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a b s t r a c t

Under the situation of unmanned driving, the energy consumption in an electric vehicle’s acceleration
process can be reduced by controlling the driving behavior. So in this paper, a pedal control strategy
which could optimize the energy consumption of electric vehicle’s acceleration process is proposed. The
strategy is generated by the training results of reinforcement learning framework and the specific
method of building such framework is discussed in details. Based on the training results of Q-learning-
based algorithm, the relationship between the proportion of energy consumption reduction and vehicle’s
acceleration time is analyzed, which illustrates the energy-saving potential of the algorithm. In order to
improve the control effect of the strategy, an updated algorithm framework based on Deep Q-learning
(DQN) is proposed and an improved pedal’s control strategy is obtained. Compared with the strategy
obtained by Q-learning-based algorithm, the improved strategy not only achieves the same energy-
saving effect, but also guarantees the stability of control effect, which is more suitable for actual use.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The progress of vehicle technology is always accompanied by
the pursuit of improving energy efficiency and promoting social
sustainable development. Compared with traditional vehicle that
equipped with internal combustion engines, electric vehicles show
great potentials to solve the problems of energy shortage and
environmental pollution. Usually, the energy consumption level of
electric vehicles can be mainly improved by adjusting the energy
management strategy. Thus, much related effort has been invested
in the areas of battery management, braking energy recovery and
etc. In addition, the driver behavior is also an important factor in
affecting electric vehicles’ energy consumption level due to its
direct influence on the energy efficiency of vehicle’s power system.
Traditionally, vehicle’s movement is dependent on driver’s
behavior and thus can not be affected by the vehicle’s control
system. However, with the recent rapid development of artificial
intelligence in autonomous driving, an electric vehicle can also
control its movement using the control system, and make it
possible to reduce the energy consumption by controlling driving
behavior, which also provides a feasible development direction for
improving energy efficiency of electric vehicles.

1.1. Literature review

Many studies have focused on the optimization of energy con-
sumption in the driving process of new energy vehicles especially
electric vehicles (Zhang et al., 2012; Hung and Wu, 2012;
Williamson et al., 2007). These studies include not only the opti-
mization of vehicle’s power distribution, but also the optimization
of some key components connected within the transmission sys-
tem to reduce energy consumption (Wang et al., 2016; He et al.,
2012; Feng and Zhang, 2017). These studies show that through
the rational design of energy optimization strategies, the working
points of main power components can be optimized, thus
enhancing energy efficiency during vehicles’ driving. For a hybrid
electric vehicle, the optimization objects mainly include the bat-
tery, the engine, themotor and the transmission system;while for a
pure electric vehicle or a plug-in hybrid electric vehicle whomainly
works under electric mode, those objects mainly include the motor
and the battery. The former mainly involves improving the working
efficiency of driving motor (Hung and Wu, 2012); the latter mainly
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includes controlling the thermal load of the power battery under
extreme conditions (Panchal et al., 2017, 2018).

With the development of intelligent driving technology, vehi-
cles can decide their driving behavior independently without
manual intervention. The existing research on intelligent driving
decision-making control mainly focuses on obstacle avoidance and
path planning (Linhui et al., 2009; Azouaoui and Chohra, 2002; Chu
et al., 2012), whereas few researchers have devoted their efforts in
the process of energy consumption. Some scholars have carried out
research on intelligent assistant driving. By actively controlling the
acceleration and deceleration during vehicle driving process, ve-
hicle’s active safety could be guaranteed (Zheng et al., 2004; Tawari
et al., 2014). These studies did not take vehicle’s energy con-
sumption into account as well. To our best knowledge, energy
consumption is one of the core factors affecting the power eco-
nomic performance of electric vehicles and energy consumption
optimization deserves further attention in intelligent driving,
especially for those intelligent vehicles based on pure electric
classic platform (Fritsch and Liu-Henke, 2017; Murphey, 2008).

Under the condition of manned driving, it is nearly impossible to
improve electric vehicles’ energy consumption level by controlling
driving behavior because the vehicle is controlled by human
drivers; while under the condition of unmanned driving, it is
possible. Similar to traditional vehicles, the energy consumption of
electric vehicles under steady-state crushing driving conditions is
generally relatively low. As an attempt to fill the gap, the focus of
the study is put on the transient-state driving conditions including
both accelerating and braking processes, which has also been a
principle that many researchers consider when optimizing energy
consumption (Borhan et al., 2009, 2012). For braking process, many
studies on braking energy recovery technology for manned vehicles
can be directly applied in unmanned vehicles (Cikanek and Bailey,
2002; Gao et al., 2001); while for accelerating process, relevant
research is rare because the demand for research on energy con-
sumption of vehicles’ acceleration process just emerged with the
development of autonomous driving technology.

