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It feels rewarding to ace your opponent on match point. Here,

we propose common mechanisms underlie reward and

performance learning. First, when a singing bird unexpectedly

hits the right note, its dopamine (DA) neurons are activated as

when a thirsty monkey receives an unexpected juice reward.

Second, these DA signals reinforce vocal variations much as

they reinforce stimulus-response associations. Third, limbic

inputs to DA neurons signal the predicted quality of song

syllables much like they signal the predicted reward value of a

place or a stimulus during foraging. Finally, songbirds may

solve difficult problems in reinforcement learning – such as

credit assignment and catastrophic forgetting – with node

perturbation and consolidation of reinforced vocal patterns in

motor cortical circuits. Consolidation occurs downstream of a

canonical ‘actor-critic’ circuit motif that learns to maximize

performance quality in essentially the same way it learns to

maximize reward: by computing and learning from prediction

errors.
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Edward Thorndike captured the essence of reinforce-

ment learning in his Law of Effect: ‘Responses that

produce a satisfying effect in a particular situation

become more likely to occur again in that situation,

and responses that produce a discomforting effect

become less likely to occur again in that situation [1].’

Learning requires three pieces of information: (1) the

response (‘action’) an animal makes; (2) the situation (or

‘state’) in which the action is taken; and (3) the evaluation

of the outcome (effect).

Studies of hungry or thirsty animals learning for rewards

have clarified how these three pieces of information are
www.sciencedirect.com 
processed in dopamine-basal ganglia (BG) circuits during

reinforcement learning (RL). Ventral tegmental area

(VTA) dopamine (DA) neurons signal the outcome in

the form of ‘reward prediction error’ (RPE): the differ-

ence between actual and predicted reward [2]. DA neu-

rons exhibit bursts in response to unexpected rewards and

pauses when a predicted reward is omitted (Figure 1a). In

‘actor-critic’ (AC) models, these DA signals control syn-

aptic plasticity throughout the basal ganglia, including a

ventral ‘critic’ with outputs back to VTA and a dorsal

‘actor’ with outputs to the motor system [3] (Figure 2a).

Both subdivisions implement DA-modulated plasticity to

weigh cortical (or thalamic) inputs (which encode the

situation, or ‘state’) according to their reward value [4�].
DA-modulated plasticity mediated by critic computes

predicted value of a state, that is, how much reward to

expect in a given situation. Predicted state-value signals,

such as ventral striato-pallidal activations to reward-asso-

ciated cues or places [5], provide VTA with prediction
information necessary to compute RPE [6��]. VTA pro-

jects back to the critic (to update reward associations, or

predicted state-value) and also to the ‘actor’. DA-modu-

lated plasticity in the ‘actor’ weighs each state-action pair

according to its predicted quality (or Q value). Q value

signals may exist in dorsal striatum where the magnitude

of premotor activations is strongly reward-modulated. For

example, neuronal activations preceding a rightward sac-

cade that will be rewarded are larger than the same

saccade that will not [7]. Somehow, motor circuits down-

stream dorsal striatum convert Q into reward-maximizing

action, that is, the policy (Figure 2a)[7].

Intrinsically motivated song learning
Like human speech, birdsong is a complex sequence

learned by matching ongoing performance to an internal

goal. Juvenile zebra finches memorize a tutor song, begin

to babble, and gradually learn over weeks to sing the tutor

song. Songbirds have a specialized ‘song system,’ and it’s

output RA (robust nucleus of the arcopallium), is a layer 5,

primary motor cortex-like nucleus with topographic out-

puts to brainstem motor neurons (Figure 3). For simplic-

ity, RA can be imagined as a piano keyboard, in which the

spatial position of a neuron relates to the vocal muscle it

will innervate. RA gets inputs from LMAN (lateral mag-

nocellular nucleus of the anterior nidopallium) and HVC

(proper name). LMAN is a frontal cortical nucleus that

exhibits stochastic neural activity, drives vocal babbling,

contributes to trial-to-trial variability in adults, and pro-

jects topographically to RA (i.e. a ‘key’ in LMAN has a

corresponding key in RA) [8,9]. HVC is a premotor

cortical nucleus that exhibits stereotyped synfire chain-

like sequences of neural activity that drive the
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2 Whole-brain interactions between neural circuits
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Dopaminergic error signals in singing birds. (a) DA neurons signal

