The aim
of reinforcement learning is to determine the optimal policy 𝜋∗ that
maximizes the expected accumulated discounted reward using

𝜋∗ = arg max
𝜋

E𝑠0∼𝜌,𝑎𝑖∼𝜋,𝑟𝑖 ,𝑠𝑖+1∼𝐸 [𝑅0] (1)

𝑄𝜋 (𝑠𝑡, 𝑎𝑡), as shown in (2), is the state–action value function that
describes the expected return value conditioned on taking an action, 𝑎𝑡,
at the initial state, 𝑠𝑡, and thus taking actions according to the policy,
𝜋.

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = E𝑎𝑖∼𝜋,𝑟𝑖 ,𝑠𝑖+1∼𝐸 [𝑅𝑡|𝑠𝑡, 𝑎𝑡] (2)

2.2. Deep deterministic policy gradients

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) is
a model-free reinforcement learning approach for the continuous con-
trol which combines the actor and critic frames as shown in Fig. 2, and
thus inherits the policy gradient from the Deterministic Policy Gradient
(DPG) (Silver et al., 2014) and the value function gradient from the
Deep Q Network (DQN) (Mnih et al., 2013). The actor approximates
the target deterministic policy, 𝜋 ∶ 𝑆 → 𝐴, which maps states to a
specific action with parameters 𝜃𝜋 while the critic approximates the
state–action value function, 𝑄 ∶ 𝑆 × 𝐴 → R, which presents the value
of the state–action pair parameterized by 𝜃𝑄. The critic is meant to
drive the value function to the optimal state–action value function 𝑄∗.
The actor is trained to obtain the policy by maximizing the expected
return, 𝐽 , from the start of the distribution,

𝐽 = E𝑠0∼𝜌,𝑎𝑖∼𝜋,𝑟𝑖 ,𝑠𝑖+1∼𝐸 [𝑅0] (3)

A replay buffer and a separate target network are used to avoid the
unstable training (Mnih et al., 2013; Foerster et al., 2017), making the
learning approach off-policy. In practice, the actor is optimized using
the mini-batch gradient descent on the loss by rewriting (3) as

𝐿(𝜃𝜋 ) = −E𝑠𝑄(𝑠, 𝜋(𝑠|𝜃𝜋 )) (4)

where 𝑠 are the samples from the replay buffer.
The critic is trained in a similar way as the Q-function in DQN to

minimize the approximation loss,

𝐿(𝜃𝑄) = 𝐸𝑎𝑖∼𝜋,𝑟𝑖 ,𝑠𝑖+1∼𝐸 [(𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄) − 𝑦𝑡)2] (5)

where the target, 𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝜋(𝑠𝑡+1|𝜃𝜋 )|𝜃𝑄), is computed using
actions outputted by the actor.

2.3. Hindsight experience replay

Similar to the human ability to learn from unwanted outcomes
along with desired ones, hindsight replay experience (Andrychowicz
et al., 2017) becomes a goal conditioned policy learning. It extends
the concept of the universal value function approximator (Schaul et al.,
2015) to include goals, 𝑔 ∈ 𝐺, into the MDPs. The training policy and
the value functions are modified to take 𝑔 as additional inputs. Thus,
the policy and value function become goal conditioned, 𝜋 ∶ 𝑆 ×𝐺 → 𝐴
and 𝑄 ∶ 𝑆×𝐴×𝐺 → R. Changes are made to the replay buffer such that
a subset of other goals, achieved goal 𝑔𝑎 in the episode, will be stored in
the transitions along with the original goal, (𝑠𝑡|𝑔, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1|𝑔, 𝑔𝑎), which
makes the transitions more informative. During the training, a subset
of samples are modified in which the original 𝑔 is replaced by the
achieved goal, 𝑔𝑎 ∈ 𝐺, to improve the positive sampling and encourage
the learning process. It should also be noted that the reward in each
sample needs to be recalculated based on the new goal, e.g. 𝑟𝑡(𝑠𝑡+1, 𝑔) =
−(‖𝑓𝑔(𝑠𝑡+1) − 𝑔‖ > 𝜖), where 𝑓𝑔 presents the achieved goal at a state, 𝑠,
and 𝜖 is a precision threshold.

