
Expert Systems With Applications 140 (2020) 112891

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Continuous control with Stacked Deep Dynamic Recurrent

Reinforcement Learning for portfolio optimization

Amine Mohamed Aboussalah, Chi-Guhn Lee

∗

Department of Mechanical and Industrial Engineering, University of Toronto, ON M5S 3G8, Canada

a r t i c l e i n f o

Article history:

Received 29 January 2019

Revised 22 July 2019

Accepted 19 August 2019

Available online 20 August 2019

Keywords:

Reinforcement learning

Policy gradient

Deep learning

Sequential model-based optimization

Financial time series

Portfolio management

Trading systems

a b s t r a c t

Recurrent reinforcement learning (RRL) techniques have been used to optimize asset trading systems and

have achieved outstanding results. However, the majority of the previous work has been dedicated to sys-

tems with discrete action spaces. To address the challenge of continuous action and multi-dimensional

state spaces, we propose the so called Stacked Deep Dynamic Recurrent Reinforcement Learning (SDDRRL)

architecture to construct a real-time optimal portfolio. The algorithm captures the up-to-date market con-

ditions and rebalances the portfolio accordingly. Under this general vision, Sharpe ratio, which is one of

the most widely accepted measures of risk-adjusted returns, has been used as a performance metric. Ad-

ditionally, the performance of most machine learning algorithms highly depends on their hyperparameter

settings. Therefore, we equipped SDDRRL with the ability to find the best possible architecture topology

using an automated Gaussian Process (GP) with Expected Improvement (EI) as an acquisition function.

This allows us to select the best architectures that maximizes the total return while respecting the car-

dinality constraints. Finally, our system was trained and tested in an online manner for 20 successive

rounds with data for ten selected stocks from different sectors of the S&P 500 from January 1st, 2013 to

July 31st, 2017. The experiments reveal that the proposed SDDRRL achieves superior performance com-

pared to three benchmarks: the rolling horizon Mean-Variance Optimization (MVO) model, the rolling

horizon risk parity model, and the uniform buy-and-hold (UBAH) index.

© 2019 Elsevier Ltd. All rights reserved.

1

a

k

f

n

i

b

i

s

m

r

B

1

l

b

T

c

p

n

p

i

b

w

i

(

i

t

c

b

a

a

c

t

b

h

0

. Introduction

The development of intelligent trading agents has attracted the

ttention of investors as it provides an alternative way to trade

nown as automated data-driven investment, which is distinct

rom traditional trading strategies developed based on microeco-

omic theories. The intelligent agents are trained by using histor-

cal data and a variety of Machine Learning (ML) techniques have

een applied to execute the training process. Examples include Re-

nforcement Learning (RL) approaches that have been developed to

olve Markov decision problems. RL algorithms can be classified

ainly into two categories: actor-based (sometimes called direct

einforcement or policy gradient/policy search methods) (Baxter &

artlett, 2001; Moody & Wu, 1997; Moody, Wu, Liao, & Saffell,

998; Ng & Jordan, 20 0 0; Williams, 1992) where the actions are

earned directly, and critic-based (also known as value-function-

ased methods) where we directly estimate the value functions.

he choice of a particular method depends upon the nature of the
∗ Corresponding author.

E-mail addresses: amine.aboussalah@mail.utoronto.ca (A.M. Aboussalah),

glee@mie.utoronto.ca (C.-G. Lee).

i

t

w

f

ttps://doi.org/10.1016/j.eswa.2019.112891

957-4174/© 2019 Elsevier Ltd. All rights reserved.
roblem being addressed. One of the direct reinforcement tech-

iques is called recurrent reinforcement learning (RRL) and it is

resented as a methodology to solve stochastic control problems

n finance (Moody & Wu, 1997). RRL has advantages of finding the

est investment policy which maximizes certain utility functions

ithout resorting to predicting price fluctuations and it is often

ncorporated with a neural network to determine the relationship

mapping) between historical data and investment decision mak-

ng strategies. It produces a simple and elegant representation of

he underlying stochastic control problem while avoiding Bellman’s

urse of dimensionality.

In the past, there have been several attempts to use a value-

ased reinforcement learning approach in the financial industry:

 TD(λ) approach has been applied in finance (Van Roy, 1999)

nd Neuneier (1996) applied Q-Learning to optimize asset allo-

ation decisions. However, such value-function methods are less-

han-ideal for online trading due to their inherently delayed feed-

ack (Moody & Saffell, 2001) and also because they imply hav-

ng a discrete action space. Moreover, the Q-learning approach

urns out to be more unstable compared to the RRL approach

hen presented with noisy data (Moody & Saffell, 2001). In

act, Q-learning algorithm is more sensitive to the value function

https://doi.org/10.1016/j.eswa.2019.112891
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.112891&domain=pdf
mailto:amine.aboussalah@mail.utoronto.ca
mailto:cglee@mie.utoronto.ca
https://doi.org/10.1016/j.eswa.2019.112891

2 A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891

s

t

u

r

t

g

i

t

f

F

2

i

t

U

m

w

t

t

l

2

m

a

e

a

a

r

r

w

r

e

s

o

w

r

i

w

t

h

t

s

S

i

U

w

b

r

v

s

d

i

2

f

n
selection, while RRL algorithm offers more flexibility to choose

between different utility functions that can be directly optimized

such as profit, wealth, or risk-adjusted performance measures. A

comparison study between Direct Reinforcement and Q-Learning

methods for asset allocation was conducted by Moody and Saf-

fell (2001) . Moreover, Moody and Saffell (2001) and Deng, Kong,

Bao, and Dai (2015) suggest an actor-based direct reinforcement

learning that is able to provide immediate feedback of the mar-

ket conditions to make optimal decisions. Therefore, it suits bet-

ter than Q-learning with regard to the nature of market and

dynamic trading. Another recent paradigm, Deep Q-Network de-

signed initially to play Atari games (Mnih et al., 2015) inspired

the deep Q-trading system which learns the Q-value function

for the control problem (Wang et al., 2017). Other papers using

deep RL in portfolio management have recently been published.

Liang, Chen, Zhu, Jiang, and Li (2018) implemented three state-

of-art continuous control RL algorithms. All of them are widely-

used in game playing and robotic. Jiang, Xu, and Liang (2017) pre-

sented a financial model-free RL framework to provide a deep

ML solution to the portfolio management problem using an on-

line stochastic batch learning scheme. They introduced the con-

cept of Ensemble of Identical Independent Evaluators topology

and the Portfolio-Vector Memory. Zarkias, Passalis, Tsantekidis, and

Tefas (2019) introduced a novel price trailing formulation, where

the RL agent is trained to trail the price of an asset rather than di-

rectly predicting the future price. Zhengyao and Liang (2017) used

a convolutional neural network (CNN) trading based approach

with historic prices of a set of financial assets from a cryp-

tocurrency exchange to output the portfolio weights. Recent ap-

plications of RRL in algorithmic trading succeed in single as-

set trading. Maringer and Ramtohul (2012) presented the regime-

switching RRL model and described its application to investment

problems. A task-aware scheme was proposed by Deng, Bao, Kong,

Ren, and Dai (2016) to tackle vanishing/exploding gradient in RRL

and Lu (2017) deploys long short-term memory (LSTM) to han-

dle the same deficiency. Almahdi and Yang (2017) proposed a

RRL method with a coherent risk adjusted performance objective

function to obtain both buy and sell signals and asset allocation

weights.

