
Control Engineering Practice 97 (2020) 104331

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Scalable reinforcement learning for plant-wide control of vinyl acetate
monomer process
Lingwei Zhu a,∗,1, Yunduan Cui a,1, Go Takami b, Hiroaki Kanokogi b, Takamitsu Matsubara a

a Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma, Nara, Japan
b New Field Development Center, Yokogawa Electric Corporation, Nakacho 2-9-32, Musashino-shi, Tokyo, Japan

A R T I C L E I N F O

Keywords:
Chemical process control
Reinforcement learning
Vinyl acetate monomer

A B S T R A C T

This paper explores a reinforcement learning (RL) approach that designs automatic control strategies in a large-
scale chemical process control scenario as the first step for leveraging an RL method to intelligently control
real-world chemical plants. The huge number of units for chemical reactions as well as feeding and recycling
the materials of a typical chemical process induces a vast amount of samples and subsequent prohibitive
computation complexity in RL for deriving a suitable control policy due to high-dimensional state and action
spaces. To tackle this problem, a novel RL algorithm: Factorial Fast-food Dynamic Policy Programming (FFDPP)
is proposed. By introducing a factorial framework that efficiently factorizes the action space, Fast-food kernel
approximation that alleviates the curse of dimensionality caused by the high dimensionality of state space,
into Dynamic Policy Programming (DPP) that achieves stable learning even with insufficient samples. FFDPP is
evaluated in a commercial chemical plant simulator for a Vinyl Acetate Monomer (VAM) process. Experimental
results demonstrate that without any knowledge of the model, the proposed method successfully learned
a stable policy with reasonable computation resources to produce a larger amount of VAM product with
comparative performance to a state-of-the-art model-based control.

1. Introduction

Chemical processes that are comprised of a large number of sensors
and control units require the derivation of complex models for the
environment and control laws based on it Dotoli, Fay, Miśkowicz, and
Seatzu (2015) and Metzger and Polakow (2011). Obtaining an accurate
model is difficult in practice for large-scale processes. As a response to
the growing model complexity of such model-based control, model-free
approaches as adaptive control, statistical process control methods, and
agent-based approaches are naturally emerging (Kano & Nakagawa,
2008; Ng & Srinivasan, 2010; Qian, Huang, Lin, & Li, 2000; Wang &
Zhang, 2008; Yang et al., 2008; Zhang, Kano, & Li, 2017).

Reinforcement Learning (RL) (Badgwell, Lee, & Liu, 2018; Sutton &
Barto, 1998) is a potentially powerful tool in chemical process control
problems since it does not need a model of the plant for control
design; it can learn a control policy by trial-and-error interactions
with the environment without supervision from experienced operators.
Applications in process control fields range from electricity grid control
to dynamic power management (Ernst, Glavic, Geurts, & Wehenkel,
2005; Hoskins & Himmelblau, 1992; Lee & Wong, 2010; Liu, Tan,
& Qiu, 2010). In the chemical process control context, Hoskins and
Himmelblau (1992) applied RL to control a continuous-stirred-tank

∗ Corresponding author.
E-mail address: zhu.lingwei.zj5@is.naist.jp (L. Zhu).

1 These authors contributed equally to this paper.

reactor (CSTR). Syafiie, Tadeo, and Martinez (2007) leveraged RL in
a classical pH neutralization control task in a laboratory plant. In other
process control problems outside of chemical plants, Liu et al. (2010)
used an enhanced Q-learning algorithm to derive a policy that achieves
better power-performance tradeoff on both synthetic and small-sized,
real workloads. Harp, Brignone, Wollenberg, and Samad (2000) em-
bedded an RL algorithm in a simulator for electricity management to
learn a profitable electricity pricing policy. Although these methods
achieved success in low-dimensional simulations or small-scaled, real-
world experiments, successfully applying RL in chemical plants remains
difficult. The above studies mostly employed Q-learning (Watkins &
Dayan, 1992), which does not scale well in high-dimensional prob-
lems, and is typically expensive in terms of both learning time and
computational resources for high-dimensional systems. Deep RL (DRL)
techniques on process control (Kubosawa, Onishi, & Tsuruoka, 2018;
Spielberg, Gopaluni, & Loewen, 2017), such as the Deep Q-Network
(DQN), usually have sample complexity that is several magnitudes
larger than traditional RL. Such prohibitive sample complexity excludes
them from consideration for plant-wide process control. This problem
might explain why (Kubosawa et al., 2018) only experimented with iso-
lated components of the Vinyl Acetate Monomer (VAM) manufacturing

https://doi.org/10.1016/j.conengprac.2020.104331
Received 23 April 2019; Received in revised form 7 January 2020; Accepted 28 January 2020
Available online 10 February 2020
0967-0661/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.conengprac.2020.104331
http://www.elsevier.com/locate/conengprac
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2020.104331&domain=pdf
mailto:zhu.lingwei.zj5@is.naist.jp
https://doi.org/10.1016/j.conengprac.2020.104331
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

process from malfunctioning without considering the full context of the
problems with the VAM process control, e.g., improving the production
rate or product quality (see Discussion for further details).