better-than and worse-than predicted reward outcomes with phasic

activations (blue) and suppressions (red). (b) Zebra finch songs are

motifs consisting of a fixed sequence of syllables, for example, ‘a-b-c-

d.’ A signal processor analyzed and distorted song in real time. A

50 ms snippet of syllable ‘c’ was played back during production of the

target syllable ‘b’ (target time, black triangles and white dashed lines).

Randomly interleaved target renditions were left undistorted

(undistorted trials, blue dashed line). This distorted auditory feedback

(DAF) induces perceived errors on target syllables. (c) Spectrograms
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correspondingly stereotyped adult song [10,11�]. HVC

axons ignore RA topography (i.e. span the entire key-

board), so that a single HVC axon can, in principle, learn

to strike any key [12�].

An actor-critic -inspired framework for song
learning
As birds mature from vocal babbling to stereotyped adult

song, control of RA firing (and therefore vocal output)

gradually transfers from LMAN to HVC [13,14]. Though

the practicing bird does not receive external rewards for

‘hitting the right note,’ we propose that song learning

proceeds, at least in part [15��] (Box 1), via an RL-like

algorithm implemented in an ‘actor-critic’ circuit motif in

the BG (Figure 2b).

Songbird DA neurons encode RPE-like song evaluation

signals

Actor-critic models construct and learn from DA RPE

signals. To test for RPE-like signals during singing, we

recorded antidromically identified VTA neurons that

project to Area X (VTAx) while controlling perceived

error with distorted auditory feedback (DAF). DAF is a

50-ms snippet of sound with the same amplitude and

spectral content as normal zebra finch song that is known

to drive DA and Area X-dependent reinforcement of

undistorted syllable variants [16�,17,18�,19,20]. VTAx

neurons, known to be dopaminergic, exhibited pauses

after distortions (sounded bad) and bursts after undis-

torted renditions of target syllables (sounded good).

Importantly, burst magnitude depended on past error

probability: if one syllable was distorted with high prob-

ability, and different one with low probability, DA bursts

were larger following the (more surprising) undistorted

renditions of the high probability target [21]. Thus VTAx

DA neurons signal performance prediction error: the

difference between how good a syllable sounded and

how good it was predicted to sound based on recent

practice. To compute error, DA neurons need informa-

tion, at each time-step, about ‘just heard’ auditory error as

well as predicted error (predicted syllable quality).

Auditory cortex sends ‘actual’ (just heard) error signals

to VTA

A hierarchy of auditory areas converges in a high-order VTA-

projecting cortical area called AIV (ventral intermediate arco-

pallium) [22–24]. VTA-projecting auditory cortical neurons

exhibit bursts in response to DAF during singing [25��].
Electrical microstimulation of auditory cortex drives pauses

in VTAx neurons [26��] and optogenetic activation of the
with time-aligned voltage traces show responses of a DA neuron

during undistorted (top) and distorted trials (bottom). Rasters and

histograms show suppressions following distortions (red) and

activations following the precise song time-step when error was

predicted to occur but did not occur (blue). Reproduced from Ref.

[21].
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Figure 2
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Actor-critic RL for both reward and song learning. (a) The environment provides current state information, S, and current reward, r. The ‘Actor’

learns the quality of state/action pairs (Q(s,a)) that get converted into the reward maximizing action given the state (i.e. the policy p(a|S)). DA-

weighted state representations in the critic compute the predicted state-value, V(s). DA neurons signal RPE by taking the difference between

actual, R, and predicted, V(s), reward. (b) Lower left: VTA-projecting auditory cortical (Aud. Cx) neurons encode auditory error, for example, bursts

following DAF [25��]. Inset schematizes firing rates during distorted (red) and undistorted (blue) renditions; vertical dashed line denotes the time-

step ‘targeted’ with DAF (as in Figure 1b). Bursts in auditory cortex drive pauses in VTAx neurons through local VTA inhibition (not shown)