Multi-asset investment, also known as portfolio management,

has a cardinality constraint that has to be satisfied as well, which

requires portfolio weights to sum to one. Another major chal-

lenge concerns the return of investment, which is naturally path-

dependent. Previous decisions drastically affect future decisions

and therefore this brings us to the question of how to take ad-

vantage of the history of the previous decisions without losing in

terms of time complexity.

To address these issues, we introduce the Stacked Deep Dy-

namic Recurrent Reinforcement Learning (SDDRRL) algorithm that

takes multiple continuous investment actions for each asset while

enforcing the cardinality constraint. We use a gradient clipping

sub-task based Backpropagation Through (BPTT) to address the

problem of vanishing gradients that may occur due to the pres-

ence of a memory gate responsible for taking into account the

previous investment decisions into the new ones (Bengio, Simard,

& Frasconi, 1994). Moreover, to find out how many past decisions

should be incorporated into the model in order to compute the

current optimal investment decisions without losing in terms of

time efficiency, we define the concept of Time Recurrent Decompo-

sition (TRD) that takes into account the temporal dependency. The

number of time-stacks has been optimized by equipping the agent

with the ability to find the best possible configuration of those

time-stacks along with other hyperparameters using an automated

Gaussian Process (GP). Moreover, a noteworthy pattern emerges

following the application of the automated GP : the architectures

presenting the best performances seem to present an hourglass
hape topology (similar to autoencoders). Finally, another advan-

age of the proposed architecture is that it is by construction mod-

lar and perfectly deployable in real-time trading platforms. The

emaining Sections are organized as follows: Section 2 describes

he model formulation and Section 3 introduces the learning al-

orithm in more detail. Section 4 shows the experimental results

ncluding the Bayesian hyperparameter optimization, the distribu-

ion of portfolio weights generated by our algorithm and the per-

ormance comparison against some commonly used benchmarks.

inally, Section 5 concludes the article.

. Formulation

The key framework of RRL is to find the optimal decisions δt (θ)

n order to maximize a specific utility function U T (.) that represents

he wealth of investors. The simplest way is to directly maximize

 T (.) over a time horizon period T :

ax
θ

U T (R 1 , R 2 , R 3 , . . . , R T | θ) (1)

here θ denotes the optimal trading system parameters and R t for

 ∈ { 1 , 2 , . . . , T } the realized returns. The optimization aims to de-

ermine the vector parameter θ that gives the optimal decisions

eading to a maximal utility.

.1. Financial objective function

The dynamic nature of trading problems requires investors to

ake sequential decisions and each of these decisions will result in

n instantaneous reward/return R t . The accumulated rewards gen-

rated from the beginning up to the current time step T define

n economic utility function U T (R 1 , R 2 , R 3 , . . . , R T) . In this context,

 variety of financial objective functions have been developed and

eported in the literature. By way of illustration, the most natu-

al utility function used by risk-insensitive investors is the profit,

hich can be seen as the sum of total rewards. Others use loga-

ithmic cumulative return instead to maximize their wealth. How-

ver, maximizing the cumulative return does not mitigate the un-

een risks in the investment which is one of the major concerns

f risk-averse investors. Alternatively, most modern fund managers

ould optimize the risk-adjusted return which is an indicator that

efines returns by measuring how much risk is involved in produc-

ng that return. The Sharpe ratio (Sharpe, 1994) is one of the most

idely accepted measures of risk-adjusted returns. The Sharpe ra-

io is also known as the reward-to-variability ratio. It measures

ow much additional return that will be received for the addi-

ional volatility of holding the risky assets over a risk-free as-

et. Under the setting of an investment with multiple periods, the

harpe ratio is the average risk premium per unit of volatility in an

nvestment:

 T =

1
T

∑ T
t=1 R t − r f √

1
T

∑ T
t=1 R

2
t − (1

T

∑ T
t=1 R t) 2

(2)

here r f denotes the risk-free rate of return and it is defined as

eing the theoretical rate of return of an investment with zero

isk. The risk-free rate can be interpreted as the interest an in-

estor would expect from an absolutely risk-free investment over a

pecified period of time. Since r f is a constant in Eq. (2) , it can be

isregarded during the optimization phase (i.e. we consider r f = 0

n the following Sections).

.2. Portfolio optimization model

A signal that represents the current market condition will be

ed into a neural network and pass through multiple layers and fi-

ally output the decision vector δt at time t . Suppose that we have

A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891 3

a

c

t

a

a

s

{

t

c

p

p

t

a

i

e

c

m

e

m

h

1

b

w

r

n

s

[

a

r

a

t

f

R

{

Z

h

r

t

r

m

t

s

m

t

t

1

p

w

c

a

a

m

t

s

t

c

2

t

m

w

d

p

d

l

e

i

o

w

u

fi

p

i

s

m

a

g

t

a

T

p

S

o

3

r

c

l

t

d

r

s
 set of assets { 1 , 2 , . . . , m } indexed by i throughout the paper. By

ombining the suggestion from Deng et al. (2016) with the addi-

ional setting of a multi-asset portfolio, the input signal is defined

s f t = { f 1 ,t , f 2 ,t , f 3 ,t , . . . , f m,t } , where m is the total number of the

ssets considered in the portfolio optimization problem. f t repre-

ents the current market conditions in which each element: f i,t =
 �P i,t−a −1 , �P i,t−a , . . . , �P i,t } ∈ R a indicates price changes within

he decision making epoch. According to Merton (1969) , price

hange is a movement independent of its history. Therefore, using

rice changes instead of prices themselves as input signals for the

olicy network improves the learning efficiency because it removes

he trend from the signal and it makes the data appear station-

ry. However, in Deng et al. (2016) , f t+1 is obtained simply by slid-

ng forward one element in each signal f i,t and consequently there

xists a significant overlap between f t and f t+1 . This will drasti-

ally hinder the learning efficiency as it learns insignificant infor-

ation from f t to f t+1 . Therefore, we shrink the intervals between

ach feature in the signals. In our definition, the decision will be

ade hourly t ∈ { 1 , 2 , . . . , T } where T is the total number of trading

ours present in the dataset and each element in f i,t represents the

5-min price change of stock i and as a result f i,t ∈ R 4 . The overlap

etween signals are eliminated under this setting and the signal

ill be fed into a neural network so that the information it car-

ies will be extracted gradually when it passes through the neural

etwork layers.