To the best of our knowledge, few studies have applied RL al-
gorithms to large-scale chemical plant control. The main reasons are
intractable computation and the memory cost incurred by such an
extremely large number of samples, subsequent derivation for fea-
sible policies, and the poor scalability of traditional RL algorithms,
e.g., Q-learning. Traditional RL algorithms suffer from the curse of
dimensionality (Bellman, 2003), which refers to the explosion of the
number of samples needed as dimensionality increases.

In this paper, Factorial Fast-food Dynamic Policy Programming
(FFDPP), a novel scalable reinforcement learning framework for large-
scale chemical plants is proposed. FFDPP inherits the smooth policy
update of Dynamic Policy Programming (Azar, Gómez, & Kappen,
2012), which achieves stable learning even with insufficient samples
in high-dimensional state–action spaces, by considering the Kullback–
Leibler divergence between current and new policies as a regularization
term, as demonstrated in Cui, Matsubara, and Sugimoto (2017a, 2017b)
and Tsurumine, Cui, Uchibe, and Matsubara (2019). To further en-
hance its scalability for high-dimensional systems such as chemical
plants, two effective approximation schemes are exploited: factorial
policy representation with factor-wise policy updates (Cui, Zhu, Fu-
jisaki, Kanokogi, & Matsubara, 2018; Matsubara, Gómez, & Kappen,
2014) and Fast-food kernel approximation (Le, Sarlos, & Smola, 2013).
Factorial policy representation allows for vast discrete action spaces
to be factorized into smaller action sets (Cui et al., 2018; Matsubara
et al., 2014), inspired by the fact that conventional heuristic strategies
often independently handle each control parameter. This assumption
tends to hold true in process control problems since the units that serve
different purposes are designed to be independent. Fast-food kernel
approximation samples in the frequency domain approximate feature
maps (Le et al., 2013) instead of direct sampling in the original space
that alleviates the curse of dimensionality.

To investigate the effectiveness of FFDPP for large-scale chemical
process control, a simulator of a VAM manufacturing process. Proposed
by Luyben and Tyréus (1998) is used, the VAM process is a benchmark
problem for testing chemical process design with the following features:

1. a realistically large process flowsheet that contains standard
chemical unit operations;

2. a process with the typical industrial characteristics of recycle
streams and energy integration;

3. actual, non-ideal chemical components.

The VAM model was further improved by Chen, Dave, McAvoy, and
Luyben (2003), Luyben (2011), Olsen, Svrcek, and Young (2005) and
Seki et al. (2010). Based on those improvements, Machida et al. (2016)
developed a simulation model with a state-of-the-art model-based con-
troller under which the process operates in stable conditions. Ex-
perimental results confirmed that the policies learned by FFDPP can
achieve comparative performance to the model-based controller with-
out knowledge of the plant model.

The rest of the paper is organized as follows. the preliminary is illus-
trated in Section 2, followed by a detailed description of the proposed
method in Section 3. The VAM process and our objective are shown in
Section 4. Simulation results are examined in Section 5. Discussion is
described in Section 6, and the conclusion follows in Section 7.

2. Preliminary

2.1. Reinforcement learning

RL models problems as Markov Decision Processes (MDPs) ex-
pressed by a quintuple ( ,,  ,, 𝛾).  denotes the state space, 
denotes the action space, and  𝑎

𝑠𝑠′ is the transition from state s to 𝑠′

by action a.  = 𝑟𝑎𝑠𝑠′ is the immediate reward under that transition,
and 𝛾 ∈ (0, 1) is the discount factor.

Given state 𝑠, value function 𝑉𝜋 following specified policy 𝜋 from
that state is defined as the cumulative discounted reward:

𝑉𝜋 (𝑠) = E𝜋,

[ ∞
∑

𝑡=0
𝛾 𝑡𝑟𝑠𝑡

|

|

|

𝑠0 = 𝑠
]

, (1)

where 𝑠𝑡 is the state at time step 𝑡 and 𝑟𝑠𝑡 is the reward at state 𝑠𝑡. 𝐸𝜋,
is averaged over 𝜋 and transition probability  .

RL methods search for optimal policy 𝜋∗ to maximize (1), i.e., to
satisfy the recursive Bellman equations:

𝑉𝜋∗ (𝑠) = max
𝜋

∑

𝑎∈
𝑠′∈

𝜋(𝑎|𝑠)
[

 𝑎
𝑠𝑠′
(

𝑟𝑎𝑠𝑠′ + 𝛾𝑉𝜋∗ (𝑠′)
)

]

. (2)

It is also convenient to use 𝑄𝜋 to denote the value function of
state–action pairs (𝑠, 𝑎) ∈  × under policy 𝜋:

𝑄𝜋∗ (𝑠, 𝑎) = max
𝜋

∑

𝑠′∈
 𝑎
𝑠𝑠′
(

𝑟𝑎𝑠𝑠′+𝛾
∑

𝑎′∈
𝜋(𝑎′|𝑠′)𝑄𝜋∗ (𝑠′, 𝑎′)

)

. (3)

2.2. Dynamic policy programming

Dynamic Policy Programming (DPP) (Azar et al., 2012) is a value
function-based RL algorithm. Due to its theoretically proven conver-
gence, sample efficiency, and stability in learning, DPP has many
extensions from complex robot-arm manipulation (Cui et al., 2017a)
to DRL-based robot control (Tsurumine et al., 2019) and inverse
RL (Uchibe, 2018). DPP enforces the stability of policy updates by
adding a Kullback–Leibler (KL) divergence term between the base-
line policy and the current policy to restrain the agent from taking
aggressive steps:

𝐾𝐿
(

𝜋(⋅|𝑠) ∥ �̄�(⋅|𝑠)
)

=
∑

𝑎∈
𝜋(𝑎|𝑠) log

(

𝜋(𝑎|𝑠)
�̄�(𝑎|𝑠)

)

. (4)

A new optimal value function is obtained by incorporating Eq. (4)
into (2):

𝑉𝜋∗ (𝑠) = max
𝜋

∑

𝑎∈
𝑠′∈

𝜋(𝑎|𝑠)
[

 𝑎
𝑠𝑠′
(

𝑟𝑎𝑠𝑠′+𝛾𝑉𝜋∗ (𝑠
′)
)

− 1
𝜂
log

(

𝜋(𝑎|𝑠)
�̄�(𝑎|𝑠)

)]

, (5)

where 𝜂 is the inverse temperature parameter that weights the effect of
the KL term.

Following (Azar, Gómez, & Kappen, 2011; Todorov, 2006), the new
optimal value function and policy satisfy the recursive equations:

𝑉 𝜋∗
�̄� (𝑠) = 1

𝜂
log

∑

𝑎∈
�̄�(𝑎|𝑠) exp

[

𝜂
∑

𝑠′∈
 𝑎
𝑠𝑠′
(

𝑟𝑎𝑠𝑠′ + 𝛾𝑉 𝜋∗
�̄� (𝑠′)

)

]

, (6)

�̄�∗(𝑎|𝑠) =
�̄�(𝑎|𝑠) exp

[

𝜂
∑

𝑠′∈  𝑎
𝑠𝑠′
(

𝑟𝑎𝑠𝑠′ + 𝛾𝑉 𝜋∗
𝜋 (𝑠′)

)

]

exp
(

𝜂𝑉 𝜋∗
𝜋 (𝑠)

) . (7)

The optimal value function and policy need to be obtained iter-
atively. By repeatedly replacing the baseline policy in Eq. (6), the
optimal value function can be asymptotically obtained. We define an
action preference function (Sutton, 1996) and denote iteration 𝑡:

𝑃𝑡+1(𝑠, 𝑎) =
1
𝜂
log �̄�𝑡(𝑎|𝑠) +

∑

𝑠′∈
 𝑎
𝑠𝑠′
(

𝑟𝑎𝑠𝑠′ + 𝛾𝑉 𝑡
�̄� (𝑠

′)
)

(8)

and compare (8) with (6) and (7), and so the value function and policy
at iteration 𝑡 become:

𝑉 𝑡
�̄� (𝑠) =

1
𝜂
log

∑

𝑎∈
exp

(

𝜂𝑃𝑡(𝑠, 𝑎)
)

, (9)

�̄�𝑡(𝑎|𝑠) =
exp

(

𝜂𝑃𝑡(𝑠, 𝑎)
)

∑

𝑎′∈ exp
(

𝜂𝑃𝑡(𝑠, 𝑎′)
) . (10)

Substituting (9) and (10) back into (5), the update rule for the action
preference function is derived:

𝑃𝑡+1(𝑠, 𝑎) = 𝑃𝑡(𝑠, 𝑎)

= 𝑃𝑡(𝑠, 𝑎) −𝜂𝑃𝑡(𝑠) +
∑

𝑠′∈
 𝑎
𝑠𝑠′ (𝑟

𝑎
𝑠𝑠′ + 𝛾𝜂𝑃𝑡(𝑠′)),

(11)

2



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

where 𝜂𝑃𝑡 =
∑

𝑎∈
exp (𝜂𝑃𝑡(𝑠,𝑎))𝑃𝑡(𝑠,𝑎)
∑

𝑎′∈ exp (𝜂𝑃𝑡(𝑠,𝑎′))
is the Boltzmann softmax op-

erator defined to replace the log-partition-sum in (9).  is the DPP
operator, and 𝑃 ∈ ||||×1 is the action preference vector for all the
state–action pairs. The optimality of the preference function is obtained
when 𝑡 → ∞.

The original DPP is only applicable to small-sized problems with
discrete states and model knowledge. To derive model-free learning
with continuous states, function approximation is introduced (Sutton,
McAllester, Singh, & Mansour, 1999). For example, linear function
approximation defines a feature map as 𝛷=[𝜙(𝑥1),… , 𝜙(𝑥𝑁 )]𝑇 , where N
denotes the number of samples and 𝜙(𝑥𝑛)= [𝜑1(𝑥𝑛),… , 𝜑𝑀 (𝑥𝑛)] ∈ 𝑀 .
𝑥 denotes sample-combining state 𝑠 and action 𝑎. 𝜑 is the basis function.
The action preference at iteration t is approximated by 𝛷 and weight
vector: 𝑃𝑡 = 𝛷𝜃𝑡. Weight vector 𝜃𝑡 is obtained by iteratively solving the
least-square problem that minimizes the loss between the true action
preference and approximation 𝐽 ≜ ‖𝑃 −𝛷𝜃‖2:

𝜃∗𝑡 = arg min
𝜃𝑡

𝐽 (𝜃𝑡) = [𝛷𝑇
𝑡 𝛷𝑡 + 𝜎2𝐼]−1𝛷𝑇

𝑡 𝑃𝑡, (12)

where 𝜃∗𝑡 is the minimizer of 𝐽 (𝜃) at iteration 𝑡 and 𝜎 is a regularization
term that avoids overfitting due to a limited number of samples. For
simplicity subscript 𝑡 of the weight vector for approximating the action
preference is dropped in later sections, i.e., 𝑃𝑡 = 𝛷𝜃.