2.4. Teacher–student framework with a budget

The teacher–student framework for discrete control reinforcement
learning under a limited amount of advice is introduced with a set
of heuristic strategies to decide when to give advice such as early
advising, importance of advising, mistake advising, and predictive ad-
vising (Torrey and Taylor, 2013). The advice used in this work is the
action recommended from the teacher agent. The teacher agent is first
well-trained before the teaching process in the environment to gain a
decent policy. It is then used to guide one student agent to behave in
the same environment, which has the same state and action space as
in the teacher training environment. In this teacher initiated teaching
(Torrey and Taylor, 2013), state importance is used to decide the
importance of giving advice at the state, 𝑠 ∈ 𝑆, by computing the differ-
ence between the maximum and minimum Q-function of a well-trained
teacher as in,

𝐼(𝑠) = max
𝑎

𝑄𝑡𝑟(𝑠, 𝑎|𝜃𝑡𝑟) − min
𝑎

𝑄𝑡𝑟(𝑠, 𝑎|𝜃𝑡𝑟) (6)
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The condition of the state importance value, 𝐼(𝑠) ≥ 𝑡, is then used
along with other criteria to determine whether advice is given or not,
where 𝑡 represents a fixed value threshold. Mistake correcting methods
take one more condition: whether the student-announced action is the
same as the output of the teacher policy, 𝜋𝑠𝑡(𝑠|𝜃𝑠𝑡) ≠ 𝜋𝑡𝑟(𝑠|𝜃𝑡𝑟). Pre-
dictive advising uses the action from another prediction model of the
student instead of using the output from the student policy, �̃�𝑠𝑡(𝑠|𝜃𝑠𝑡) ≠
𝜋𝑡𝑟(𝑠|𝜃𝑡𝑟). It is worth noting that the state-importance based teacher–
student framework is limited to applications with finite discrete control
due to the computational requirements of the state importance at each
advising process in (6). As the discrete action space increases, the
computation of deciding when to teach becomes more expensive and
infeasible, thus cannot be applied directly in continuous action.

3. Algorithm

In this section, we introduce the teacher–student framework which
is adapted to an environment with a continuous action space. The
algorithm is also further modified for scaling the number of agents
in the tasks, in which the teacher policy is trained for a single agent
while the student policy is designed for multiple agents in performing
same type of a task. Similar to the idea as in inter-task mapping (Taylor
et al., 2007), the proposed algorithm is based on the assumption that
the state feature, �̂�𝑖, of the 𝑖th agent can be reconstructed from the state
in the target environment, 𝑠, to be in the form of the state in the source
environment,

�̂�𝑖 = 𝑓 𝑠
𝑖 (𝑠) ∶ �̂�𝑖 ∈ 𝑆𝑡𝑟, 𝑠 ∈ 𝑆𝑠𝑡 (7)

where 𝑓 𝑠
𝑖 is a state feature mapping function from the target environ-

ment to the source environment for each agent, 𝑖. The action in the
target environment can be constructed from the action in the source
agent policy via the mapping function,

𝑎 = 𝑓 𝑎(𝑎1, 𝑎2,… , 𝑎𝑛) ∶ 𝑎 ∈ 𝐴𝑠𝑡, 𝑎𝑖 ∈ 𝐴𝑡𝑟 (8)

and vice versa,

𝑎𝑖 = ℎ𝑎𝑖 (𝑎) ∶ 𝑎 ∈ 𝐴𝑠𝑡, 𝑎𝑖 ∈ 𝐴𝑡𝑟 (9)

where ℎ𝑎𝑖 (𝑎) is the inverse mapping function for agent 𝑖.

3.1. Motivating example

The focus of this work is to perform dual-arm pick and place
tasks as well as push tasks without internal collisions. These are the
initial steps toward safe casualty pose manipulation and extraction in
a semi-autonomous manner based on high level inputs from a remote
operator and real-time human pose estimation results (Ren et al., 2018).
Following the development of push, as well as pick and place tasks,
a learning architecture to enable dual-arm object manipulation in the
presence of soft and hard constraints will be developed. But this will
be performed as part of future work as mentioned in Section 5. Even
though the proposed research aims to enable safe casualty interaction
as the overall goal, the proposed approach has a wide range of appli-
cations, including situations that need fast training of a target network
to control multiple agents based on the knowledge of a single trained
agent. For instance, robot arms are widely used for manufacturing,
assembling, and packaging in industry. They can also be used as an
assistive tool for the disabled in their activities of daily living (ADL).
Enabling an autonomous robotic system to perform these high level
complicated tasks require the development of fundamental functions
including picking and placing, as well as pushing objects to a target
position.