Under the setting of a portfolio containing more than one as-

et, the investment decisions are represented by the vector δt =
 δ1 ,t , δ2 ,t , δ3 ,t , . . . , δm,t] ∈ R

1 ×m , with m being the total number of

ssets in the portfolio. In plain words, each element in δt rep-

esents the weight of an asset in the portfolio at time step t

nd δi,t ∈ [0, 1] for i ∈ { 1 , 2 , . . . , m } as short-selling is disallowed

o avoid infinite losses. The immediate return R t is defined as

ollows:

 t = δt−1 · Z t − c

m ∑

i =1

| δi,t − δi,t−1 | (3)

where Z t = [Z 1 ,t , Z 2 ,t , Z 3 ,t , . . . , Z m,t]
T ∈ R

m ×1 , Z i,t =

P i,t
P i,t−1

− 1 for i ∈
 1 , 2 , . . . , m } and P i,t is the price of asset i at time t . Therefore,

 i,t indicates the rate of price change within a trading period (one

our in our model) and c represents the transaction commission

ate that is taken into consideration both during the training and

esting periods. At each time step, rebalancing the portfolio will

esult in a transaction cost and it is subtracted from the invest-

ent returns. Moreover, each decision in the vector δt represents

he weight of a stock in the portfolio and the cardinality con-

traint requires that
∑ m

i =1 δi,t = 1 . It leads to a constrained opti-

ization problem. One way to enforce the cardinality constraint is

o apply a softmax transformation to the decision layer such that

he constrained decisions become δc
i,t

=

exp (δi,t) ∑ m
j=1 exp (δ j,t)

(Moody et al.,

998). However, applying this transformation is equivalent of ap-

lying a multiclass discriminant function on the decision weights,

hich can drastically enlarge the difference between them. This

ould result in an undiversified portfolio and therefore subject to

 higher risk when a precipitous drop in price is encountered. In

ddition, it requires an extra layer in our architecture which also

akes the overall model more computationally expensive. Instead,

he penalty method can be used to enforce the cardinality con-

traint. In addition, it is also known that using both L 2 regulariza-

ion (Phaisangittisagul, 2016) along with dropout increases the ac-

uracy (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,

014). Thus, the portfolio optimization model can be formulated at

t

ime t as follows:

ax
θ

U t

(
R 1 , R 2 , R 3 , . . . , R t | θ

)
− p

(

1 −
m ∑

i =1

δi,t

) 2

−β
n ∑

l=1

N l ∑

k =1

w

2
l,k

s.t. R t = δt−1 · Z t − c

m ∑

i =1

| δi,t − δi,t−1 |

δt = sigmoid(W

(n) h n −1 + b (n) + v � δt−1)

h n −1 = ReLU(W

(n −1) h n −2 + b (n −1))

h n −2 = ReLU(W

(n −2) h n −3 + b (n −2))

. . .

h 1 = ReLU(W

(1) f t + b (1)) (4)

here:

– � represents the element-wise multiplication symbol;

– N l denotes the number of neurons in a given layer l ;

– W

(l) = [w

(l)
i, j

] ∈ R

N l ×N l−1 is the weight matrix and b (l) ∈ R

N l

the bias vector for layer l ;

– θ = { (W

(1) , b (1)) , . . . , (W

(n) , b (n) , v) } represents the trading

parameters of the policy network.

In our work, we didn’t use dropout since we don’t have very

eep neural networks. The improvement that we show in the pa-

er is due to L2-regularization only (weigh decay), where w l, k is

efined as being the weight connecting the neuron present in the

 th layer, k th position. The recurrent part in (4) is due to the pres-

nce of a memory gate at the decision layer δt responsible for tak-

ng into account the previous investment decisions into the new

nes. The penalty coefficient p and regularization coefficient β
ere treated as hyperparameters. The penalty term penalizes the

tility function U t whenever the cardinality constraint is unsatis-

ed and the magnitude of the penalty can be controlled by the

enalty coefficient p . The advantage of trying the penalty method

s that it is universally applicable to any equality or inequality con-

traints (round-lot, asset class, return, cardinality etc.) and fits for

ore advanced portfolio optimization approaches. However, the

ddition of this penalty term to our objective function gives no

uarantee that the cardinality constraint will be respected. Thus

o avoid any deficiency risk in our portfolio, we decided to add

 normalization layer after the decision layer as shown in Fig. 1 .

o bypass the use of a softmax function, each weight was sim-

ly divided by the sum of all the decision weights. The Table 2 in

ection 4 present a detailed comparative study of the performance

btained with the five best online architectures that we found.

. SDDRRL architecture

As aforementioned, the backpropagation when we have recur-

ent structures is slightly different from the regular one since the

omputation of δt requires δt−1 as an extra input at the decision

ayer. One simple way to backpropagate the flow of information

hrough the network is BPTT. For instance at time step T , the gra-

ient of the objective function w.r.t. θ is obtained by the chain

ule:

∂U T

∂θ
=

T ∑

t=1

∂U T

∂R t

(
∂R t

∂δt

d δt

d θ
+

∂R t

∂δt−1

d δt−1

d θ

)
(5)

As δt = sigmoid(W

(n) h n −1 + b (n) + v � δt−1) , the previous deci-

ion serves as an input to the calculation of the current decision,

herefore,

4 A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891

Fig. 1. SDDRLL process.

Fig. 2. SDDRRL training phase. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

t

i

a

d

c

c

c

t

R

o

h

h

T

U

t

t

t

{ k
d δt

d θ
= ∇ θ δt +

∂δt

∂δt−1

d δt−1

d θ
(6)

The above Eqs. (5) and (6) assume differentiability of the trad-

ing decision function δt . According to the chain rule, the gradient

at the current state involves the partial derivative w.r.t all decisions

from the beginning to the current step and the calculation needs

to be recursively evolved. By taking recurrence into account, the

gradient is expressed as follows:

∂U T
∂θ

=

T ∑

t=1

∂U T
∂R t

(
∂R t

∂δt

(
∂δt

∂θ
+

∂δt

∂δt−1

(
∂δt−1

∂θ
+

∂δt−1

∂δt−2

(
∂δt−2

∂θ
. . .

d δ1

d θ

)))
+

∂R t

∂δt−1

(
∂δt−1

∂θ
+

∂δt−1

∂δt−2

(
∂δt−2

∂θ
+

∂δt−2

∂δt−3

(
∂δt−3

∂θ
. . .

d δ1

d θ

))))
(7)

Eqs. (5) –(7) imply that the further we go back in time, the less

impact previous decisions would have on the current one. This ob-

servation is consistent with the vanishing gradient issue in recur-

rent neural networks. In addition, unfolding the entire memory is

computationally expensive especially at large time steps.
In the typical recurrent reinforcement learning (RRL) approach,

he training of the neural network requires the optimization of U T ,

n which all trading decisions δt for t ∈ { 1 , 2 , . . . , T } need to be

djusted accordingly to the new market conditions. However, old

ecisions are not as influential as new market conditions when it

omes to making a new decision. Therefore, we introduce the con-

ept of Time Recurrent Decomposition (TRD) that takes into ac-

ount the necessary temporal dependency by stacking RRL struc-

ures as shown in Fig. 2 , resulting in the Stacked Deep Dynamic

ecurrent Reinforcement Learning (SDDRRL). In SDDRRL, we re-

ptimize only the recent decisions instead of those in the entire

istory, and the number of time-stacks (denoted as τ) specifies

ow many recent decisions should influence the current decision.

hat is, the number of stacks τ is the level of time dependency of

 T on previous decisions. For instance, τ = 2 means there are two

ime-stacks, i.e. the current decision δT needs to be computed and

he most recent decision δT −1 needs to be adjusted.

Consider the portfolio optimization problem given in Eq. (4) at

ime T . The optimization problem is decomposed into τ tasks

 V 1 , V 2 , . . . , V τ } where V , k ∈ { 1 , 2 , . . . , τ } is defined in Eqs. (8) –(11) ,

A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891 5

a

m

w

δ

v

c

i

V

w

U

w

R

a

R

u

a

t

i

i

δ

A

t

i

1

t

t

d

a

w

a

t

i

s

i

c

s

t

(

s

g

w

δ

t

i

a

t

δ

c

w

a

Algorithm 1: Training algorithm for SDDRRL.