DPP with simple function approximation remains inefficient in com-
puting feature map 𝛷 in high-dimensional spaces. The traditional ap-
proach for computing a feature map is to set a grid uniformly over
the space and evaluate at each grid point (Azar et al., 2011). This
scales poorly in high-dimensional space since the number of grid points
needed to cover the space increases exponentially with dimensionality.
This dilemma is known as the curse of dimensionality. Potential solu-
tions include replacing the analytic expression of 𝛷 by approximation
and decomposing the action set into subsets.

3. Proposed method

In this section the proposed method, Factorial Fast-food DPP
(FFDPP) is introduced. FFDPP is a framework that unifies the efficient
approximation of feature map 𝛷 and the factorization of large-scale
discrete action sets by DPP.

3.1. Factorial policy with factor-wise smooth update

In the proposed method, without loss of generality every action 𝑎 ∈
 is encoded as 𝑎 = [𝑎(1),… , 𝑎(𝑀)]𝑇 , where entry 𝑎(𝑚) denotes control
parameter m and has a discrete set of action elements [𝑎(𝑚)(1) ,… , 𝑎(𝑚)(𝑁)].
For simplicity, every entry 𝑎(𝑚) is assumed to be a set of identical
size. Generally, to take full consideration of 𝑀 control parameters,
each with 𝑁 discrete action requires searching among || = 𝑀𝑁

candidates. The corresponding computation easily becomes intractable
with an increasingly large 𝑀 and 𝑁 . One typical solution is using a
smaller hand-engineered action set based on human knowledge (Cui
et al., 2017a). However, this may significantly undermine the control
flexibility.

Inspired by Cui et al. (2018) and Matsubara et al. (2014), it is
reasonable to assume that the policy can be factored into components
that are only comprised of a small subset of actions, s.t. the conditional
independence conditioned on the states between sub-policies holds:

�̂�(𝑎|𝑠) =
𝑀
∏

𝑚=1
𝜋(𝑎(𝑚)|𝑠),

𝒔.𝒕. 𝜋(𝑎(𝑖)|𝑠) ⟂ 𝜋(𝑎(𝑗)|𝑠), ∀𝑖, 𝑗

𝜋(𝑎|𝑠) ≈ �̂�(𝑎|𝑠),

(13)

where ⟂ denotes the independence between two random variables.
By factorizing the action set into several independent sub-action sets,
a multi-agent learning framework is defined under which each agent
learns different value function 𝑉 (𝑚)

𝜋 and policy 𝜋(𝑚), where superscript

m denotes the agent that is handling the m-th subset. The multi-agent
framework factorizes the total 𝑀𝑁 possible actions to be handled by 𝑀
agents, each of which has 𝑁 discrete actions. Thus, the total number
of actions that must be considered is reduced to 𝑀𝑁 . All 𝑀 agents
use the same state space and run in lock-step. The output from each
factorized controller is then grouped in the sense that 𝑎 = [𝑎(1),… , 𝑎(𝑀)]
to produce a unique action and subsequently a unique next state. All
controllers are updated simultaneously and have access to the whole
state. The system’s Markov property is hence preserved.

The factorized value functions and policies are the factored counter-
parts to Eqs. (6) and (7). In what follows, superscript 𝑚 of the factorized
action in action preference 𝑃 (𝑚) is omitted for uncluttered notations.
The factorized action preferences can be expressed:

𝑃 (𝑚)
𝑡+1 (𝑠, 𝑎) =

1
𝜂
log �̄�𝑡(𝑎(𝑚)|𝑠) +

∑

𝑠′∈
̂ 𝑎
𝑠𝑠′
(

𝑟𝑎𝑠𝑠′ + 𝛾𝑉 𝑡(𝑚)
�̄� (𝑠′)

)

, (14)

where ̂ 𝑎
𝑠𝑠′ is a transition model that is different from the standard

definition (8). The difference results from the factorial policy. Instead
of taking action a and transitioning to the next state 𝑠′, one generates
m sub-actions independently and groups them for the transition.