Techniques to control a single robotic arm using explicit kinematic
and dynamic models (glass box, also referred to as white box) have
been developed previously to fulfill these requirements. Artificial in-
telligence (black box) (Andrychowicz et al., 2017) can also be used to
enable autonomous execution of the above tasks. However, as the task

becomes more complicated, the need to control multiple robotic arms
cooperatively arises. In traditional control, a hierarchical system could
be built with a global controller/planner for overall path planning and
making each arm be aware of other arms, while local controllers en-
force local path following. The design of a local controller using a glass
box approach can take advantage from the experience of designing a
controller for a single arm. In contrast, designing a hierarchical system
using a black box approach may introduce redundant layers and the
computational need for pre-processing, which can include feature ex-
traction and encoding as well as design and training of a global planner.
The increased computation may present a heavy burden to the control
system in real-time applications and thus decrease the performance of
the deployed algorithm. However, training from scratch faces sampling
inefficiency as the state and action spaces increase dramatically. This
situation leads to the need for training of a scaling multi-agents problem
using the prior knowledge of a well-trained single agent.

3.2. Teacher–student framework for continuous control

In this section, we will discuss the proposed procedures, including
early advising, mistake correcting with Q-value and mistake correcting
with an action filter. The proposed procedures, mistake correcting with
Q-value and mistake correcting with an action filter, require student
feedback in action selection for the next step.

Early advising
A student agent benefits from a guided action data set generated

by an expert policy, which is similar to using the demonstration data
directly in the same target and source environment (Hester et al.,
2017). In this way, a student agent could gain a basic understanding
of tasks and the environment, thus obtaining an early start to the
learning process. Since the scaling problem addresses different target
and source environments with the assumption that the state in the
target environment can be mapped to the source state, the proposed
procedure is designed as follows:

Procedure 1 EARLY ADVISING
(𝜋𝑡𝑟, {𝑓

𝑠𝑔
𝑖 }, 𝑓 𝑎, 𝑛𝑏)

1: for each target environment state, s do
2: if (𝑛𝑏 > 0) then
3: 𝑛𝑏 ← 𝑛𝑏 − 1
4: for each agent, i do
5: Compute state that feeds into teacher policy

�̂�𝑖 = 𝑓 𝑠𝑔
𝑖 (𝑠)

6: Compute teacher policy output action
𝑎𝑖 = 𝜋𝑡𝑟(�̂�𝑖)

7: end for
8: 𝑎 = 𝑓 𝑎(𝑎1, 𝑎2, ..𝑎𝑛)
9: end if

10: end for

where 𝑓 𝑠𝑔
𝑖 is a goal conditioned state mapping function in (7), 𝑛𝑏 is the

advice budgets.

Mistake correcting with a Q-value filter
Importance Advising and Mistake Correcting are proposed sepa-

rately for tasks with a discrete action space (Torrey and Taylor, 2013).
In Importance Advising, a teacher agent provides advice whenever the
state importance value exceed the threshold, while Mistake Correcting
only considers giving advice when the action proposed by the student
agent is different from the teachers. Importance Advising saves time by
not acquiring the proposed action from a student agent. This is different
from processing in the discrete action space. In discrete action space,
the maximum and the minimum value of the Q-function can be easily
found. On the other hand, estimating the state importance value in a
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continuous space is expensive and infeasible. Instead, the proposed pro-
cedure utilizes the teacher policy to estimate the proposed action from
the student agent and compared it with the optimal action calculated
from the teacher policy. If the difference reaches some threshold, the
teacher proposed action will be applied to the agent. This approach was
named as Mistake Correcting since it involves both the calculation from
teacher and student neural network while the Importance Advising
only involves the calculation from the teacher neural network. To
distinguish whether the heuristic is based on the q value or the action,
Mistake Correcting Q-value and Mistake Correcting Action were named
separately. In both heuristics, the modified state–action importance was
denoted as,

𝐼𝑖(𝑠) = 𝑄𝑡𝑟(�̂�𝑖, 𝜋𝑡𝑟(�̂�𝑖)|𝜃𝑡𝑟) −𝑄𝑡𝑟(�̂�𝑖, ℎ𝑎𝑖 (𝜋𝑠𝑡(𝑠))|𝜃
𝑡𝑟) (10)

The proposed procedure pertaining to the Mistake Correcting with a
Q-value Filter is described as follows,

Procedure 2 MISTAKE CORRECTING Q-VALUE
(𝜋𝑡𝑟, {𝑓

𝑠𝑔
𝑖 }, 𝑓 𝑎, {ℎ𝑎𝑖 }, 𝑛𝑏)

1: for each target environment state, s do
2: if (𝑛𝑏 > 0) then
3: Advise = False
4: for each agent, i do
5: Compute proposed actions from teacher and student policy

𝑎𝑡𝑟𝑖 = 𝜋𝑡𝑟(𝑓
𝑠𝑔
𝑖 (𝑠)), 𝑎𝑠𝑡𝑖 = ℎ𝑎𝑖 (𝜋𝑠𝑡(𝑠))