Based on the research of many scholars, many optimization al-
gorithms have been applied to optimizing vehicle’s energy con-
sumption. The classical algorithm is dynamic programming, which
can calculate the global optimal solution of optimization problems
under discrete conditions (Wang et al., 2015a; Gausemeier et al.,
2010; Ozatay et al., 2014). In (Wang et al., 2015a), dynamic pro-
gramming is used to solve the optimal power distribution rela-
tionship of a plug-in hybrid electric vehicle. Reference (Gausemeier
et al., 2010) deals with the development of a method for multi-
objective optimization of vehicle’s velocity profiles. In (Ozatay
et al., 2014), a dynamic programming solution for optimizing ve-
hicle’s driving behavior in spatial domain, which increases fuel
economy of a passenger vehicle. It is commonly thought that dy-
namic programming could help to fully explore the energy-saving
potential of the target vehicle but its online application requires
several specific design for the costly demand of calculation time
and space. In some cases, the combination of off-line calculation
and online table-lookups is also an enlightened solution.

However, the off-line solution of dynamic programming still
faces the problem of dimension disaster when computational ac-
curacy is required to be continuously improved. To overcome such
difficulty in calculation demand, several rule-based logics are
proposed for online optimal control of vehicle’s energy consump-
tion, but the effect is limited (Williamson et al., 2007; Padmarajan
et al., 2016). Besides these traditional optimization methods, rein-
forcement learning has been a hot research topic at present with
the development of artificial intelligence technology. It is an
important part of machine learning and suitable for solving
continuous multi-step decision problems (Lillicrap et al., 2015;
Menda et al., 2018; Ma et al., 2019). In (Xu et al., 2018), a rein-
forcement learning algorithm is applied to obtain the closed-loop
optimal/suboptimal solutions of the control quantity in model
prediction control; in (Ipek et al., 2008), a reinforcement learing
approach is proposed to finish the self-optimizing memory control
mission.

Reinforcement learning has also been applied to optimizing
vehicle’s energy consumption and vehicle’s intelligent control
system (Wu et al., 2018; Kober et al., 2013). One of the basic rein-
forcement learning framework is Q-learning algorithm and it can
achieve self-learning optimization in discretizing state space and
store in tabular form (Watkins and Dayan, 1992; Hirashima et al.,
1999). When the state-space is small, Q-learning is effective;
however as the complexity of problem increases, the corresponding
state-space will also become larger and the computation time will
increase exponentially so that the algorithm would not work so
well with its slow convergence rate (Lange and Riedmiller, 2010;
Tsitsiklis, 1994). For those optimization problems with a contin-
uous state space, deep reinforcement learning, also called DQN
(Deep Q Learning), can be adopted. In deep reinforcement learning,
the state-action value matrix in Q-learning is replaced by a neural
network, so this algorithm could make decisions in continuous
state space (Lillicrap et al., 2015; Ma et al., 2019; Arulkumaran et al.,
2017). At present the convergence of Q-learning algorithm has been
guaranteed, but the convergence of DQN algorithm has not been
proved directly (Singh et al., 2000; Tsitsiklis and Van Roy,1997). The
main improvement methods for DQN algorithm are to improve the
convergence effect and reduce the time cost by designing reason-
able operation rules (Van Hasselt et al., 2015; Wang et al., 2015b).
1.2. Contributions of the work

(1) Under the situation of unmanned driving, an energy con-
sumption optimization strategy for electric vehicle’s accel-
eration process is proposed. The strategy is generated by the
reinforcement learning framework and ensures that the
motor’s working points could be properly controlled so that
the energy consumption of vehicle’s acceleration process
would get reduced.

(2) The specific method of building such reinforcement learning
framework for the optimization problem is discussed in de-
tails, which includes the definition of state, action and
reward, the method of how to choose the appropriate
training parameters, the way to define the environmental
model (vehicle model) and how to adjust the algorithm so
that it could reasonably balance different optimization ob-
jectives (dynamic performance or economic performance).