Following the standard definition of DPP, the n-th sub-action is
sampled from:

�̄�(𝑚)
𝑡 (𝑎|𝑠) =

exp
(

𝜂𝑃 (𝑚)
𝑡 (𝑠, 𝑎)

)

∑

𝑎′∈(𝑚) exp
(

𝜂𝑃 (𝑚)
𝑡 (𝑠, 𝑎′)

)

. (15)

In a function approximation scenario where the action preference
is approximated with a weight and a feature map, namely, 𝑃𝑡 = 𝛷𝜃,
feature map 𝛷 of size ||× |||| is factorized into 𝑀 smaller ones of
size || × |||(𝑚)

|:

𝛷 ∈ 𝑀× Factorize
⟹ 𝛷(𝑛) ∈ 𝑀×(𝑚) , 𝑛 ∈ [1, 2,… , 𝑁], (16)

where 𝛷(𝑚) represents the feature map of the 𝑚th agent. Thus, with the
function approximation the action preference for the m-th action set is
updated:

𝑃 (𝑚)
𝑡+1 (𝑠, 𝑎) = 𝑃 (𝑚)

𝑡 (𝑠, 𝑎) + 𝑟𝑎𝑠𝑠′ −𝜂𝑃
(𝑚)
𝑡 (𝑠) + 𝛾𝜂𝑃

(𝑚)
𝑡 (𝑠′). (17)

Consequently, we solve M regression problems similar to Eq. (12)
to obtain the M weight vectors at iteration t :

𝜃(𝑚)
∗

𝑡 = arg min
𝜃(𝑚)𝑡

𝐽 (𝜃(𝑚)𝑡 ) = [𝛷(𝑚)𝑇
𝑡 𝛷(𝑚)

𝑡 + 𝜎2𝐼]−1𝛷(𝑚)𝑇
𝑡 𝑃 (𝑚)

𝑡 . (18)

3.2. Fast-food approximation

Le et al. (2013) proposed Fast-food to approximate kernel expan-
sion with only (𝑛 log 𝑑) time and (𝑛) storage, where 𝑛 denotes the
number of samples and 𝑑 denotes the dimensionality. In our previous
work (Cui et al., 2018) the features of Factorial Kernel Dynamic Policy
Programming (FKDPP) were designed by selecting a subset of the most
informative samples and computing the approximated kernel matrices
from the subset and whole samples. However, when the dimensionality
increases, the size of the subset also increases drastically, quickly
rendering computation intractable. On the other hand, Fast-food solves
this problem by transferring the data to the frequency domain to
conduct the sampling. It is mathematically demonstrated that generated
feature map �̂� recovers the exact 𝛷 with exponentially decreasing
error with increasing sampling frequency (Rahimi & Recht, 2008). This
is especially suitable for computing high-dimensional problems. By
leveraging Fast-food, the DPP-based value function and policies (9) and
(10) are now replaced by their approximated counterparts:

𝑉 𝑡
�̄� (𝑠) =

1
𝜂
log

∑

𝑎∈
exp

(

𝜂𝑃𝑡(𝑠, 𝑎)
)

, (19)

�̂�𝑡(𝑎|𝑠) =
exp

(

𝜂𝑃𝑡(𝑠, 𝑎)
)

∑

𝑎′∈ exp
(

𝜂𝑃𝑡(𝑠, 𝑎′)
)
, (20)

3



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

Algorithm 1: Factorial Fast-food Dynamic Policy Programming
Input: 𝑀, 𝜏, 𝛾, 𝜂, 𝜎, 𝑇 , 𝐼
Output: weight vectors 𝜃(𝑚), 𝑚 = 1,… ,𝑀

1 Divide  into {(1),… ,()}
2 Random exploration with 𝜋𝑟𝑎𝑛𝑑𝑜𝑚 = [𝜋(1)

𝑟𝑎𝑛𝑑𝑜𝑚,… , 𝜋(𝑀)
𝑟𝑎𝑛𝑑𝑜𝑚]

𝑇

3 Compute Fast-food matrix 𝑉 using 𝜏

4 for 𝑖 = 1,… , 𝐼 do
5 for 𝑡 = 1,… , 𝑇 do
6 measure state 𝑠𝑡
7 for 𝑚 = 1,… ,𝑀 do
8 𝑥(𝑚) = [𝑠𝑡, 𝑎

(𝑚)
𝑡 ]𝑇

9 compute 𝜙(𝑚)(𝑥) using Fast-food
10 compute 𝑃 (𝑚)

𝑡 following (8)
11 sample action 𝑎(𝑚)𝑡 from (20)
12 collect 𝑥(𝑚) in (𝑚)

𝑖
13 end
14 apply action 𝑎𝑡 = [𝑎(1)𝑡 ,… , 𝑎(𝑀)

𝑡 ]
15 end
16 for 𝑚 = 1,… ,𝑀 do
17 compute �̂�(𝑚)

𝑡 using (𝑚)
𝑖

18 �̂�(𝑚)𝑡+1 = [�̂�𝑡
(𝑚)𝑇 �̂�𝑡

(𝑚) + 𝜎2𝐼]−1�̂�𝑡
(𝑚)𝑇 𝑃 (𝑚)

𝑡
19 end
20 end

where 𝑃𝑡 = �̂�𝜃. The exact quantities and their approximated counter-
parts are distinguished by the hat symbol ̂(⋅) that represents the Fast-
food approximation. The Fast-food DPP update rule is now given by:

𝑃𝑡+1(𝑠, 𝑎) = 𝑃𝑡(𝑠, 𝑎) + 𝑟𝑎𝑠𝑠′ −𝜂𝑃𝑡(𝑠) + 𝛾𝜂𝑃𝑡(𝑠′). (21)

Solving the least-square problem for the optimal weight vector, as
in Sections 3.1, 2.2 yields:

�̂�∗ = arg min
�̂�

𝐽 (�̂�) = [�̂�𝑇 �̂� + 𝜎2𝐼]−1�̂�𝑇𝑃𝑡. (22)