6: 𝑎𝑖 = 𝑎𝑠𝑡𝑖
7: Compute state–action importance, 𝐼𝑖(𝑠) = 𝑄𝑡𝑟(�̂�𝑖, 𝜋𝑡𝑟(�̂�𝑖)|𝜃𝑡𝑟)−

𝑄𝑡𝑟(�̂�𝑖, ℎ𝑎𝑖 (𝜋𝑠𝑡(𝑠))|𝜃
𝑡𝑟)

8: if 𝐼𝑖(𝑠) > 𝑡𝐼 then
9: 𝑎𝑖 = 𝑎𝑡𝑟𝑖 , Advise = True

10: end if
11: end for
12: 𝑎 = 𝑓 𝑎(𝑎1, 𝑎2, ..𝑎𝑛)
13: if Advise then
14: 𝑛𝑏 ← 𝑛𝑏 − 1
15: end if
16: end if
17: end for

where 𝑡𝐼 is the threshold for the Q-value Filter to indicate whether a
proposed action will lead the agent to a valued state.

Mistake correcting with an action filter
One difference between the discrete control space and the contin-

uous control environment is that the actions selected for the discrete
control problem are always distinguishable to each other. This makes
the original Mistake Correcting approach judge whether the proposed
actions from the teacher and the student policy are different. However,
continuous control does not judge a difference under a certain range,
which leads to the idea of Mistake Correcting with an Action Filter.
In this approach, the teacher agent only provides advice when the
proposed actions from the student agent are different enough from the
teacher’s policy in a certain range. This can be understood as following
a proposed trajectory with a certain precision. A distance function is
designed to measure the distance an action is from a proposed action. In
our work, the Euclidean distance was used where 𝐷(𝑎1, 𝑎2) = ‖𝑎1−𝑎2‖2.

The proposed procedure pertaining to the Mistake Correcting with
an Action Filter is described as follows,

Procedure 3 MISTAKE CORRECTING ACTION
(𝜋𝑡𝑟, {𝑓

𝑠𝑔
𝑖 }, 𝑓 𝑎, {ℎ𝑎𝑖 }, 𝑛𝑏)

1: for each target environment state, s do
2: if (𝑛𝑏 > 0) then
3: Advise = False
4: for each agent, i do

5: Compute proposed actions from teacher and student policies
𝑎𝑡𝑟𝑖 = 𝜋𝑡𝑟(𝑓

𝑠𝑔
𝑖 (𝑠)), 𝑎𝑠𝑡𝑖 = ℎ𝑎𝑖 (𝜋𝑠𝑡(𝑠))

6: if 𝐷(𝑎𝑡𝑟𝑖 , 𝑎
𝑠𝑡
𝑖 ) = ‖𝑎𝑡𝑟𝑖 − 𝑎𝑠𝑡𝑖 ‖2 > 𝑡𝑎 then

7: 𝑎𝑖 = 𝑎𝑡𝑟𝑖 , Advise = True
8: end if
9: end for

10: 𝑎 = 𝑓 𝑎(𝑎1, 𝑎2, ..𝑎𝑛)
11: if Advise then
12: 𝑛𝑏 ← 𝑛𝑏 − 1
13: end if
14: end if
15: end for

where 𝑡𝑎 is the threshold for the Action Filter to specify the maximum
distance that one action can be from the action proposed by the teacher
agent. According to whether 𝑡𝑎 relies on the value of the teacher action
output, these methods are divided to relative (MC_ACT) and absolute
versions (MC_ACT_ABS).

𝑡𝑎 =

{

𝛼, MC_ACT.
𝛼 ∗ 𝜋𝑡𝑟(𝑓

𝑠𝑔
𝑖 (𝑠)), MC_ACT_ABS.

(11)

where 𝛼 is a positive constant chosen as the absolute threshold for the
action filter.

4. Simulations and experiments

This section is organized as follows. Section 4.1 describes the RL
environments for training the teacher policy and the student policy
with guidance from the teacher policy. Section 4.2 presents the simula-
tion results from different teaching strategies along with the impact of
different thresholds on the learning process and analysis. Section 4.3
describes the physical experiments with the dual-arm manipulation
system using the trained policy.