1 assign :

values to α, γ1 , γ2 , ε, T , N and τ
2 initialize :

θ0 ∼ Normal (0 , 1) , m 0 = 0 , v 0 = 0 , i = 0 , δlast = 0

/* holdings before investment */
3 while t ≤ T do /* iterate in all time steps */
4 while i ≤ N do /* iterate until converge */
5 i ← i + 1

6 while k ≤ τ do

/* iterate in all time-stacks */
if k = 1 then

7 δpre v ious = δlast

/* from last time step */
/* if out-of-stack */

8 else

9 δpre v ious = δT −(τ−k) −1

/* from last time-stack */

10 if i = 1 then

11 δnext _ approx − δT −(τ−k) = 0

/* assume unchanged */
/* next decision */

12 else

13 δnext _ approx = δT −(τ−k)+1

14 determine the task V k (θi −1 , δpre v ious , δnext _ approx)

15 g i = ∇ θV k (θi −1 , δpre v ious , δnext _ approx)
16

m i = γ1 m i −1 + (1 − γ1) g i

v i = γ2 v i −1 + (1 − γ2) g
2
i

αi = α

√

1 − γ i
2

1 − γ i
1

θi = θi −1 − αi

m i √

v i + ε

17 compute δT −(τ−k) (θi)

/* by forward-propagating the learned
weights */

18 compute δnorm

T −(τ−k)
(θi)

/* by normalizing the decision vector */
19 return θi , δ

norm

T −(τ−k)
(θi)

20 k ← k + 1

21 δlast = δnorm

T −(τ−1)
(θN)

/* update out-of-stacks decision for next time
step */

t

m

i

v

p

t

f

c

a

n

u

t
nd V k is assigned to a time-stack k . At time-stack k, V k is opti-

ized to find the optimal decision δT −(τ−k) . To optimize δT −(τ−k) ,

e consider only the terms of the objective function U T involving

T −(τ−k) , and we compute the gradient to update the parameter

ector θ . The task V k is a combination of two components that in-

ludes δT −(τ−k) : (1) the transaction cost in R T −(τ−k) ; (2) the real-

zed return in R T −(τ−k)+1 .

 k =

˜ U T

(
R T −(τ−k) , R T −(τ−k)+1

)
−p

(

1 −
m ∑

i =1

δi,T −(τ−k)

) 2

− β
n ∑

l=1

N l ∑

k =1

w

2
l,k (8)

here ˜

 T

(
R T −(τ−k) , R T −(τ−k)+1

)
= U T

(
. . . , R T −(τ−k) , R T −(τ−k)+1 , . . .

)
(9)

ith

 T −(τ−k) = δT −(τ−k) −1 · Z T −(τ−k) − c

m ∑

i =1

∣∣δi,T −(τ−k) − δi,T −(τ−k) −1

∣∣
(10)

nd

 T −(τ−k)+1 = δT −(τ−k) · Z T −(τ−k)+1 − c

m ∑

i =1

∣∣δi,T −(τ−k)+1 − δi,T −(τ−k)

∣∣
(11) ˜ U T (R T −(τ−k) , R T −(τ−k)+1) represents the component in the

tility function U T involving only the realized returns R T −(τ−k)

nd R T −(τ−k)+1 . The other realized returns that do not involve

he computation of δT −(τ−k) are considered fixed. Once δT −(τ−k)

s computed by the updated parameters from backpropagation,

t will be fed into the next time-stack to compute the optimal

T −(τ−k)+1 which is assigned with the task V k +1 . The pseudocode

lgorithm 1 summarizes the training phase and Fig. 2 illustrates

he SDDRRL training process. The utility function U T at time T

s decomposed into V 1 , V 2 , . . . , V τ , which are assigned to stacks

 , 2 , . . . , τ . The red lines connect V 1 , V 2 , . . . , V τ from U T indicating

he time-stack decomposition. The yellow lines show how instan-

aneous returns are defined with investment decisions. The green

otted lines show gradient information from decomposed tasks

ll the way down to multi-layered neural network in time-stacks,

hich is boxed by red dotted rectangles, to perform backprop-

gation. It is necessary to point out that the decision prior to

he first RRL block (k = 1) is taken from the last time step (i.e .

f we are currently maximizing U T for example, then out-of-

tack decision will be from the last time step U T −1). However,

t is problematic that we will need to foresee the information

oming from δT −(τ−k)+1 to perform backpropagation at time-

tack k .

At this time-stack label, δT −(τ−k) is learned by solving the op-

imization problem defined in Eq. (4) for the task V k as defined in

8) . It is impossible in practice to explicitly know the next deci-

ion when the computation of the current decision is still under-

oing. Therefore, instead of foreseeing the next decision magically,

e can approximate the value of it by assuming the next decision

T −(τ−k)+1 will remain the same as δT −(τ−k) , which could be in-

erpreted as temporarily canceling the transaction cost at the first

teration (i = 1). This is a conservative assumption often used in

pproximate dynamic programming methods (Powell, 2011) when

he next signal f t+1 is temporarily absent at time step t . Afterward,

T −(τ−k) is generated and it will flow to the next time-stack to

ompute δT −(τ−k)+1 . After the first iteration for all time-stacks (i.e.

hen k = τ), the system will switch to the second iteration (i = 2)

nd repeat the calculation of δT −(τ−k) starting one more time from
he first time-stack k = 1 up to the last time-stack k = τ, then we

ove on to the next optimizer iteration and the process repeats

tself until convergence. However, when i = 2 , the approximated

alue of δT −(τ−k)+1 at the time-stack k will be replaced by the ex-

licit results of δT −(τ−k)+1 from last iteration (i = 1). By doing that,

he future market situation is captured during the training phase

rom the last optimizer iteration and helps to learn the correct de-

ision at the current time-stack by taking future information into

ccount. Therefore, besides the first iteration (i = 1), the value of

ext decisions will be approximated by the explicit computed val-

es δT −(τ−k)+1 from previous iterations i ∈ { 2 , . . . , N} . In addition,

he estimation of the next decision at k = τ is unnecessary since

6 A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891

Fig. 3. (Left): The hourly price change for the 10 companies in our portfolio during 7316 trading hours (entire dataset window). (Right): The hourly rate of return. The period

between the two vertical dashed lines represent the testing window: 60 0 0 trading hours (3.5 years).