3.3. Factorial fast-food DPP

The above components are unified in Alg. 1. The system is assumed
to start from fixed initial state 𝑠0. Lines 1 and 2 establish the factorial
multi-agent framework and initialize each agent with an exploration
policy. At the first iteration, the exploration policy is set to randomly
explore the unseen environment, which is accomplished by all agents
independently sampling from 𝜋(𝑚)

𝑟𝑎𝑛𝑑𝑜𝑚. The Fast-food approximation
feature map is computed using user-design parameter 𝜏 in line 3. The
user must specify number of episodes 𝐼 for the learning loop beginning
at line 4. For every time step 𝑡 and every agent m, a sample is en-
countered, and for the corresponding feature vector, action preferences
are computed. Then the sample is stacked in sample pool (𝑚)

𝑖 for
a policy update after the episode. Lines 14 to 17 correspond to the
FFDPP training that combines (18) and (22) to produce weight vectors
that are the approximated counterparts of (12). After the learning,
all the factorial weight vectors are combined to produce a learned
near-optimal policy:

𝜋∗(𝑎|𝑠) = [𝜋∗(𝑎(1)|𝑠),… , 𝜋∗(𝑎(𝑀)
|𝑠)]𝑇 . (23)

4. VAM manufacturing process control problem

4.1. VAM process description

The VAM manufacturing process is a popular benchmark problem
for many chemical tests due to its realistic complexity and appropriate

design (Chen et al., 2003; Luyben, 2011; Machida et al., 2016; Olsen
et al., 2005; Seki et al., 2010). As a powerful tool for training operators,
the Visual Modeler simulator (Omega Simulation Corp.) can duplicate
the VAM manufacturing process. Following the process diagram shown
in Fig. 1, the functions of each part are briefly introduced. Further
details can be found in Machida et al. (2016) and Seki et al. (2010).

Part 1 is the entry of three types of raw materials: ethylene(C2H4),
oxygen(O2), and acetic acid(CH3COOH).

Part 2 is where the main reaction takes place. Raw materials are
converted to vinyl acetate and water as main products, with carbon
dioxide as a byproduct.

C2H4 + CH3COOH + 1
2O2 ⟶ CH2 = CHOCOCH3 + H2O,

C2H4 + 3O2 ⟶ 2CO2 + 2H2O

Here the = indicates a double chemical bond.
Part 3 is composed of a cooler for removing heat generated by

exothermic reactions, a separator for separating liquid VAM crude from
unreacted gaseous raw materials, and a compressor for circulation.

Part 4 is composed of an absorber to extract gaseous VAM and
discharge it to the buffer tank (Part 6).

Part 5 is a gas-purge system that maintains the process’s pressure.
Part 6 is a buffer tank that stores the VAM semi-product, which is

fed to the distillation column.
Part 7 is an azeotropic distillation column that extracts the VAM-

water mixture and cycles the acetic acid back to parts 1 and 4.
Part 8 is a decanter that pours off the final VAM product.
The VAM manufacturing process produces high quality VAM prod-

uct while maintaining plant-wide stability. This is achieved by op-
erators who are manually coordinating the control units, mainly PID
controllers from every part of the process. Process stability is defined in
terms of the readings of several indicators that monitor for anomalies.

4.2. Formulation of control problems

One objective of the investigated VAM process control problem is to
improve the VAM process yield and product quality using control and
observation units from the distillation column (part 7) and the decanter
(part 8). The optimization objective is defined profit :

Profit = 𝑎 ∗ yield + 𝑏 ∗ quality − 𝑐 ∗ cost, (24)

where 𝑎, 𝑏, 𝑐 are the constants. A model-based controller was derived
in Machida et al. (2016) and Seki et al. (2010) under which the VAM
process runs in stable conditions and outputs a constant amount of VAM
with consistent quality. In what follows, without possible confusion, we
shall abbreviate the state-of-the-art model-based controller in Machida
et al. (2016) and Seki et al. (2010) as the model-based controller. The
target is to apply RL to learn a model-free policy that yields profit that
is comparable to the model-based controller.

Compared with previous work (Cui et al., 2018) in which only one
part of the process was activated and optimized, this paper studies a
situation where all eight parts were activated. As a result of complete
activation, the plant becomes more sensitive because any perturbation
from a single control unit might quickly spread to all the other parts
and induce unpredictable changes.

Detailed definitions of the observation and control units inves-
tigated in this paper are given in Tables 1(a) and 1(b), and com-
plementary descriptions of the units are depicted here. The product
quality measures, quality sensor 1 and quality sensor 2 in Table 1(a),
whose readings are inversely proportional to the product quality, are
constrained to stay in a tighter range compared to previous research.
Eight temperature sensors monitor the temperature inside the distil-
lation column. The last dimension of the state is the gross profit of
the VAM product in Japanese yen (JPY) per hour. Note that this is
only the gross profit; since the product quality and the process stability
have not been taken into account, they cannot be directly used as a
reward for learning. The steam amount, which is part of the cost, is

4



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

Fig. 1. Flow diagram of VAM process.