[26��,28�]. The DA error signal (pink line) goes to both VP (‘Critic,’ left) and Area X (‘Actor,’ right). DA modulated plasticity in VP could weigh time-

step (i.e. ‘state’) information according to past error. With an eiligibility trace [4�], this would explain why most VPvta neurons exhibited pauses

right before the DAF target time [26��]. This predicted quality signal, similar to predicted state value in classic ‘critic’ circuits, could help VTAx

neurons compute prediction error. DA-modulated plasticity in Area X, schematized as a keyboard due to its topographic organization, could learn
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4 Whole-brain interactions between neural circuits

Box 1 Are supervised and unsupervised algorithms also

implemented in birdsong?

Unsupervised learning can be implemented with correlation (e.g.

Hebbian)-based learning rules and without explicit error or reinforcement

signals. For example, during babbling the activity of a ‘chhh’-producing

motor neuron will be reliably correlated with a ‘chhh’ receptive auditory

neuron. And a ‘bb’ motor neuron will similarly correlate with a ‘bb’ auditory

neuron. Hebbian learning rules could create paired forward and inverse

models. In the forward model, the motor system ‘tells’ the sensory system

what is about to happen, so that the sensory consequences of movements

can be predicted. In the inverse model, the sensory system can ‘call upon’

the motor system to produce the desired output [15��,23]. Reciprocal

connections between HVC and the auditory system could instantiate these

internal models [47]. In fact, a forward model could be important for

extracting prediction error signals in auditory cortical areas upstream VTA.

Supervised learning: Supervised error signals encode precisely how an

outcome differed from the target, which also specifies the necessary

correction (e.g. the pitch was too low, so next time move it up). Learning

from supervised error signals requires an inverse model that can implement

the correction. Though birds may have such internal models [23], birds

surprisingly appear to solve even pitch-shifting experiments with DA rein-

forcement mechanisms [49].

Box 2 How might a relatively slow DA reinforcement signal

improve a fast behavior?

Birds can produce reliable acoustic fluctuations with �5�10 ms pre-

cision, the same duration as an HVC burst, the schematized ‘time-step’

in our model [11�]. Yet the DA reinforcement signal is �50 ms delayed

from auditory error and lasts �100 ms [21]. How might this relatively

slow signal appropriately reinforce past vocalizations? Several lines of

evidence suggest that an eligibility trace in the spines of Area X MSNs

last around �0.1 s. In carefully implemented distorted auditory feed-

back experiments, the Brainard group discovered that DAF only rein-

forces vocal variations in the immediately preceding 0.1 s [16�]. They

also discovered that �0.1 s duration ‘chunks’ of song are reinforced

even when DAF is targeted with millisecond precision to specific

syllable trajectories [50]. Although it may seem optimal to indepen-

dently evaluate every �5 ms time-step, we propose that a coarser

evaluation system may work for birdsong. Acoustic structure of a

syllable is largely a function of air pressure and muscle activation in the

syrinx, and therefore song production is better understood as a con-

tinuous trajectory through syringeal state space rather than transition

between discrete states. Because neither air pressure nor muscle

configuration can be instantly transformed, the action at each time-

step constrains what new configurations are possible in the next. For

example, an input to the syrinx that drives a 5 Hz increase in pitch

would only produce the desired 500 Hz output when the preceding

pitch was 495 Hz. We hypothesize that reinforcing a larger chunk of

consecutive actions could reduce the dimensionality of search space

and improve learning.
auditory cortical-VTA pathway extinguishes syllable varia-

tions (just like phasic suppression of the VTA-X pathway

does) [27,28�,29��]. Auditory cortical areas can signal error and

drive pauses in DA firing (Figure 2b, lower left). The finch

auditorycorticalarea thatprojects toVTAmaybefunctionally

analogous to anterior cingulate cortex, which also may send

performance error signals to VTA [30].