(3) The relationship between the proportion of energy con-
sumption reduction and vehicle’s acceleration time is
analyzed by the training results of Q-learning-based algo-
rithm, which illustrates the energy-saving potential of this
algorithm. In order to improve the control effect of the
strategy, an updated algorithm framework based on DQN is
proposed with its initial training conditions being deter-
mined by referring to the training results of Q-learning-
based algorithm. The updated control strategy is more stable
and ensures that the change curve of motor’s working points
does not have sharp jump, which is more suitable for actual
control.
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1.3. Organization of this paper

The remainder is organized as follows. Section 2 introduces how
the reinforcement learning framework is established. Section 3
shows the necessary model parameters for training the algo-
rithm. In Section 4, the training results and discussion is presented.
The conclusions are finally given in Section 5.
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Fig. 1. Motor’s efficiency map.
2. Establishment of reinforcement learning framework

The optimization work in this paper is based on reinforcement
learning framework. A general reinforcement learning framework
includes five main concepts: environnement, agent, state, action
and reward. The relationship is illustrated as follows. The agent
explores the environment by choosing different actions, and then
the environment gives the agent a reward to evaluate that if the
action is good or bad. If the action is good, reward will be high,
otherwise it will be low. By exploring the environment and getting
the corresponding reward, the agent will gradually determine a
decision sequence with a higher average cumulative reward. When
the average cumulative reward becomes stable, the algorithm will
be considered to be convergent. In such case, the experience
learned by the agent will be regarded as the final optimization
result.

In this study, the definitions of these five concepts are as follows.
2.1. Environement

The main function of the environment part is to evaluate the
action made by the agent. For an acceleration process, time con-
sumption and energy consumption are themain two points. Here, a
vehicle model is defined to reflect both time and energy con-
sumption under different control actions.

In the acceleration process, vehicle’s velocity varies from 0 to a
definite target value. Assuming that the current velocity changes
from v0 to v1, energy consumption and time consumption by the
vehicle can be calculated as formula (1) and (2) show, in which
acc(v) represents the acceleration of the vehicle.

Tconsum¼
ðv1
v0

1
accðvÞ dv (1)

Econsum ¼
ðv1
v0

Tmn
haccðvÞdv (2)

Vehicle’s acceleration process accon a gradientless road can be
described by Equation (2).

acc¼dv
dt

¼ g
d
ðD� f Þ (3)

The dynamic factor Dis defined in the following way.

D¼ Ft � Fw � Ff
G

(4)

The driving force Ftcan be defined as:
Ft ¼ Tmi0ighT
r

(5)

The gravity Gis defined by the following formula.

G¼mg (6)

Air resistanceFw is defined by the following formula. When the
vehicle’s velocity is low, the influence of it on vehicle’s acceleration
process can be neglected; when the vehicle’s velocity is high, it
should be calculated by equation (7).

Fw ¼CdAv
2

21:15
(7)

Assuming that the rolling resistance coefficient f is constant, the
rolling resistance is also constant in general. However, the rolling
resistance can be considered to increase with the increasement of
vehicle’s velocity in the transient process from stationary to start-
ing motion. Therefore, the mathematical expression of rolling
resistance can be defined as follows. According to the relevant
references, the velocity threshold can be defined as generally 1 km/
h.

Ff ¼
�
vfG; v � vthrshold
fG; v> vthrshold

(8)

The motor’s output torque is a function of motor’s speed and the
pedal’s travel as equation (9) shows. The specific relationship is
determined by motor’s external characteristic curve.

Tm¼Apedal � Tm maxðnÞ;n ¼ vigi0
0:377r

(9)

The working efficiency of motor is calculated by the efficiency
map, which is measured by experiment as Fig. 1 shows. (Remark:
The data is provided by Nanjing Yuebo Power System Co., Ltd.)

Based on the above analysis, both time and energy consumption
during the vehicle’s acceleration process can be accurately
calculated.



Fig. 2. Reinforcement learning framework.

H. He et al. / Journal of Cleaner Production 248 (2020) 1193024
2.2. State and action

In the framework of reinforcement learning, the definition of
action is closely related to the definition. In this study, we employ
two methods to define the state and action.

(1) If the vehicle’s velocity is chosen as the state variable, the
pedal’s travel is defined as the action variable. Specifically,
the state is described as s ¼ ðvÞ and the action is described as
a ¼ ðApedalÞ.