Fig. 4. Left: Convergence plot of the total return with respect to the number of GP iterations. Right: Acquisition function (red curve) guiding the sampling of the learning

rate using Gaussian surrogate loss. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

V

f

r

c

h

m

f

m

b

u

i

p

t

l

a

k

d

s

d

t

i

b

f

i

p

D
δT will be the last one. Hence, the task assigned to δT is:

 τ = ̃

 U T (R T) − p

(

1 −
m ∑

i =1

δi,T

) 2

− β
n ∑

l=1

N l ∑

k =1

w

2
l,k (12)

where

R T = δT −1 · Z T − c

m ∑

i =1

| δi,T − δi,T −1 | (13)

4. Experiments

4.1. Dataset

In our experiments, the investment decisions are made hourly

and each element in the input signal f t represents the per 15-

minute price changes within the trading hour. SDDRRL is trained

and tested through twenty successive rounds. In each round, the

training section covers 1200 trading hours while the testing sec-

tion covers the next 300. Due to this testing mechanism, the test-

ing periods are made short because the trained system will be

mostly effective for short periods. In the first round, SDDRRL is

trained for the first 1200 trading hours and tested from the trad-

ing hour 1200 to 1500. In the next round, the training and testing

data are shifted 300 trading hours forward (i.e . the second training

round starts from hour 300 to 1500 and the second testing round
rom hour 1500 to 1800) and it will move ahead in this way for the

est of the rounds. In fact, the volatility of the market is a major

oncern in most of ML-based trading systems. Models trained with

istorical data are not effective on testing periods since the new

arket conditions are not learned in the trained model. There-

ore, SDDRRL is trained and tested in an online manner so that the

odel can quickly adapt to the new market conditions. It should

e noted that our test periods include the transaction costs. We

sed the typical cost due to bid-ask spread and market impact that

s 0.55%. We believe these are reasonable transaction costs for the

ortfolio trades. For each round, SDDRRL will be trained with 1200

rading hour data points and when the testing period starts, the

ast signal during testing will be added as an input to the system

nd the parameters will be updated to adapt the most recent mar-

et conditions. However, the size of the training and testing win-

ows should be optimized in order to potentially obtain better re-

ults. We have developed SDDRRL as a new architecture combining

eep neural networks with recurrent reinforcement learning and

ailored specifically for multi-asset portfolios. In this sense, future

nvestigation of the size of the training and testing windows should

e made.

The SDDRRL model is evaluated on a portfolio consisting of the

ollowing ten selected stocks: American Tower Corp. (AMT), Amer-

can Express Company (AXP), Boeing Company (BA), Chevron Cor-

oration (CVX), Johnson & Johnson (JNJ), Coca-Cola Co (KO), Mc-

onald’s Corp. (MCD), Microsoft Corporation (MSFT), AT&T Inc. (T)

A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891 7

Fig. 5. Loss surfaces of the Posterior mean, the Posterior standard deviation (sd) and the Acquisition function for: beta coefficient VS learning rate and penalty coefficient

VS learning rate .

a

p

5

i

d

O

s

m

w

t

d

m

y

d

m

a

c

t

t

t

f

o

4

p

I

c

n

p

s

i

a

i

f

u

n

s

T

s

i

t

p

F

nd Walmart Inc. (WMT). To promote the diversification of the

ortfolio, these stocks are selected from different sectors of S&P

00, so that they are uncorrelated as much as possible as shown

n Fig. 3 .

The data source comes from finam

1 database that has intraday

ata for 42 of the most liquid US stocks on BATS Global Markets. 2

ur dataset starts from January 1st 2013 up to July 31st 2017, re-

ulting in 7928 trading hours. It should be noted that there was

issing data for the 10 stocks at different time periods, which

ere cleaned in our raw data. Therefore, instead of having 7928

rading hours, there are still 7316 data points. This represents a

uration of 4 years and 7 months (4.58333 years), which ulti-

ately comes down to approximately 1596.2 trading points per

ear, i.e . 245.57 trading days per year, thus, 6.5 trading hours per

ay.

Experiments were run on a 40-core machine with 384GB of

emory. All algorithms were implemented in Python using Keras

nd Tensorflow libraries. Each method is executed in an asyn-

hronously parallel set up of 2–4 GPUs, that is, it can evaluate mul-

iple models in parallel, with each model on a single GPU. When

he evaluation of one model finishes, the methods can incorporate

he result and immediately re-deploy the next job without waiting

or the others to finish. We use 20 K80 (12GB) GPUs with a budget

f 10 h.
1 https://www.finam.ru/profile/moex-akcii/gazprom/export .
2 http://markets.cboe.com/ .

m

m

p

b

(
.2. Bayesian optimization for hyperparameter tuning

Many optimization problems in ML are black box optimization

roblems due to the unknown nature of the objective function f (x).

f the objective function were inexpensive to evaluate, then we

ould sample at many points e.g . via grid search, random search or

umeric gradient estimation where we explore the space of hyper-

arameters without any prior knowledge about the configurations

een before. If it were instead expensive, as is typical with tun-

ng hyperparameters of deep neural networks in a time-sensitive

pplication such as finance, then it would become crucial to min-

mize the number of samples drawn from the black box function

 . This is where Bayesian Optimization (BO) techniques are most

seful. They attempt to find the global optimum in a minimum

umber of steps.

BO incorporates prior belief about f and updates the prior with

amples drawn from f to get a posterior that better approximates f .

he model used for approximating the objective function is called

urrogate model. One of the most popular surrogate models for BO

s the Gaussian Process (GP). BO also uses an acquisition function

hat guides sampling in the search space to areas where an im-

rovement over the current best observation is likely (right plot in

ig. 4).

Automatic hyperparameter tuning methods aim to construct a

apping between the hyperparameter settings and model perfor-

ance in order to rationally sample the next configuration of hy-

erparameters. The paradigm of automatic hyperparameter tuning

elongs to a class known as Sequential Model-Based Optimization

SMBO) (Hutter, Hoos, & Leyton-Brown, 2011). SMBO algorithms

https://www.finam.ru/profile/moex-akcii/gazprom/export
http://markets.cboe.com/

8 A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891

Table 1

Range of hyperparameters.

Parameters Search space Type

Learning rate 0–1 Float

Number of stacks 1–10 Integer

Number of units per layer 10–2000 Integer

Regularization coefficient : β 0–1 Float

Penalty coefficient : p 0–10 Integer

0 : Adam

Optimizer 1 : Adadelta Categorical

2 : Adagrad

Fig. 6. The distribution of portfolio weights of the best SDDRRL trading agent over

the test period.

h

t

g

l

o

c

r

s

B

t

n

(

d

t

n

s

a

a

β

l

s

4

4

p

d

a

c

i

fi

p

T

w

m

s

w

mainly differ in the way they take into account historical obser-

vations to model either the surrogate function or some kind of

transformation applied on top of it. They also differ in the way

they apply derivative-free methods while optimizing those surro-

gates. For our work, we used the BO approach which is a subclass

of SMBOs. It was shown that BO can outperform human perfor-

mance on many benchmark datasets (Snoek, Larochelle, & Adams,

2012) and its standard design is described below:

1. The surrogate is modeled by a Gaussian Process (GP):

f (x) ∼ GP (μ(x) , k (x , x ′)) .
In other words, f is a sample from a GP with mean function

μ and covariance function k and x represents the best set of

hyperparameters we are looking for. Here we used a Gaus-

sian kernel as a dissimilarity measure in the sample space:

k (x , x ′) ∝ exp (−‖ x −x ′ ‖ 2
2 σ 2) , where σ 2 is a parameter that re-

flects the degree of uncertainty in our model.

2. To find the next best point to sample from f , we will choose

the one that maximizes an acquisition function. One of the

most popular acquisition functions is of Expected Improve-

ment type (EI), which represents the belief that new tri-

als will improve upon the current best configuration. The

one with the highest EI will be tried next. It is defined

as: EI (x) = E

[max (0 , f (x) − f (̂ x)] , where ˆ x is the current

optimal set of hyperparameters. Maximizing EI (x) informs

about the region from which we should sample in order to

gain the maximum information about the location of the

global maximum of f .