4.1. Environments

To train the agent policy and to test the proposed methods, the
simulation environment was setup using the 6 Degree of Freedom
(DOF) Kinova Jaco arm, which has a three-finger gripper. The gripper
has multiple DOFs but is activated through a single input corresponding
with the opening and closing of all the fingers together. The robot is
simulated using the MuJoCo physics engine (Todorov et al., 2012).
Fig. 3 (a,b) presents the training environment for the teacher policy.
The neural network is trained to control only one Jaco arm for the
push as well as pick and place tasks. Fig. 3 (c,d) shows the training
environment for student policy, where a different neural network is
trained to control two Jaco arms to complete the scaled tasks. In the
push task, the arm needs to push the objects to a desired location on
the table while the gripper of the arm is not used. In the pick and place
task, the aim is to pick up the objects placed on the table and then
place them at the target positions. The target positions can be either in
air or on the table and the three fingers are actuated symmetrically by
one single input state. Soft contact between the objects and the fingers
are simulated in MuJoCo to oppose the slip in the tangential plane
and rotation around the contact normal direction. In both tasks, the
initial position of the gripper and the object, and the target position
of the object are randomly sampled within the workspace of the Jaco
arm. Inspired by Plappert et al. (2018), the gripper orientation is fixed
toward the desk at all times. A Timestep of 0.002 s is set in the
simulator to perform fast and accurate simulation of the dynamic model
and soft contact.

Observations
The states of the system are obtained from the MuJoCo engine

and consist of the robots gripper states and object states including the
orientation, position, and velocity. The teacher training environment
consists of the states of one robot and one object while the student
training environment consists of a pair of robots and objects with states
in the same order as in the teacher training environment.

5
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Fig. 3. Training environment in simulation: (a) pushing an object to a target position using a single arm, (b) picking and placing an object at a desired location using a single
arm, (c) pushing objects to target places using the dual arm system, and (d) picking and placing objects at desired locations using the dual arm system.

Table 1
Environment and neural network summary.

Model Structure Source environment Target environment
3 × [256] MLP 4 × [256] MLP

Task Push Pick and Place Push Pick and Place
Agent – – Student Teacher Student Teacher
States R28 R28 R56 R28 R56 R28

Goal R6 R6 R6 R3 R6 R3

Actions R3 R4 R6 R3 R8 R4

Actions
Instead of controlling the joint angles of the robot directly, position

of the end effectors are used as the control input for the robot. This
allows for transferability among different robotic arms. In real world
applications, the desired joint angles can be calculated using an inverse
kinematic model. The orientation of the end effector is fixed toward
the ground during the task. The actions consist of position of the end
effector along with one state for controlling the gripper to open/close,
𝐴𝑡𝑟 = {𝑎𝑖 ∶ 𝑎𝑖 ∈ R4} and 𝐴𝑠𝑡 = {𝑎𝑖 ∶ 𝑎𝑖 ∈ R8}.

Goals
The goals are defined as the set of target positions of objects: 𝐺𝑡𝑟 =

{𝑔𝑖 ∶ 𝑔𝑖 ∈ R3} is for the teacher environment and 𝐺𝑠𝑡 = {𝑔𝑖 ∶ 𝑔𝑖 ∈ R6}
is for the student environment. In this work, the observation, goal, and
reward in the student environment are constructed by appending the
corresponding data from the individual agents, 𝑑𝑠𝑡 = 𝑑1 ∥ 𝑑2, where 𝑑𝑖
represents the data of agent 𝑖.

Rewards
In both teacher and student training environments, sparse rewards

are used as, 𝑟𝑡(𝑠𝑡+1, 𝑔) = −(‖𝑓𝑔(𝑠𝑡+1) − 𝑔‖ > 𝜖), where 𝑓𝑔 maps the
state, 𝑠, to an achieved goal, 𝑔, and 𝜖 determines the control precision
in the task. The agent only receives a reward of 1 when getting the
object within a threshold of the target position; otherwise, a reward

of 0 is received. The deterministic policies are represented as Multi-
Layer Perceptrons (MLPs) with Rectified Linear Unit (ReLU) activation
functions. Three layers of perceptrons are used in training the teacher
policy while four layers are used in training the student policy, due to
larger number of input features and the increased complexity of the
problem. The discount factor of the cumulative reward is set to 0.98
in all training and testing environments. The environments and neural
network model summary of both the training and teaching scenarios
are shown in Table 1.

Advice
In the student training environments, the advice given by the

teacher agent refers to the recommended action output by the teacher
policy. In all the following training algorithms, the advice budget is set
to 500,000.

4.2. Simulation results

Sixteen workers, each having two rollouts, were used to improve
the training efficiency and the parameters are updated after every
episode. Each worker is fixed to a CPU core and the rollouts start with
different initial and target conditions, but with the same policy. To
achieve a stable optimization, a target network and a main network
were deployed with the same architecture. The target network and the
main network are in the same architecture, while the target network
is updated at a slower pace than the main network using a Polyak-
averaged version of the main network (Polyak and Juditsky, 1992).
The target network parameters are stored globally and downloaded
to the workers before running each episode. In this work, each epoch
consists of generating 50 episodes and training the neural network with
40 batches of 256 transitions.