(2) If both vehicle’s velocity and the pedal’s travel is chosen as
the state variables, the variation of pedal’s travel is defined as
the action variable. Specifically, the state is described as s ¼
ðv;ApedalÞ and the action is described as s ¼ ðv;DApedalÞ.

Based on the former method, the number of actions increases
with the discrete accuracy of pedal’s travel getting improved; based
on the latter method, obviously it does not, as long as the value of
DApedal is limited in a certain range. However, the latter method
only works in the situation that the action does not change too
frequently, otherwise such definitions of state and action will limit
the variation of action variables.
2.3. Reward

Reward is the key feedback from environment to agent
(Kaelbling et al., 1995). The value of reward helps the agent to
measure the merits of an action, so the strategy could get improved
in the framework of reinforcement learning algorithm. In this
study, it is the vehicle’s energy consumption and acceleration time
that are affected by the pedal’s travel, so the reward is defined as a
combination of the changes of time and energy consumption in an
acceleration process, as is seen in Equation (10).

R ¼ ð1� lÞR1 þ lR2;0 � l � 1
R1 ¼ �Tconsum
R2 ¼ �Wconsum

(10)

In equation (10), R1 represents the reward corresponding to the
time consumption and R2 represents the reward corresponding to
the energy consumption. The real reward value of R in the training
process of reinforcement learning algorithm is defined as a linear
combination of R1 and R2. Thus, l, a coefficient, is defined to
represent this combination relationship. l is a real number with its
value range being l2½0;1�.

When l ¼ 0, the following equation is valid: R ¼ R1 ¼ �
Tconsum. In such case, the agent trained by reinforcement learning
algorithm takes time cost as the only optimization objective to
control the working points of the motor.

When l ¼ 1, the following equation is valid: R ¼ R2 ¼ �
Wconsum. In such case, the agent trained by reinforcement learning
algorithm takes energy cost as the only optimization objective to
control the working points of the motor.

When 0< l<1, the following equation is valid: R ¼ ð1 � lÞð �
TconsumÞþ lð � WconsumÞ. In such case, both energy cost and time
cost are considered as the optimization objectives.

The value of l directly affects the proportion of time cost and
energy cost in the reward value. With the value being close to 0,
the proportion of time cost in reward value gets larger; with the
value being close to 1, the proportion of energy cost in reward
value gets larger. When the proportion of energy cost in reward
value, agent’s exploring process and action selection process ac-
cording to reward value may more likely to be affected by energy
cost. As less energy cost which means better economic perfor-
mance during the acceleration process corresponding to a higher
reward value, the decision-making process of agent will be more
inclined to select actions that could reduce energy consumption.
Thus, with l getting closer to 1, the agent pays more attention to
the economic performance of the vehicle during acceleration
process; otherwise, more attention will be paid to the dynamic
performance.

2.4. Agent

Agent is the trained object to obtain the control strategy through
multiple interactions with the environment to learn the control
knowledge from cumulative experience. As a classical reinforce-
ment learning algorithm (Q-learning), the core of the Q-learning
agent is described as a matrix which can record state-action value
and update its value directly through changing the corresponding
element; for the agent in DQN, the core of the agent is represented
by a neural network and the update of state-action value function is
achieved through updating the parameters of the neural network.

Compared with DQN, the advantage of Q-learning is that the
training results are easier to converge to the global optimzal solu-
tion. Although the convergence rate may not be fast and data
efficient, the convergence of this method has been proved by
relevant literatures (Hirashima et al., 1999; Watkins, 1989). In the
case that Q-learning is chosen to train the agent, the algorithmic
strategy is expressed as a nstate � naction matrix. The update process
of the algorithm is to continuously update the data in this matrix
(Hirashima et al., 1999). When the algorithm converges, the matrix
will finally record the average cumulative reward of each state and
can determine the optimal action for each state, which can give the
optimal pedal’s control strategy.

As a typical discrete optimization method, Q-learning also
inevitably has the problem of dimension disaster (Human-level
control throu, 2015). As the discretization accuracy of state or ac-
tion is improved, the iteration computation time of Q-learning will
become very large, so it can hardly converge. Therefore, DQN is
more suitable for such cases because of its generality and robust-
ness with neural network as the core of the agent. When the
number of state variables increases, the size of the neural network
used to express the strategy will not change significantly, which
means that DQN is more suitable for solving those optimization
problems with large number of state variables.