The hyperparameters for the SDDRRL architecture listed in

Table 1 were optimized using BO . We use GPyOpt (2016) python

routine version 1.2.1 to implement the BO . The optimization was

initialized with 25 random search iterations followed by up to 150

iterations of standard GP optimization, where the total return is

used as the surrogate function and EI as the acquisition function.

The results are reported in the left plot in Fig. 4 showing that after

only few iterations, we are able to get a total return of 15.65%. Ran-

dom search then boosts very quickly the total return up to 53.59%

after only 18 iterations and thus remains until the end of the ran-

dom search cycle (iteration #25). Using GP , we can show that we

constantly improve our process of searching for the best architec-

ture that maximizes the overall return. In our case, we stopped at

iteration #200 but nothing prevents us from exploring even more

the configuration of the hyperparameter space. The goal of this

Section is just to illustrate the methodology. At iteration #200, we

find that the best architecture gives 94.71% total return and the

top-5 architectures give more than 78.77% total return. It should

be noted that with the GP , the agent comes very quickly to probe

the region of interest that maximizes the total return and targets

remarkably the most sensitive hyperparameters that leads to the

best architecture. Next, the right plot in Fig. 4 shows the acquisi-

tion function in red, the red dots show the history of the points

that have already been explored and the surrogate function with

± 96% confidence.

In order to keep an eye on what the agent is doing with BO ,

it is interesting to compute the loss surface as a function of the
yperparameters as shown in Fig. 5 . Essentially, the agent was able

o probe most of the hyperparameter configuration space and this

ives us precisely an estimate of where the true optimum of the

oss surface is located.

In particular, an interesting key element deserves to be pointed

ut. The architectures that give the best performance have to a

ertain extent several features in common, such as the learning

ate (almost the same order of magnitude), the number of time-

tacks approximately being 5 or 6, and the type of optimizer.

ut the most important characteristic is that almost all of them

ypically present an hourglass shape architecture (similar to de-

oising autoencoder) as a neural network candidate for SDDRRL

 Table 2). This result opens up a new avenue of investigation. In-

eed, it would be interesting to understand why such a charac-

eristic emerges essentially when processing non-deterministic and

on-stationary signals such as financial data. An attempt for an-

wering this question would be the subject of our next work. In

ddition, our experiments have shown that when p = 0 , the trader

gent no longer respects the cardinality constraint, while when

= 0 , we overfit, which results in a poor performance due to the

ack of generalization capacity. The Fig. 6 shows the optimal deci-

ion weights for the best SDDRRL architecture over the test period.

.3. Alternative active trading strategies

.3.1. Rolling horizon mean-variance optimization model

The mean-variance optimization (MVO) framework has been

roposed by Markowitz (1952, 2010) . It is a quantitative tool tra-

itionally used in dynamic portfolio allocation problem where risk

nd return are traded off. In order to make portfolios’ performance

omparable we use the same risk-adjusted measure of return used

n SDDRLL that is Sharpe ratio (reward-to-variability ratio). As de-

ned above in Section 2.1 , Sharpe ratio measures the excess return

er unit of risk (deviation) in an investment asset or a portfolio.

he MVO problem using Sharp ratio can be written in a general

ay as follows:

ax
x ∈ R m

μT x −r f √

x T Qx

.t.
∑

i

x i = 1

l ≤ Ax ≤ u

x ≥ 0

(14)

here,

1. μ, the vector of mean returns.

2. Q , the covariance matrix.

3.
∑

i x i = 1 ; (cardinality constraint).

4. l ≤ Ax ≤ u , (other linear constraints if needed).

A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891 9

Table 2

Best top five architectures.

Learning rate Number of

stacks

Number of units in each layer Regularization

coefficient

Penalty

coefficient

Optimizer Absolute

return

Annualized

return

0.081 6 1160 - 780 - 580 - 1420 0.597 2 Adam 78.77% 18.05%

0.024 5 870 - 160 - 320 - 370 0.809 9 Adam 82.90% 18.83%

0.021 10 790 - 1730 - 140 - 1410 0.767 9 Adam 88.01% 19.77%

0.075 7 400 - 1410 - 1390 - 1920 0.154 9 Adam 90.81% 20.27%

0.063 6 940 - 1810 - 1020 - 1730 0.158 7 Adam 94.71% 20.97%

Fig. 7. The distribution of portfolio weights of the rolling horizon MVO model over

the test period.

t

(

t

(

y

s

i

(

1

t

t

i

C

(

h

4

w

t

o

b

r

r

Fig. 8. The distribution of portfolio weights of the rolling horizon ERC model over

the test period.

m

o

m

s

w

v

2

B

o

m

i

4

i

p

c

t

h

1

n

a

h

e

c

p
5. x ≥ 0, portfolio weight vector. 3

6. r f , risk-free rate of return.

The solution of the optimization problem above is difficult

o obtain because of the nature of its objective: (1) non-linear,

2) possibly non-convex. However, under a reasonable assump-

ion, 4 it can be reduced to a standard convex quadratic program

 Cornuejols & Tutuncu, 2006):

min

 ∈ R m ,κ∈ R
y T Qy

.t.
∑

i

(μi − r f) y i = 1 ∑

i

y i = κ

l.κ ≤ Ay ≤ u.κ
κ ≥ 0

(15)

The optimal solution of the problem (14) can be written accord-

ng to the solution of the problem (15) as follows: x ∗ =

y
κ .

As in SDDRRL case, the rolling horizon version of the problem

15) is considered using 20 successive rounds: the first round uses

200 trading hours to estimate the portfolio decision weights and

he next 300 h to test the trading strategy. In the next round, the

raining and testing data are shifted 300 trading hours forward and

t will move ahead likewise for the rest of the rounds. The “ILOG

PLEX Optimization Studio” (IBM, 1988) has been used to solve

15) . The Fig. 7 shows the optimal decision weights for the rolling

orizon MVO model.

.3.2. Risk parity model

The risk parity portfolio model is analogous to the equal

eights “1/m” portfolio, but from a risk perspective. It attempts

o diversify risk by ensuring each asset contributes the same level

f risk. Risk Parity is sometimes referred to as “Equal Risk Contri-

ution” (ERC). The complete risk parity optimization model is for-
3 x ≥ 0 means that short-selling is disallowed.
4 There exists a vector x satisfying the constraints (3) –(5) in (14) such that: μT x −

 f > 0 . In other terms, we assume that our universe of assets is able to beat the

isk-free rate of return.

D

i

u

ulated as a least-squares approach that minimizes the difference

f the following terms:

in

x ∈ R m
∑

i

∑

j

(x i (Qx) i − x j (Qx) j)
2

.t.
∑

i

x i = 1

l ≤ Ax ≤ u

x ≥ 0

(16)

here x is the portfolio weight vector, x i (Qx) i represents the indi-

idual risk contribution of asset i and Q the covariance matrix.

The optimization problem (16) was solved successively along

0 rounds 5 using “Interior Point OPTimizer (IPOPT)” (Wächter &

iegler, 2006), which is a software library for large scale nonlinear

ptimization of continuous systems. The distribution of the opti-

al weights of the rolling horizon ERC model over the test period

s shown in the Fig. 8 .