To compare the performance of the teaching framework for the
sparse rewards and the continuous action space environment to obtain
the teacher policy, we trained the deterministic policy from scratch
without advice in the push, and pick and place environments using

6
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Fig. 4. The training process from scratch: (a) training process for pushing object and (b) training process for pick and place object.

Fig. 5. Simulation results showing the performance of different advising strategies and thresholds in the push task: (a) comparison of the performance of different strategies, (b)
comparison of the performance of MC-Q with different thresholds, (c) comparison of the performance of MC-ACT with different thresholds, (d) comparison of the performance of
MC-ACTABS with different thresholds.

the single arm and dual-arm systems as shown in Fig. 3. The actor
and the critic used in the single arm scenario consists of three layers
with 256 neurons per layer. For the dual-arm scenario there are four
layers with the same number of neurons. Both training processes used
the HER buffer (Andrychowicz et al., 2017). Fig. 4 shows the success
rate of the training procedures. The single arm manipulation achieved
90% success rate after 12 and 43 epochs in push, and pick and place
tasks, respectively. The dual arm manipulation achieved 90% success
rate after 898 epochs in the pick and place task, but failed in the push
task. This reflects the fact that the task complexity grows rapidly as
the dimensionality of the control space increases from the single arm
to the dual-arm case as well as the interaction between agents increases.
Compared to the pick and place task using dual-arm, the push task
using dual-arm and locked grippers made it more likely to interact with
each other in 2D than in 3D.

Figs. 5(a) and 7(a) show the performance of different strategies in
the push, and the pick and place environments, including No Advice
(NA), Early Advising (EA), Early Advising and Mistake Correcting
(EAMC), Mistake Correcting with Q-value Filter with 0.1 threshold
(MC-Q01), Mistake Correcting with Action Filter with 0.1 threshold

(MC-ACT01) and Mistake Correcting with Action Filter with 0.1 abso-
lute threshold (MC-ACTABS01). The EAMC procedure applies EA for
the first half of the advice budgets and then applies MC for the other
half of the advice budgets. It can be seen from the figure that NA
converges much slower than all the others in both cases. The inspired
epoch is defined as the epoch at which the strategy achieves 10% of the
maximum success rate it achieved in its training process. Among all
the strategies, the inspired epoch of the MC-Q01 is the lowest, 63 in
push task and 86 in pick and place task. All the other strategies gained
a lower inspired epoch as compared to NA. MC-ACT001 obtained the
shortest rise time, which is defined as the number of epochs it takes
to increase from 10% to 90% of the maximum success rate it achieved.
MC-Q01 outperforms other strategies in the push task and achieves a
maximum success rate of 0.9583. EA is the best strategy in the pick
and place task with a maximum success rate of 0.9750. Figs. 6 and
8 show the mean Q-value in push and pick and place tasks. Similar
to the success rate, the Q-value converges faster when using advising
framework.

To estimate the impact of the threshold of Mistake Correcting on
learning performance, three different threshold values were picked,

7
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Fig. 6. Simulation results showing the mean Q-value of different advising strategies and thresholds in the push task: (a) comparison of the mean Q-value on different strategies,
(b) comparison of the mean Q-value of MC-Q with different thresholds, (c) comparison of the mean Q-value of MC-ACT with different thresholds, (d) comparison of the mean
Q-value of MC-ACTABS with different thresholds.

Fig. 7. Simulation results showing the performance of different advising strategies and thresholds in the pick and place task: (a) comparison of the performance on different
strategies, (b) comparison of the performance on MC-Q with different thresholds, (c) comparison of the performance on MC-ACT with different thresholds, (d) comparison of the
performance on MC-ACTABS with different thresholds.

𝑡 = {0.01, 0.05, 0.1} and the convergence speed was analyzed. As the
threshold changes from 0.01 to 0.1, the inspired epoch of Mistake
Correcting with Q-value Filter decreases significantly from 140 to 63
in push tasks and from 220 to 86 in pick and place tasks, while it
does not have a great impact on the Mistake Correcting with Action

Filter methods. This may be due to the fact that the range of action
is constrained by the motor while the Q value can be ranged from
negative infinity to positive infinity such that Mistake Correcting with
Q-value is more sensitive to the threshold value. This shows that the
more loosely the teacher advises the students in the new environment,
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Fig. 8. Simulation results showing the mean Q-value of different advising strategies and thresholds in the pick and place task: (a) comparison of the mean Q-value on different
strategies, (b) comparison of the mean Q-value on MC-Q with different thresholds, (c) comparison of the mean Q-value on MC-ACT with different thresholds, (d) comparison of
the mean Q-value on MC-ACTABS with different thresholds.