2.5. Structure of the algorithm

The relationship between the above components could be
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expressed simply as Fig. 2 shows.
Agent starts from an initial state, constantly explore the envi-

ronment, and migrate from one state to another. In this process, the
environment will give the agent some feedback information, which
is defined as the reward. When the reward value is high, the next
time the agent will continue to take the same action in a similar
environment with a higher probability. When the reward value is
low, the agent may reduce the probability of the choosing the ac-
tion when facing the same condition.

From the perspective of algorithm execution, agent and envi-
ronment could be regarded as two functions (The agent function is
generally called as Q-function). The former outputs the decision
quantity by inputting the current state; the latter outputs the state
information after executing the decision and the feedback reward
corresponding to the current action through the current state and
decision-making information.

The specific mathematical form of the agent function could be
either discrete or continuous, which also determines whether the
reinforcement learing algorithm is discrete or continuous. In the
following part, we present the details of the discrete reinforcement
learning framework based on Q-learning (Algorithm 1) and the
continuous reinforcement learning framework based on DQN
(Algorithm 2).

2.5.1. Q-learning-based optimal algorithm
Q-learning-based algorithm is as shown in the following flow-

chart.

Algorithm1. Q-learning-based algorithm.

Updating process of Q-matrix

Initialize the state-action matrix arbitrarily

Repeat (for each episode):

Initialize 

Repeat (for each step of episode):

Choose action: 

Take action , observe reward and next state 

,

Until 

Q

s

arg max ( , ), :

, :1
a

Q s a probability
a

random action a probability

a R s

( , ) ( , ) [ max ( , ) ( , )]aQ s a Q s a R Q s a Q s a s s

terminals s

Notice that MATLAB parallel computing toolbox is adopted to
speed up the computing process to get a convergency result in
less time. The toolbox provides up to 12 core parallel computing
capabilities, which can speed up the learning process. This
method could accelerate the convergence of the algorithm by
using multi-agent to explore the environment, which is one of
the current development directions of reinforcement learning
(Tampuu et al., 2017). The whole parallel computer flow is shown
in Fig. 3.

In Fig. 3, the computation process of each working pool is in-
dependent. Different workers represent a different calculation unit.
The results of each workers are expressed as a different matrix,
called sub-matrix. After several iteration computation, different
results are expressed by different sub-matrix which has been ob-
tained by different working pools. By setting the main Q-matrix as
the average value of sub-matrix, the main Q-matrix can accumulate
more knowledge in the same time than single core. After that, each
sub-matrix will be reset within the value of main Q-matrix for the
next iteration calculation. Based on such parallel computing
framework, the computational speed will be significantly
improved. If the core number is set to 12, the calculation time will
be reduced by more than 90%, which would alleviate the pressure
in computation time and improve the algorithm performance with
Q-learning.

The convergence of Q-learning-based algorithm can be deter-
mined by equation (11). As the number of iterations increases, the
qmean becomes more and more stable. When qmean does not change
any more, the iterative process can be terminated.

qmean¼
1

m,n

Xm
i¼1

�
Xn
j¼1

ðdQkÞij;

8>>>>>>><
>>>>>>>:

qmax ¼ max
�
Qij

�
;1 � i � m;1 � j � n

qmin ¼ min
�
Qij

�
;1 � i � m;1 � j � n

Q ¼ 2
Q � qmin

qmax � qmin
� 1

dQk ¼ Qk � Qkþ1; k ¼ 0;1;2:::

(11)
2.5.2. DQN-based optimal algorithm
In order to improve the training effect of DQN algorithm, an

improved version of DQN called Double DQN is chosen in this paper
to construct the optimization algorithm. With two different Q-
networks being used to complete the tasks of action selection and
action evaluation respectively, double-DQN could minimize the
impact of over-estimation problem. The whole framework of the
algorithm is as the following flow-chart shows.
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Algorithm 2. DQN-based algorithm.
Updating process of the Q network 

Initialize replay memory as capacity N

Initialize action-value function with random weights 

Initialize target action-value function with weights 

Initialize , 

Repeat (for each episode):

Initialize 

Repeat (for each step of episode):

Choose action: 

Take action , observe reward and next state 

Define one exploratory experience as 

Store in 

Sample random mini-batch from ,

Perform a gradient descent step of on with respect to 

the network parameters 

If , reset 

Until 

D

Q

Q̂ ˆ

train_loop 0n minik N

s

arg max ( , , ), :