.4. Performance analysis

The performance of SDDRRL is evaluated based on the real-

zed rate of returns of the 5 best architectures over the testing

eriod horizon (approximately 3.5 years). SDDRRL performance is

ompared with three benchmarks: the rolling horizon MVO model,

he rolling horizon risk parity model, and the uniform buy-and-

old (UBAH) strategy with initially equal-weighted setting among

0 stocks. In Fig. 9 , we notice that even the 5 architectures do

ot have the same total return, it seems like they unanimously

greed on the investment policy towards the end of the testing

orizon. This fact demonstrates that the five architectures do not

arn equally during the same period or under the same market

onditions, and therefore, they can be seen as five separate ex-

erts with five different investment strategies. The best online SD-

RRL architecture achieves a total return of 94.71% compared to
5 We use 1200 trading hours for training and 300 h to test the trading strategy

n the first round, then we apply a sliding window of 300 trading hours forward

ntil the last round.

10 A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891

Fig. 9. Benchmarking the Top 5 SDDRRL’s.

t

S

t

t

5

a

n

t

t

m

p

v

i

a

n

e

a

w

b

6

i

s

d

p

d

w

R

p

p

n

s

d

s

f

t

B

t

o

&

p

s

&

s

p

D

C

t

i

R

A

Y

w

Q

our benchmarks: 39.8% for the UBAH index, 38.7% the rolling hori-

zon ERC, and 10.4% for the rolling horizon MVO. The poor perfor-

mance of the rolling horizon MVO model is mainly due to sen-

sitivity to transaction costs. We used the typical transaction cost

of 0.55% due to bid-ask spread similar to what we used for SD-

DRRL. The only difference to report in the case of rolling horizon

MVO is that the rebalancing operation for our portfolio happens in

every 300 trading hour data points, i.e . after each sliding window,

leading to only twenty portfolio rebalancing operations in total. Be-

sides, MVO model makes the overly restrictive assumption of inde-

pendently and identically distributed (IID) returns across different

periods.

Moreover, it is clear from Fig. 9 that most of the experts had

some difficulty to stand out from the market performance at the

first trading hours. This was predictable since the agents had

learned their investment policy during the first training cycle that

took place in 2013, the year in which the S&P500 index posted

a performance of 29.60%, which corresponds to the 4th best per-

formance in the history of the S&P500. The following years have

seen a significant drop 11.39% in 2014 and −0.73% in 2015. This

has inevitably affected the online trading dynamics of our portfo-

lio as can be seen in the range between 30 0 0 and 40 0 0 trading

hours corresponding to these particular years. In fact, the majority

of stocks in our portfolio show a devaluation during those peri-

ods. In other words, the five experts were trying to replicate the

decision rules learned in 2013 during the ensuing testing period

when market conditions drastically changed, which implies they

were applying sub-optimal policies. But through the online learn-

ing cycle, as time progresses, the experts receive feedback on the

market condition and allow gradual adjustment on their learned

investment policy. Therefore, the experts clearly begin to gain the

upper hand and perform well relatively to our benchmarks. In any

case, it should be noted that the SDDRRL trading experts do not

perform worse than the benchmarks. Based on these facts, SDDRRL

investment decisions can be manually centralized by selecting the

best investment strategy at the given trading time t or by adding

an additional agent responsible for centralizing trading decisions

by giving the right hand action to the best expert at each trading

time period. The choice of one or the other is left to the discretion

of the reader. One can also think about using advanced boosting

techniques as surveyed by Zhou (2012) or the rainbow integrated

agent developed recently by Hessel et al. (2017) to convert selected

good learners into a better one. Indeed, the existence of different

investment strategies that are not duplicated especially during pe-

riods of recession is a central point for a better reliability of the

portfolio. In this way, it will be easier for us to avoid strategies

that fail during specific volatile periods, which will be reflected on

the total return at the end of the horizon.

The hourly rate of return presented in Fig. 3 shows that BA and

MSFT have good Return on Investment (ROI) towards the end of
he test period. This fact has been reflected in Fig. 6 where the

DDRRL trader agent is more likely to put more weight on these

wo stocks during the same period. This fact was also reflected in

he total return as shown in Fig. 9 .

. Conclusions and future work

To the best of our knowledge, this is the first attempt to multi-

sset dynamic and continuous control using deep recurrent neural

etworks with customized architectures. A gradient clipping sub-

ask based Backpropagation Through Time has been used to avoid

he vanishing gradient information problem and a Bayesian opti-

ization technique has been deployed to effectively probe the hy-

erparameter space in order to estimate the set of hyperparameter

alues that lead to the maximum utility function while respect-

ng the cardinality constraint. As a consequence, hourglass shape

rchitectures (similar to auto-encoder) emerge and appear to be a

atural choice for this kind of applications. Still, it would be inter-

sting to investigate why such a pattern seems to be an appropri-

te choice and to examine whether there is a particular connection

ith non-stationary signals more generally. The optimized num-

er of time-stacks was found to be approximately equal to 5 or

, leading to annualized returns around 20% throughout our test-

ng period. However, the size of the training and testing windows

hould be optimized and was left for future work.

Moreover, this procedure does not require any time series pre-

ictions which makes SDDRRL architecture relatively robust to

rice fluctuations. Also, SDDRLL is modular so it can be used with

ifferent neural network models such as Convolutional Neural Net-

orks (ConvNets), Long Short-Term Memory (LSTMs) units, Gated

ecurrent Units (GRUs) or any combination of these. A more com-

rehensive study using these models deserves to be done for com-

arison purposes.

Additionally and as illustrated above, different policy neural

etwork architectures have different investment strategies over the

ame period of time, which could be interpreted as having five

ifferent portfolio management experts. By aggregating the deci-

ions coming from these experts, we can be more robust in the

ace of market fluctuations. One way to do this would be to use

echniques coming from the Ensemble Methods literature, namely,

agging (Breiman, 1996), Boosting (Zhou, 2012), Bayesian parame-

er averaging (BPA) (Hoeting, Madigan, Raftery, & Volinsky, 1999)

r Bayesian model combination (BMC) (Monteith, Carroll, Seppi,

 Martinez, 2011) to combine high quality architectures. Another

otential way to boost the overall performance would be to con-

ider a Multi-Armed Bandits (MAB) approach (Auer, Cesa-Bianchi,

 Fischer, 2002; Katehakis & Veinott, 1987) operating in a non-

tationarity environment. The aim would be to select the right ex-

ert each time when we interact with the market.

eclaration of Competing Interest

None.

redit authorship contribution statement

Amine Mohamed Aboussalah: Data curation, Conceptualiza-

ion, Methodology, Project administration, Writing - review & edit-

ng, Writing - original draft. Chi-Guhn Lee: Project administration,

esources, Writing - review & editing, Supervision.

cknowledgments

The authors are very grateful to Zixuan Wang and to Yassine

aakoubi for their help and constructive comments regarding this

ork. This research is supported by the Fonds de recherche du

uébec - Nature et technologies (FRQNT). 210036 .

https://doi.org/10.13039/501100003151

A.M. Aboussalah and C.-G. Lee / Expert Systems With Applications 140 (2020) 112891 11