Ventral pallidum (VP) sends predicted syllable quality

signals to VTA

Songbird VP is a mixed striatopallidal nucleus [31] that

may function analogously to the critic [26��,28�]. VP is

necessary for learning and receives inputs from Uva, a

thalamic nucleus that sends song time-step information to

HVC, and also from VTAx neurons. DA-modulated plas-

ticity of Uva inputs could weigh time-steps according to

their past error. For example, consider a song with three

time-steps t1, t2, t3. If t2 is reliably correlated with error,

then DA pauses (driven by auditory cortex, as described

above) would be coincident with those Uva inputs active

at t2. Then DA-modulated plasticity would re-weigh

these synapses, resulting in a representation in VP of

error-weighted timing or, equivalently, predicted syllable

quality (Figure 2b, upper left). Consistent with this idea,

most antidromically identified VPvta neurons exhibited

pauses in firing immediately before the song time-step

associated with past error, exactly consistent with a pre-

dicted syllable quality signal (Figure 2b) [26��].
the quality of each state/action pair (Q(s,a)). For example Area X could learn

DLM to LMAN, resulting in a premotor ‘bias’ signal that, together with the H

consistently associated with better-than-predicted song outcomes, is conso

driven blue key in RA eventually becomes an HVC-driven green key, lower 

songbirds are omitted for clarity.
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Put simply, imagine an animal foraging a familiar envi-

ronment in search of food. It will have a memory of where

it got rewards, resulting in a place-dependent reward

prediction. Now imagine a bird practicing a song with

many syllables. It will similarly have a memory of when in

the song it made mistakes, resulting in a syllable-depen-

dent error prediction. Thus we view VP’s role in comput-

ing the predicted quality of syllables as conceptually

similar to its long-established role as a ‘critic’ that com-

putes the predicted reward value of cues or places.

HVC provides ‘state’ information in the form of what

‘time it is’ in the song

HVC time-steps (Figure 3c) are ideal ‘state’ representa-

tions because song policy is, in essence, learning what
piano key to press when [12�]. Importantly, because the

axons of single HVC or VTA neurons span the entirety of

Area X, any key can in principle be learned to be struck at

any given time-step [12�].

Dorsal BG nucleus Area X as part of the ‘actor’ that

computes Q values

Area X gets three main inputs: LMAN (which provides a

copy of the vocal ‘guess’ it made through RA), HVC (time-

step)andVTAx (DA RPE). Weproposed a specific learning

rule in Area X based on dopamine modulated corticostriatal
 that striking blue key at t2 is high quality, and relay this signal through

VC-driven motor program, produces the vocal output. LMAN bias, if

lidated over days into the motor program (e.g. the Area X and LMAN-

right) [17,18�]. Note that several inputs to VTA in both mammals and

www.sciencedirect.com
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Figure 3

Son g
Variabil ity

Son g
time -step

Area
X

DLM

HVC

LMAN
RA

‘Cortical’

Basa l
GangliaThalamus

Uva

Dop amine

LMAN HVC
t2 tnt1

RA

Brainstem MNs

(a) (b) (c)

0.25  s

(d)

Sil ence  LMAN Sil ence  HVC

(e)

Current Opinion in Neurobiology

Distinct variability- and timing- generating pathways in the song system. (a-b) The HVC!RA ‘motor’ pathway exhibits stereotyped neural activity

that drives adult song; the LMAN!RA pathway drives vocal variability and babbling. The basal ganglia nucleus Area X receives DA inputs from

VTA projects to LMAN via a motor thalamic nucleus called DLM. (c) HVC synfire chains track time-step in song. Spectrogram of a song motif

plotted above a heatmap of HVC bursting activity. Each row shows the smoothed firing rate of a single burst. (d) Spectrogram from a babbling

bird before (top) and after (bottom) LMAN inactivation. Note loss of vocal variability, revealing stereotyped, HVC-driven song elements. (e)