, :1
a

Q s a probability
a

random action a probability

a R s

( , , , )d s a r s

d D

1 2( , ... )kd d d D

terminal

^
terminal

,
Set ˆ( ,argmax ( , ; ); ) ,

k k

k
k k k k k k

a

R s s
y

R Q s Q s a s s

net

2( ( , , ))k k k ky Q s a

train_loop train_loop
train_loop

1,

0,

n n C
n

otherwise

train_loopn C Q̂ Q

terminals s
The main difference between DQN-based algorithm and Q-
learning-based algorithm is the expression form of Q function. Q
function in DQN-based algorithm is expressed as a neural network
instead of a two-dimensional matrix as that in Q learning-based
algorithm. Therefore, the training and updating process of rein-
forcement learning algorithm is no longer a direct updating process
of Q function, but an indirect updating by adjusting the parameters
of the neural network.

Updating process of the network’s parameters is realized by
gradient descent method, which is an effective way for solving
many optimization problems. In order to avoid the disadvantageous
effect of random disturbance on parameters’ updating, training
process is performed with multiple sets of data rather than one
single set, which is quite different from that in Q learning-based
algorithm.

Such several sets of data together are called as a batch. Each
batch of data is provided by the memory pool that stores each
exploratory data. When the amount of data in memory pool is less
than that of one batch, the algorithm only performs the process of
agent exploring the environment, but not the process of parameter
updating. When the amount of data in memory pool exceeds a
certain limit, the data earlier entering into the memory pool will be
discarded.



Table 4
Parameters of DQN-based algorithm.

Parameters Implication Value

nstate the number of state adjustable
naction the number of action adjustable
a learning rate of neural network 0.01
ε greedy coefficient 0.6
N size of memory pool 6000
Nmini size of mini-batch 1024
C update frequency of target network per 50 steps

Fig. 4. Experimental vehicle.
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3. Parameters’ explanation

3.1. Parameters of the vehicle

Vehicle’s parameters are used to construct the vehicle model in
the algorithm framework. The specific data is given by the exper-
imental vehicle provided by the author’s laboratory (see Fig. 4). The
vehicle parameters are listed in Table 1, and the driving motor and
power battery’s parameters are listed in Table 2.
3.2. Parameters of the Q-learning-based algorithm

The present parameters of reinforcement learning algorithm
Table 1
Parameters of the vehicle model.

Parameters Values Parameters Values

m (kg) 3500 ig (/) 5.857
r(m) 0.447 i0 (/) 2.604
f (/) 0.01 Cd (/) 0.65
Wheelbase(m) 2.65 A (m2) 3.90

Table 2
Parameters of driving motor and power battery.

Parameters of motor Values Parameters of battery Values

Max Power (kW) 50 Rated Voltage(V) 347.8
Speed (r/min) 2800/7200 Capacity (Ah) 50
Rated Voltage(V) 360 Sustained Current(A) 100
Max Torque (Nm) 170 Peak Current(A) 150

Table 3
Parameters of Q-learning-based algorithm.

Parameters Implication Value

a learning rate 0.9
g discount rate 0.8
ε greedy coefficient 0.9
nep_max_main max episode in main loop 20
nep_max_pool max episode in pool loop nstate � naction
nstate the number of state adjustable
naction the number of action adjustable
npool the number of parallel pool 12
may have a serious effect on the training results. The parameters
setting in Q-learning-based algorithm are given in Table 3.

Since the vehicle’s velocity is chosen as one of the state variable,
the number of state is proportional to the accuracy of vehicle’s
velocity as equation (12) describes.

nstate ¼ vtarget � vstart
Dv

(12)

In order to improve the calculation accuracy of vehicle model,
the smaller the discrete value of velocity, the better; in order to
reduce the training time cost of the algorithm, the larger the
discrete value of velocity, the better. While discretizing the value of
velocity with high resolution can improve the calculation accuracy
of vehicle model, it can lead to the exponential increase in the
training time. Under different target velocity, the relationship be-
tween time and energy consumption calculated by the vehicle
model and discrete value of velocity Dv is shown in Fig. 5 (for ease
of observation logDv is used to represent Dv). As is shown, the
calculation error of both time consumption and energy consump-
tion increases with the increase of Dv. In the case of high resolution
(Dv<1 km/h), the error is very small and almost unchanged; while
in the opposite case (Dv>1 km/h), the error begins to increase
sharply. Therefore, setting discrete value (Dv) as 1 km/h can attain a
balance between the calculation accuracy and training time.