Table 1
Observation and control units of investigated task.
(a) Observation units of investigated task

Observation Description Control criteria

Production rate sensor Flow rate of VAM Optimized as VAM yield,
part of profit

Level sensor Level(%) of decanter <100%

Quality sensor 1 Acetic acid density <100 ppm

Quality sensor 2 VAM density (inversely
proportional to the quality)

<150 ppm

Temperature sensor 1–8 Temperature inside the
distillation column

Optimized as cost,
part of the profit

Gross profit Profit of VAM product
(JPY/h)

Optimized as gross profit
(part of the profit)

(b) Control units of investigated task

Control unit Description Effect

Flow controller 1 Control superheated stream flow
rate for the reboiler

Column temperature rises/declines
Affect VAM yield and quality
Steam amount increases/decreases
Steam generation is part of cost

Pressure controller 1 Maintain top pressure of the column
with 𝑁2 and gas purge

Acetic acid density rises/declines
𝑁2 density rises/declines

Pressure controller 2 Maintain pressure of 3rd stage
of distillation column with
superheated steam

Column temperature rises/declines
Affect VAM yield and quality
Steam amount increase/decreases
Steam generation is part of cost

Flow controller 2 Control decanter feed flow
temperature with cooling water

Control decanter feed flow
Affect stability of process

Temperature controller Maintain temperature profile and
product quality by controlling
reflux flow rate

Affect VAM yield and quality
Affect stability of process
Control reverse flow rate

directly related to the physical profile of the column. Flow controller 1
and pressure controllers 1 and 2 manage the temperature, the flow,
and the pressure of the distillation column. Flow controller 2 and
the temperature controller manage the temperature of the decanter’s

feed and the reflux flow. By manipulating the scalar property of the
controller, its behavior is affected. In the rest of the paper, the reader
shall refer to the name of the investigated controllers by their scalar
properties.

5



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

Fig. 2. Average cumulative rewards averaged over ten independent experiments with 𝜏 = 100. Black dashed line marked by A shows performance at 10th iteration; green dashed
line B is performance at 40th iteration; yellow line C is performance at 70th iteration. Right-hand subplots on 𝑌 -axis are Quality 1-(ppm), Quality 2-(ppm), VAM (production
rate)-(t/h), and Profit (gross profit)-(103 yen/h). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. T-SNE plot shows a trajectory of agent in one experiment. Undesirable states,
i.e., overflow of quality sensors 1 or 2, low production rate, etc., are marked with blue,
and desirable states are marked in red. Markers A,B,C refer to performance plots in
Fig. 2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5. Experimental results

In this section, the setup for applying our proposed RL method
for VAM process control is presented. The state, action, and reward
function designs are explained in Section 5.1. Then the experimental
setting is introduced in Section 5.2. The experiment results are shown
in Section 5.3.

5.1. Implementation of RL on VAM process

Following the discussion in Sections 3.1, 3.2 and 4.2, the implemen-
tation of RL on the VAM process is constructed as a MDP problem with
continuous state space and discrete action space defined by the entries
in Tables 1(a) and 1(b). The simulator always starts from a fixed initial
state 𝑠0 = [6.89, 23.6, 4.86, 49, 75, 76, 79, 106, 107, 109, 119, 131, 1.97 × 105],
where the order of the values corresponds to that of Table 1(a). Each
factorized agent has access to the observations in Table 1(a) as well as
the global value of the controller being represented. For convenience,
below the quality sensor is abbreviated as quality, the production rate

Fig. 4. Comparison between unfactorized FDPP and FFDPP. FFDPP performance is
marked in blue; unfactorized FDPP is marked in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

as VAM, temperature sensors 1–8 as temperatures, the gross profit as
profit, based on the definitions of Table 1(a). Based on Eq. (24), the
reward function is defined:
Reward = 𝑎 ∗ Production rate + 𝑏 ∗ (Quality 1+Quality 2)

−𝑐 ∗ Temperatures − 𝑑,
(25)

where 𝑑 is a constant to ensure the reward received at each time step
is always below zero. Following the assertion in the introduction that
the assumption of the conditional independence tends to hold true
in process control problems where distinct units are designed to be
independent, the control units of different categories, e.g., steam, acetic
acid, pressure, and temperature are factorized as 𝑎(1) = 𝐟 𝐥𝐨𝐰𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫𝟏,
. . . , 𝑎(5) = 𝐭𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫, according to Table 1(b). For lever-
aging the control units, an action set comprised of discrete values is
defined so that at every time step, one agent chooses one value from
the set to be added or subtracted from the control unit’s global value.
Addition/subtraction embodies the manipulation of the distillation col-
umn’s steam flow, the decanter’s reflux flow rate, and other process
physical profiles.

5.2. Experimental settings

FFDPP is applied to the VAM process control problem in the Visual
Modeler simulator, which was developed by the Omega Simulation

6



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

Table 2
Meta-parameters of FFDPP process control experiment.

Parameter Description (number of) Value

T steps 1000
I Iterations 70
M Factorial agents 5
N Discrete actions per agent 10
𝜏 Sampling basis functions 100

Corporation (Omega Simulation Corp.). The model-based controller
derived by Machida et al. (2016) and Seki et al. (2010) is incorporated
in the simulator to stably yield VAM. To prove the proposed algorithm’s
efficacy, we repeated and averaged ten independent experiments to
collect statistical evidence. Each experiment consisted of 70 iterations,
and each iteration has 1000 steps. Each time step in the simulation cor-
responds to around five minutes in real time. 1000 steps approximately
represent two days of real-time plant operation. The proposed algo-
rithm’s performance is evaluated in terms of plant-wide stability, profit,
and the computational resources needed during the two simulated days.