Spectrogram from adult bird before (top) and after (bottom) HVC inactivation. Note elimination of song structure, revealing LMAN-driven vocal

variability. Data from [11�]. Inputs to VTA are omitted for clarity.
plasticity: If an HVC and LMAN input to a striatal medium

spiny neuron (MSN) are co-active, then an eligibility trace

(Etrace) is transiently activated that ‘tags’ the HVC-MSN

synapse [4�] (Box 2). If the LMAN activation was a ‘lucky

guess,’ then a phasic DA burst will occur that coincides with

the eligibility trace (Box 2), which would strengthen the

tagged HVC-MSN synapse (we proposed the LMAN input

implements node perturbation and is not itself plastic, see

below). Across Area X, this process would compute Q, the

quality of each action in a given state (i.e. the quality of each

key strike at each time-step of the song). At each time-step

of the song, a new vector of Q values (of length n = number

of keys) could then bias LMAN to strike a new combination

of high quality keys. Consistent with this model, lesions to

Area X or its DA inputs block bias [19,20], and optogenetic

activation of DA terminals in Area X at a specific time-step

reinforces immediately preceding vocal variations [27,29��

].Thus DA-modulated plasticity inArea X cancompute the

quality of pressing each key at each time-step (i.e. the

quality of each state/action pair, or Q(s,a)).

The idea of Area X as a Q network makes additional

predictions. If performance at a given time-step is poor

no matter what action is taken, then the predicted quality of

all state/action pairs will be low. This occurs naturally
www.sciencedirect.com 
during vocal babbling, before the onset of learning, when

the predicted quality of all syllables is likely to be low. At

this learning stage, all Area X output neurons exhibit phasic

activations at syllable onsets, exactly where state represen-

tations (HVC activity) are also concentrated [32,33]. As

Area X outputs are inhibitory, we hypothesize that this is

Area X’s way of saying it has not yet learned any policy to

promote. These pre-syllable activations rapidly go away

over days of singing experience, as birds have an opportu-

nity to learn which state/action pairs produce good out-

comes [34]. This hypothesis also predicts that all Area X

output neurons recorded in adult birds should exhibit

phasic rate increases prior to a song time-step targeted with

DAF with 100% probability, an easy experiment.

Consolidation in a premotor – motor cortical pathway

In actor-critic models used in machine learning, deletion

of the actor would have a devastating effect on task

performance. Yet song remains intact following lesions

to Area X or its downstream thalamo-cortical pathway

(Area X-DLM-LMAN). Seminal experiments showed

how LMAN-driven ‘bias’ is consolidated into the

HVC-RA motor cortical pathway [17,18�]. When DAF

was delivered only at low-pitch renditions of a target

syllable, birds learned over hours to move that syllable’s
Current Opinion in Neurobiology 2020, 65:1–9



6 Whole-brain interactions between neural circuits
pitch up. When LMAN was inactivated at the end of this

day, the pitch of the target syllable immediately returned

to the morning’s value, showing that Area X rapidly

learned to bias LMAN to push the song away from error

(i.e. to ‘educate’ LMAN guesses). Yet after days of

sustained pitch-up bias, LMAN inactivation no longer

caused a pitch shift, meaning that the pitch-up bias had

been transferred from LMAN to the HVC-RA synapse (i.

e. the LMAN bias was consolidated into the HVC-RA

pathway (Figure 2b lower right and legend, i.e. the blue

key in RA will turn into a green key).

Songbird variations on the classic actor-critic
may solve challenging problems in RL
A first unique feature of the songbird architecture is that

the actor (Area X) sits upstream of a ‘variability-generator’

(LMAN) which in turn projects to a ‘consolidator’ (RA).

These added thalamocortical layers between the actor

and motor output may help solve two important problems

in RL: credit assignment and catastrophic forgetting.