R

A

A

B

B

B
C

D

D

G

H

H

H

I

J

K

L

L

M

M

M

M

M

M

M

M

M

N

N

P

P

S

S

S

V

W

W

W

Z

Z

Z
eferences

lmahdi, S. , & Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return

portfolio optimization using recurrent reinforcement learning with expected

maximum drawdown. Expert Systems with Applications, 87 , 267–279 .
uer, P. , Cesa-Bianchi, N. , & Fischer, P. (2002). Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47 , 235–256 .
axter, J. , & Bartlett, P. L. (2001). Infinite-horizon gradient-based policy search. Jour-

nal of Artificial Intelligence Research, 15 , 319–350 .
engio, Y. , Simard, P. , & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5 (2), 157–166 .

reiman, L. (1996). Bagging predictors. Machine Learning, 24 , 123–140 .
ornuejols, G. , & Tutuncu, R. (2006). Optimization methods in finance . Cambridge .

eng, Y. , Bao, F. , Kong, Y. , Ren, Z. , & Dai, Q. (2016). Deep direct reinforcement learn-
ing for financial signal representation and trading. IEEE Transactions on Neural

Networks and Learning systems, 28 (3), 653–664 .
eng, Y. , Kong, Y. , Bao, F. , & Dai, Q. (2015). Sparse coding-inspired optimal trad-

ing system for HFT industry. IEEE Transactions on Industrial Informatics, 11 (2),
467–475 .

PyOpt (2016). A Bayesian optimization framework in python. http://github.com/

SheffieldML/GPyOpt .
essel, M. , Modayil, J. , van Hasselt, H. , Schaul, T. , Ostrovski, G. , Dabney, W. ,

et al. (2017). Rainbow: Combining improvements in deep reinforcement learn-
ing. In AAAI conference on artificial intelligence .

oeting, J. A. , Madigan, D. , Raftery, A. E. , & Volinsky, C. T. (1999). Bayesian model
averaging: A tutorial. Statistical Science, 14 , 382–401 .

utter, F. , Hoos, H. H. , & Leyton-Brown, K. (2011). Sequential model-based optimiza-

tion for general algorithm configuration. In International conference on learning
and intelligent optimization (pp. 507–523) .

BM (1988). ILOG CPLEX optimization studio. https://www.ibm.com/ca-fr/products/
ilog- cplex- optimization- studio .

iang, Z., Xu, D., & Liang, J. (2017). A deep reinforcement learning framework for the
financial portfolio management problem. arXiv: 1706.10059 .

atehakis, M. , & Veinott, A. F. (1987). The multi-armed bandit problem: Decompo-

sition and computation. Mathematics of Operations Research, 12 , 262–268 .
iang, Z., Chen, H., Zhu, J., Jiang, K., & Li, Y. (2018). Adversarial deep reinforcement

learning in portfolio management. arXiv: 1808.09940 .
u, D. W. (2017). Agent inspired trading using recurrent reinforcement learning and

LSTM neural networks. arXiv: 1707.07338 .
aringer, D. , & Ramtohul, T. (2012). Regime-switching recurrent reinforcement

learning for investment decision making. Computational Management Science, 9 ,

89–107 .
arkowitz, H. (1952). Portfolio selection. The Journal of Finance, 7 , 77–91 .

arkowitz, H. (2010). Portfolio theory as I still see it. Annual Review of Financial
Economics, 2 , 1–23 . https://doi.org/10.1146/annurev- financial- 011110- 134602 .

erton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continu-
ous-time case. The Review of Economics and Statistics, 51 (3), 247–257 .
nih, V. , Kavukcuoglu, K. , Silver, D. , Rusu, A. , Veness, J. , Bellemare, M. G. ,
et al. (2015). Human-level control through deep reinforcement learning. Nature,

518 , 529–533 .
onteith, K. , Carroll, J. L. , Seppi, K. , & Martinez, T. (2011). Turning Bayesian model

averaging into Bayesian model combination. In Proceedings of the international
joint conference on neural networks IJCNN’11 .

oody, J. , & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Trans-
actions on Neural Networks, 12 (4), 875–889 .

oody, J. , & Wu, L. (1997). Optimization of trading systems and portfolios. Decision

Technologies for Financial Engineering , 23–35 .
oody, J. , Wu, L. , Liao, Y. , & Saffell, M. (1998). Performance functions and rein-

forcement learning for trading systems and portfolios. Journal of Forecasting, 17 ,
441–470 .

euneier, R. (1996). Optimal asset allocation using adaptive dynamic programming.
Advances in neural information processing systems .

g, A. , & Jordan, M. (20 0 0). PEGASUS: A policy search method for large MDPs and

POMDPs. In Proceedings of the sixteenth conference on uncertainty in artificial in-
telligence .

haisangittisagul, E. (2016). An analysis of the regularization between l 2 and
dropout in single hidden layer neural network. Intelligent systems, modelling and

simulation (ISMS) .
owell, W. B. (2011). Approximate dynamic programming: Solving the curses of di-

mensionality. Wiley series in probability and statistics (2nd ed.) .

harpe, W. F. (1994). The Sharpe ratio. The Journal of Portfolio Management, 21 (1),
49–58 .

noek, J. , Larochelle, H. , & Adams, R. P. (2012). Practical Bayesian optimization of
machine learning algorithms. In IPS proceedings of the 25th international confer-

ence on neural information processing systems: 2 (pp. 2951–2959) .
rivastava, N. , Hinton, G. , Krizhevsky, A. , Sutskever, I. , & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15 , 1929–1958 .
an Roy, B. (1999). Temporal-difference learning and applications in finance. In Con-

ference, computational finance .
ang, Y. , Wang, D. , Zhang, S. , Feng, Y. , Li, S. , & Zhou, Q. (2017). Deep q-trading. CSLT

Technical Report-20160036 .
illiams, R. (1992). Simple statistical gradient-following algorithms for. connection-

ist reinforcement learning. Machine Learning, 8 , 229–256 .

ächter, A. , & Biegler, L. (2006). On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programming. Math-

ematical Programming, 106 , 25–57 .
arkias, K. S. , Passalis, N. , Tsantekidis, A. , & Tefas, A. (2019). Deep reinforcement

learning for financial trading using price trailing. In International conference on
acoustics, speech and signal processing (ICASSP) . IEEE .

hengyao, J. , & Liang, J. (2017). Cryptocurrency portfolio management with deep

reinforcement learning. In Intelligent systems conference (IntelliSys) . IEEE .
hou, Z.-H. (2012). Ensemble methods: Foundations and algorithms . Chapman &

Hall/CRC .

http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0008
http://github.com/SheffieldML/GPyOpt
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0011
https://www.ibm.com/ca-fr/products/ilog-cplex-optimization-studio
http://arxiv.org/abs/1706.10059
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0012
http://arxiv.org/abs/1808.09940
http://arxiv.org/abs/1707.07338
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0014
https://doi.org/10.1146/annurev-financial-011110-134602
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30607-4/sbref0035

	Continuous control with Stacked Deep Dynamic Recurrent Reinforcement Learning for portfolio optimization
	1 Introduction
	2 Formulation
	2.1 Financial objective function
	2.2 Portfolio optimization model

	3 SDDRRL architecture
	4 Experiments
	4.1 Dataset
	4.2 Bayesian optimization for hyperparameter tuning
	4.3 Alternative active trading strategies
	4.3.1 Rolling horizon mean-variance optimization model
	4.3.2 Risk parity model

	4.4 Performance analysis

	5 Conclusions and future work
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	References