the more freely the student explores the new environment and thereby
obtains knowledge about the new environment as compared to agents
with a more strict teacher. This observation could be attributed to the
fact that the student with a loose teacher gains more opportunities to
try new actions as compared to the students with a more strict teacher.
This allows the student to gain positive samples via its own policy and
knowledge of the new environment, after obtaining a certain amount
of advice. Another concern in transfer learning is the time that one
spends to achieve a decent success rate. Effective learning rate is defined
as 90% of the maximum success rate divided by the number of epochs
it takes to reach that success rate. In push task, MC-Q005 achieved a
higher effective learning rate as compared to other strategies, while
the effective learning rate of all advising strategies in pick and place
task are almost equal and they outperform NA. This may be due to
the intrinsic complexity of the push task where the trajectories are
constrained on the table surface and attention is provided to avoid
collision, resulting in strategies with diverse performance. The details
of the impact factor on the performance of different advising strategies
is summarized in Table 2.

It is important to note that the EA slightly outperforms all the
other strategies with large advising threshold in the pick and place
task. The strategies with a large threshold result in more fluctuation
in the success rate and lowers it in general for the pick and place task.
However, in the push task this phenomenon is not apparent.

4.3. Experimental results

This section presents the real world experimental validation of the
trained policy obtained from the simulation on two Kinova Mico arms
with Quanser SDK. The algorithm used to generate the workspace
trajectories for the arms to complete the tasks is agnostic to the robot.
This claim is experimentally validated by transferring the knowledge
obtained from a 6-DOF arm, in simulation to a 4-DOF arm used for the
experiments.

Two Quanser Mico arms (Kinova, 2018) used for the push, and
the pick and place experiments are shown in Fig. 9. The Mico arm is

Table 2
Performance summary of different advising strategies.

Push task Pick and place task

IEa RTb MSRc ELRd IE RT MSR ELR

NA NaN NaN 0 0 336 489 0.9219 0.0010
EA 252 363 0.9333 0.0014 228 96 0.9750 0.0027
EAMC 116 139 0.9417 0.0033 135 178 0.9250 0.0027
MC-Q001 140 105 0.9583 0.0035 220 93 0.9250 0.0027
MC-Q005 46 195 0.9583 0.0036 174 156 0.9417 0.0026
MC-Q01 63 229 0.9583 0.0030 86 209 0.8417 0.0026
MC-ACT001 214 71 0.9333 0.0029 225 82 0.9167 0.0027e

MC-ACT005 215 96 0.9500 0.0027 224 134 0.9167 0.0023
MC-ACT01 216 80 0.9500 0.0029 226 85 0.9167 0.0027
MC-ACTABS001 217 101 0.9625 0.0027 225 104 0.9167 0.0025
MC-ACTABS005 214 91 0.9500 0.0028 229 85 0.9250 0.0027
MC-ACTABS01 213 104 0.9500 0.0027 222 108 0.9083 0.0025

aIE: Inspired Epoch.
bRT: Rise Time.
cMSR: Maximum Success Rate.
dELR: Effective Learning Rate.
eCompared in double data type

a 4-DOF robotic arm with a 2-finger gripper, retrofitted by Quanser
with a real-time control interface capable of running in MATLAB and
Simulink (MathWorks). The Simulink blocks, provided by the Quanser
SDK, allows for precise joint and torque control. The 2-finger gripper
is programmed to be controlled by one input during the pick and place
experiment while it is kept locked in the push tasks. The specifications
of the robotic arms can be found in Table 3.

The desired trajectories, the position of the end effector and the
open/close commands for the gripper, are generated by the well-trained
dual-arm student policy. The Quarc simulator from Quanser was used
to check the feasibility of the proposed trajectories before they were
executed by the real robots. Object positions were kept to be the same
for both the tasks in the simulation and real world experiments. But
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Fig. 9. Real world experiment using dual arm: (a–d) pushing objects to the target positions using dual arms, and (e–f) picking and placing objects at the desired locations using
dual arms.

Table 3
Details of robot specification.

Mico robot arm Jaco robot arm

Arm DOF 4 6
Gripper DOF 2 3
Max reach 55 cm 70 cm
Max linear arm speed 20 cm/s 20 cm/s
Joint range ±27.7 rev ±27.7 rev

Max payload 0.75 kg full extension 0.8 kg full extension
1.25 kg mid-range 1.3 kg mid-range

Control interface Matlab ROS and Kinova SDK

Joint sensor Encoder (index, absolute), torque sensor,
motor current, motor temperature

Finger sensor Encoder (relative)

the size of the objects for the push task were modified from 5.6 cm to
9 cm in real world experiments for compatibility with the grippers.