Solving credit assignment with LMAN-dependent node

perturbation in Area X

One problem in RL is credit assignment: after an error,

how does the brain know which of its millions synapses

need to be changed? The error-backpropagation algo-

rithm used in machine learning updates each synaptic

weight based on its known unique contribution to behav-

ioral output, but this might not be biologically plausible

[35]. An alternative approach is node-perturbation, which

associates the change in error caused by local stochastic

fluctuations in neural activity [36]. In node perturbation,

connections mediating exploratory behavioral variations

are not themselves plastic – but instead they gate plas-

ticity of other inputs that can take over to drive a success-

ful variation. Node perturbation provided the inspiration

for our proposed learning rule in Area X: Area X MSNs

detect which ‘guesses’ (from LMAN) at which time-steps

(from HVC) result in better-than-predicted outcome

(from VTA) [12�]. In this model, only the HVC-MSN

synapse is plastic, and the LMAN input is there to

provide a ‘copy’ of the perturbation to vocal output

caused by LMAN’s collateral in RA. A recent EM study

identified a micro-architecture in Area X potentially

suited to implement node perturbation: HVC-MSN syn-

apses were primarily on dendritic spines, where DA-

modulated plasticity is known to occur [4�]. When a single

axon contacted multiple spines of a single MSN, spines

were correlated in size – a structural hallmark of Hebbian

plasticity [37�]. Meanwhile, LMAN-MSN synapses were

primarily on dendritic shafts, possibly situating them to

gate HVC-spine plasticity.

Solving ‘catastrophic forgetting’ with consolidation in

the motor cortical nucleus RA

Another classic problem of motor sequence reinforce-

ment learning is knowing when to allow for plastic changes
Current Opinion in Neurobiology 2020, 65:1–9 
to a sequence. For example, zebra finches learn to sing by

sequentially adding new syllables to their songs [33]. It

would be maladaptive to enable plasticity in synapses

important for producing syllables ‘A’ and ‘B’ that have

already been mastered as the bird is attempting to learn

syllable ‘C.’ In artificial neural networks, this is known as

‘catastrophic forgetting’. Synaptic weight changes that

maximize performance of newly learned behaviors can

impair previously learned ones. This problem can be

solved with ‘elastic weight consolidation’ - a process that

protects synaptic weights that are useful for already-

learned behaviors [38��]. Consolidation in RA may reduce

catastrophic forgetting in several ways. First, after the

HVC-RA pathway ‘takes over’ control of a specific part of

the song, Area X synapses are free to learn (or unlearn)

new policies without degrading ongoing vocal perfor-

mance. Area X policies can ‘bias’ LMAN variability

and, only if a bias is stable for days, will it get consolidated

into the HVC-RA pathway [17,18�]. Second, neurogenesis

of RA-projecting HVC neurons occurs throughout song

learning, which could enable weight changes of new

HVC-RA connections to occur without altering previ-

ously learned ones [39]. Third, plasticity of existing

HVC-RA synapses could be gated by uncertainty – such

that reliably well executed time-steps of the motor

sequence are ‘protected.’ For example, if the bird repeat-

edly makes mistakes (or is distorted) at one ‘difficult’

time-step in the song, the predicted error is high at that

specific time-step. Importantly, cholinergic inputs to RA

and HVC come from VP (where predicted error signals

are known to reside), inhibition in HVC is reduced during

new syllables [40], and cholinergic signaling in RA is

required for synaptic plasticity and for song learning

[41,42]. We predict that RA projecting VP neurons

exhibit bursts of activity immediately before error-prone

time-steps (i.e. DAF-targeted) of the song. We predict

that acetylcholine ‘tells’ motor cortex when a time-step

with an uncertain outcome is about to occur, enabling

synaptic plasticity important for consolidation specifically

at this time-step of the sequence. We also predict a

specific Ach-modulated heterosynaptic learning rule in

RA: If LMAN, HVC and cholinergic inputs to an RA

neuron are reliably coactive, then strengthen the connec-

tion strength between HVC-RA. This rule would enable

an HVC time-step to ‘take control’ of striking a high

quality key specifically at low quality time-steps, and at

the same time would ‘protect’ existing HVC-RA synapses

at reliably high quality time-steps. We hypothesize that

cholinergic uncertainty signals in mammalian motor cor-

tex could serve a similar function [43,44].