3.3. Parameters of the DQN-based algorithm

The parameters setting in DQN-based algorithm are given in
Table 4.

In DQN algorithm, a neural network instead of Q-matrix is
functioned as the core to explore the environment and learn the
experience. As the neural network estimates the state-action value
by function fitting, the increase of state variables will not affect the
scale of the neural network, nor will it increase time cost of the
algorithm significantly.

4. Training results and discussion

4.1. Results of Q-learning-based algorithm

The acceleration curve of the vehicle with pedal’s travel
equaling 100% is shown in Fig. 6. As is shown, the maximum ve-
locity is about 80 km/h with acceleration time being 28s. Therefore,
the acceleration process can be approximately divided into three
different situations according to the target velocity, corresponding
to different acceleration requirements: 30 km/h represents a low
accelerated demand, 50 km/h represents a middle accelerated de-
mand and 70 km/h represents a high accelerated demand.

By adjusting the coefficients l, a set of different acceleration
strategies will be obtained with different energy and time con-
sumption as Figs. 7e9 show.

Within a certain range, energy consumption in an acceleration
process decreases with the increase of time consumption, which
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means the energy consumption during an acceleration process can
be optimized. Different adjustment coefficients correspond to
different control strategies; the strategy that reach the maximum
energy reduction potential is considered to be the best strategy. The
control effect can be shown in Figs. 10e12.
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Table 5
Energy-saving potential of the control strategy under different target velocity.

Target velocity 30 km/h 50 km/h 70 km/h

energy reduction potential (%) 2.1 1 0.9
increment of acceleration time(s) 2.79 3.34 1.71
coefficientl(/) 0.8 0.8 0.4
initial pedal’s travel(/) 0.6 0.6 0.6
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Based on equation (11), the iterative convergence curve is
shown in Figs. 10(b), Fig. 11(b) and Fig. 12(b). These curves show
that the Q-learning-based algorithm can converge effectively in
three cases and generate stable control strategies. The control effect
of the strategy is shown in Figs. 10(a), Fig. 11(a) and Fig. 12(a). As is
shown, motor’s working points are effectively controlled by the
strategy.When themotor’s speed is low, the control strategy adopts
a lower driving torque; when the motor’s speed is high, the control
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strategy adopts a higher driving torque.
Taking the time and energy consumption in the full pedal ac-

celeration as a base case, the relationship between the increment of
acceleration time and the percentage of energy reduction under
different target velocity is illustrated in Table 5.With target velocity
being 30 km/h, 50 km/h and 70 km/h, the energy reduction during
an acceleration process can be 2.1%, 1% and 0.9%, which indicates
that the energy-saving potential of the control strategy is greater
following a lower target velocity.

Meanwhile, due to the influence of the adjustment coefficient,
the dynamic performance reduction (increment of acceleration
time) caused by energy saving can also be controlled in an
acceptable range (less than 3.5s). Besides, the adjustment
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coefficient and the initial pedal’s travel of the most energy-saving
algorithms in the three cases are also recorded for further
research in the following contents as Table 5 shows.

4.2. Results of DQN-based algorithm

Based on the test results of the state-discrete algorithm, the
potential and control effect of the algorithm are given, but the
control effect is still not so stable enough. In order to improve the
stability of the pedal control strategy for electric vehicle’s acceler-
ation process and make the algorithm easy to realize online
application, an updated pedal control strategy with continuous-
state based on DQN framework is designed.
 (b) convergence curve
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Table 6
Energy-saving potential of the control strategy under different target velocity.

target velocity 30 km/h 50 km/h 70 km/h

time(s) DQN 8.7134 14.1461 23.2654
Q-learning 8.6204 14.1767 23.2149

Energy(J) DQN 1656.9 4581.9 9742.8
Q-learning 1656.9 4582.8 9745.6

Table 7
Error comparison (Taking the algorithm obtained by Q-learning as the standard).

target velocity 30 km/h 50 km/h 70 km/h

error time(s) almost zero �0.03059 0.05051
energy(J) almost zero �0.8395 �2.748

Table 8
Descrpition of all the symbols.

Symbol description Unit

v Velocity km/h
acc Acceleration m/s2

h Efficiency %
Tconsum Time consumption s
Econsum Energy consumption J
g Gravity acceleration m/s2

D Dynamic factor /
t Time s
f Rolling resistance coefficient /
Ft Traction force N
Fw Air resistance force N
Ff Rolling resistance force N
m Mass of the vehicle kg
G Gravity of the vehicle N
Cd Air drag coefficient /
A Windward area m2

Apedal Pedal’s travel /
Tm max Motor’s external characteristic torque Nm
n Motor’s speed r/min
r Rolling radius of the vehicle m

Table 9
Descrpition of all the nomenclatures.