To evaluate the improvements brought about by the proposed meth-
ods, we used the from scratch method of training as the baseline
method for this work. We applied the best well-trained policies gen-
erated from the proposed methods and the baseline method to the
robotic manipulators to perform the tasks, respectively. For push, as
well as pick and place tasks, 50 trials of the real-world experiments
were performed with different initial and target conditions generated
randomly using either policy. In the push task, 40 out of 50 trials ended
with success using the proposed methods while all trials failed using
the baseline method. In the pick and place task, 38 out of 50 trials
resulted in success using the proposed methods while 30 out of 50 trials
resulted in success using the baseline method. The experimental results
are presented in Table 4.

For the 10 failed trials of the push task using the proposed methods,
the robot arm failed to move the object in the right direction as the
object rolled away from the gripper during the push process. This
could be due to the difference in the grippers used in the experiment
as compared to the training environment. Inaccuracies in modeling
physical properties of objects inside the simulated environment could
also result in poor performance of the trained policy. All trials using
the baseline method ended in either case of exceeding the testing time
or breaking the safety rules such as collision with each other or with
the table.

In the 12 failures in the pick and place tasks using the proposed
methods, the gripper failed to grasp the object while moving in 3D.
This could also be due to the difference in physical properties such as
deformation and friction of the objects in real life as compared to the
simulation. Even though the real world experiments sometimes failed
due to inaccuracies in modeling object–gripper contact and interaction,

Table 4
Performance summary of real-world experiments.

Push task Pick and place task

Baseline methoda 0/50 30/50
Proposed methodb 40/50 38/50

aBaseline method refers to the method of training from scratch without the advising
framework.
bProposed methods refers to the methods of training with the proposed advising
framework.

no collisions of the robot arms were seen in the real-world experiments.
This indicates that the teacher–student framework assists the student
in learning the additional requirements that come with the multi-agent
problem (in this case collision avoidance). Among the 20 failures in the
pick and place tasks using the baseline method, 8 failures were caused
by reaching the target position inaccurately, while the other failures
were caused by failing to grasp the object firmly during the movement.

5. Conclusion and future work

Solving problems using multiple agents is an effective approach
toward tackling complicated tasks that typically involve high dimen-
sional workspace. Unlike the classical method of stacking the individual
controller with explicit mathematical model to create a hierarchical
controller, stacking multiple well-trained single-agent neural networks
is prone to make the overall system redundant and expensive for
real-time computation. Training a new super agent for multiple agent
control from scratch is computationally intensive and requires careful
design of hyperparameters to guarantee convergence.

In order to handle the scaling problem in training multiple agents to
perform a specified task, this paper extends prior research on advising
framework by leveraging the knowledge of a well-trained-single agent.
Furthermore, this work adapts the previous advising framework to
allow for continuous control and presents a set of advising strategies
that accelerate the learning process as compared to training from
scratch. Furthermore, the proposed training framework avoids bias and
convergence to a sub-optimal solution by using demonstration data.
The performance resulting from different strategies are analyzed using
different hyperparameters and demonstrated using physical experi-
ments with a dual-arm robotic system. The experimental validations
demonstrated the benefits in using different advising strategies. ‘‘Mis-
take Correcting with Q-value Filter’’ outperformed all the others in
the push task, ‘‘Early Advising’’ gained the highest success rate in the
pick and place task, ‘‘Mistake Correcting with Action Filter with 0.01
threshold’’ obtained the shortest rise time in both tasks. This shows
that different strategies have different benefits and they need to be
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chosen based on the requirements of the task at hand. This provides
directions for future applications of the above techniques. Even though
the threshold may need to be tuned for different tasks to obtain the
best performance, all the strategies showed the benefit of a faster
convergence rate under the proposed approach.

While the strategies proposed in this work were implemented in a
deterministic environment, they could also be applied in a stochastic
case. However, a more robust solution could be developed for the
purely stochastic case. For example, deciding whether or not to give an
advice could be evaluated based on the similarity between the policy
distributions of the teacher and the student agents.

Having addressed the scaling problem effectively, the next step
in multi-agent learning is to enable cooperative behavior at a higher
level by implementing behavioral constraints that either persist or are
conditional. An example case would be to use the dual-arm system to
collaboratively move a single object. Another case would be to enable
the arms to safely operate in an environment with moving objects.
Developing these capabilities as part of future work will be the next
step in realizing safe casualty extraction using the SAVER system.
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