Non standard ‘actor-to-critic’ projections may

implement advantage actor-critic

Curiously, we found that parts of the proposed ‘actor’

pathway (Area X, DLM and RA) project to ‘the critic’ VP

(see also Ref. [31]), revealing projections from actor back

to critic not required in standard actor-critic models.
www.sciencedirect.com
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Notably, a growing family of ‘advantage actor critic’

algorithms could make use of such projections [45]. In

contrast to classic actor-critic where the RL signal is the

difference between reward received and the predicted

state value V(s), in advantage actor-critic, the RL signal to

the actor (for policy update) additionally considers the

‘advantage,’ that is, the difference between the predicted

quality of the action taken (i.e. the Q value Q(s,a)) and the

predicted value of the state (V(s)). VP could inherit Q

information from Area X, could compute V(s) as described

in Figure 2b, and could compute the advantage as the

difference between the two. This advantage could be

relayed to VTA to influence its reinforcement signal.

This idea predicts that the songbird could compare actual

song quality not just to the quality predicted at each time-

step (V(s)), but additionally to the predicted quality of the

action taken at that time-step (Q(s,a)), analogous to what

an advantage actor-critic network does. A simple experi-

ment to test this possibility would be to record VTAx DA

neurons while manipulating the advantage, A(st,at). This

could be done by implementing conditional distorted

auditory feedback in which only low-pitch variants of a

specific target syllable are distorted [16�,17]. On rare catch

trials, low pitch variants would instead be left undistorted.

If DA neurons signal the difference between the actual

outcome to the predicted outcome given the state (the

target time of the song), then the magnitude of DA bursts

would be the same for all undistorted target renditions,

regardless of which syllable variant was produced. But if

DA activity has information about the advantage, then

DA bursts following undistorted renditions of the low

pitch variants may be larger than bursts following undis-

torted renditions of high pitch variants (because low pitch

renditions have been associated with histories of more

error). Future recordings of VTAx neurons could there-

fore constrain which variant of actor-critic-like algorithms

is realized in the songbird.

Summary
Many open questions remain in songbirds. Foremost, it

remains unknown how auditory pathways compare the

song to the tutor. This process may occur in reciprocal

connections between auditory areas and HVC and likely

involves both efference-copy and tutor-memory guided

cancellation and evaluation of predicted acoustic out-

comes [15��,46,47]. Second, our model fails to capture

the real complexity of BG circuits (e.g. distinct cell types

and pathways) and oversimplifies how DA signals are

constructed and used. For example songbirds and mam-

mals share indirect pathways and striatal interneuron

classes whose roles in learning remain unclear [34,48].

And because VTA-projecting neurons in mammals and

birds encode an incredible diversity of motor, reward, and

error-related signals, it remains unclear how relatively

homogenous DA error signals are computed from mixed

inputs [6��,26��]. Finally, our model focuses on learning in
www.sciencedirect.com 
adult birds where clear-cut time-step representations

already exist in the HVC chain. It remains unclear what

neural mechanisms enable HVC chains to develop in the

first place [33]. Finally, we acknowledge that this review

is primarily taking inspiration from actor-critic models to

formulate an algorithmic-level description of song learn-

ing. Yet an implementation-level understanding may

require more detailed analysis of spiking neuron models

with distinct cell classes, as well as more investigation into

precisely how DA modulated plasticity is implemented

with eligibility traces. Such studies could in turn refine

the algorithmic-level ideas presented here.

Comparative approaches can distinguish general princi-

ples from behavior-, effector-specific, and species-specific

solutions to motor learning problems, and can also gener-

ate new hypotheses. For example, we predict that placing

the ‘actor’ upstream of a ‘guesser’ and a ‘consolidator’ (as

the bird’s do with LMAN and RA) could lead to improved

machine implementation of sequence learning. We also

believe that the utility of the actor-critic framework in

song learning, reward based learning, and machine learn-

ing suggests a general principle for computing and learn-

ing from prediction errors.
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