Nomenclature Description

Action in reinforcement learning
State in reinforcement learning

R or r Reward in reinforcement learning
Weighting coefficient
Dimension of state
Dimension of action
A value function, also called as Q function
learning rate
discount rate
greedy coefficient
max episode in main loop
max episode in pool loop
Dimension of state
Dimension of action
the number of parallel pool
Learning rate of neural network
Weights of the neural network
Size of memory pool
Size of mini-batch
Renewal cycle
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Compared with the discrete reinforcement learning framework,
the following improvement measures have been taken.

(1) The action is defined as the increment of pedal’s travel rather
than pedal’s travel, and the state is defined as the velocity
and pedal’s travel. In such case, motor’s working points could
change smoothly, which will also meet the requirement of
actual control.

(2) In order to improve the stability of the algorithm, the
dimension of state variables is extended with two more
variables including cumulative time consumption Tcum ¼R t
0 Tconsumdtand cumulative energy consumptionEcum ¼R t
0 Econsumdt. Although the dimension of state has increased,

the time cost of the algorithm under DQN frameworkwill not
significantly increase.

In such case, action is finally defined as a ¼ ðDaccÞ and state is
finally defined as s ¼ ðv; acc; Tcum; Ecum; Þ.The performance of the
strategy can be shown in Figs. 13e15. Figs. 13(a), Fig.14(a) and
Fig.15(a) show the control effect of the trained strategy; Figs. 13(b),
Fig.14(b) and Fig.15(b) show the convergence curve in the training
process.

The convergence curves show that the proposed DQN-based
algorithm converges in all the three cases (with target velocity
being 30 km/h, 50 km/h and 70 km/h), which means the final
strategy we got can provide a stable control under different
situations. The trend of the convergence curve and the number of
iterations is similar in these three cases, which suggests that the
time cost of training the pedal control strategy based on this
framework will not increase significantly with the change of target
velocity.

The change curve of motor’s working points shows that the
control effect trained by DQN-based algorithm is better than that by
Q-learning-based algorithm. Compared with the latter (Q-learning
based algorithm), motor’s working points obtained by the former
(DQN-based algorithm) is more stable with nearly no sharp jump in
the change curve of motor’s working points. Through the results,
we can conclude that the pedal control strategy trained by DQN-
based algorithm is more conducive to meet the requirement of
actual control.

Energy and time consumption corresponding to the control
strategy obtained by DQN-based algorithm and Q-learning algo-
rithm are shown in Table 6. The error of time and energy con-
sumption between the two strategies is very small as shown in
Table 7. Thus, it can be concluded that compared to the strategy of
Q-learning, the control strategy of DQN-based algorithm can obtain
a similar performance in terms of energy saving potential and dy-
namic performance degradation.

Meanwhile, since parts of initial training conditions (including
initial value of pedal’s travel and the adjustment coefficient) of
DQN-based algorithm are determined by referring to the training
results of Q-learning-based algorithm, such training process is
easier to converge than those training process with random initial
conditions.
5. Conclusions

In this paper, an energy consumption optimization strategy for
electric vehicle’s acceleration process is proposed, aiming at
reducing the energy consumption by controlling the change of
acceleration pedal’s travel reasonably during an acceleration pro-
cess. The strategy is suitable to be applied in unmanned electric
vehicles. The discrete reinforcement learning algorithm (Q-
learning) and the state-continuous reinforcement learning algo-
rithm (DQN) are combined together to train the strategy. The
former is used for training and getting a basic strategy; the latter is
used for improving and upgrading the strategy.

The results of case study show that energy consumption of



H. He et al. / Journal of Cleaner Production 248 (2020) 11930212
acceleration process can be effectively reduced by the strategy’s
control with the acceleration time being extending within an
appropriate range. Especially under low target-velocity conditions,
energy-saving potential is better. The strategy obtained by the two
algorithms can achieve almost the same energy-saving potential.
While the corresponding change process of motor’s working points
of DQN-based algorithm is more stable and could provide a more
stable control strategy that is suitable for practical application. The
Symbol and Nomenclature appled in this article are listed in Table 8
and Table 9.
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