For each of the 𝑀 control units, a corresponding action set is
constructed by uniformly choosing 𝑁 values from interval [−0.01, 0.01].
The amount of 𝑁 is chosen empirically to achieve a balance be-
tween the high resolution of the discrete actions and the computational
tractability. Here 𝑁 = 10 for high resolution. According to Section 3.1,
without the factorial policy setup, the size of the entire action set to
be considered is 𝑀𝑁 = 510 ≫ 220, which is intractable for efficiently
exploring the common value function-based RL approaches.

Aside from maximizing the accumulated profit defined in Eq. (25),
maintaining process stability is also a learning goal. Stability is defined
by the violations of the safety ranges in Table 1(b). When a violation
occurs, a corresponding penalty is added to the reward. The experiment
was conducted on a PC with a processor i7-8700k, 3.70-GHz, and 32-GB
memory.

The meta-parameters of the experiment are summarized in Table 2.
Parameter 𝜏 controls the balance of the Fast-food approximation accu-
racy and the learning speed and the needs are specified by the user.
Here 𝜏 = 100. See Rahimi and Recht (2008) for technical details.

5.3. Experiment results

5.3.1. FFDPP performance
The evolving learning performance is shown on the left of Fig. 2,

averaged over ten independent learning results for statistical evidence.
The blue curve shows the mean reward, and the transparent blue area
depicts the variance. The 𝑦-axis is the accumulated reward given in
Eq. (25), summed over 1000 steps of every iteration. On the right,
subplots illustrate the performance that evolves after 10, 40, and 70
iterations. After trial-and-error learning and without any prior knowl-
edge about the model, the learned FFDPP policy successfully obtained
a control policy to maximize the reward, solving the process control
problem of a 13-dimension state space and a 5-dimension action space
in 70 iterations within 70,000 samples.

To visualize the correspondence between the states and the learning
progress, t-SNE (van der Maaten, 2014) compresses the 13-dimensional
state vectors into two dimensions to draw the scatter plot in Fig. 3.
By trial-and-error learning the agent explores the state space and finds
a path that cycles around the optimal region indicated by deep red.
Intermediate iterations might take the agent through some desirable
states without controlling it within the optimal regions. Likewise, op-
timal states might be reached by some policies, but undesirable states
will be experienced along the paths. An optimal policy is derived by
circling regularly within the optimal region.

The performance of the learned policies is scrutinized in Fig. 5.
To verify FFDPP’s robustness and stability, we performed independent
experiments. A rollout was conducted with a length of 2000 steps,

100% more than the length of the learning phase. We compared the
performance of the learned policies and the model-based controller
proposed in Machida et al. (2016) and Seki et al. (2010). The policies
are shown here in blue solid lines, red dotted lines, and green dashed
lines. The solid, straight red lines indicate the performance under the
model-based controller that has minor oscillation, and the three curves
show the adaptations made by the learned policies. In each subfigure,
the black dashed lines indicate the mean value of the three curves
averaged over 2000 steps. Figs. 5(a) and 5(b) show the readings of
two product quality measures. Their readings are inversely proportional
to the product quality. The product quality controlled by the learned
policy is better on average than that of the model-based controller in
the simulated period. Figs. 5(c) and 5(d) show the VAM production rate
and profit per time unit. As the result adapts to the process dynamics,
the curves change, hence the mean values must be compared with
the performance of the model-based controller in terms of the VAM
produced and the profit.

Without any model knowledge, in the simulated period that corre-
sponds to around five actual days, the FFDPP agent successfully learned
a policy that yields comparative performance to the state-of-the-art
model-based controller.

5.3.2. Comparison to other RL methods
The computational mitigation brought by the factorial framework

and the Fast-food kernel approximation is examined in Table 3 to
serve as an ablation test, which compares the computational resources
required by DPP-based algorithms. Note that in the original DPP pa-
per (Azar et al., 2012), DPP was compared with classic model-free
algorithm Q-learning and demonstrated superior performance. Hence
in this comparison only DPP-based algorithms are considered. The
KDPP and FKDPP configurations respectively follow the definitions
in Cui et al. (2017a) and Cui et al. (2018), except that the sample
threshold was set to 𝜂 = 0.9, which is equivalent to discarding 90% of
the samples and retaining the remaining 10% most informative ones.
For the ablation test, unfactorized Fast-food DPP is also evaluated
(see Section 5.3.3 for details). All the parameters of the compared
algorithms were empirically tuned to yield the best performance.

In our described experiment, Success is defined as after 70 iterations’
learning, and the learned policy does not violate any constraint and
performed comparable to the model-based controller (with cumulative
reward approximately equals or exceeds 1.97 × 105 units). An indicator
Error is also defined as a situation where the computing software
reports error due to intractable computational time or running out
of memory from a large amount of high-dimensional samples. The
second column of Table 3 shows the maximum number of samples
that each algorithm can handle before triggering the error indicator.
The computation and policy evaluation times are evaluated with a
maximum acceptable number of samples. For the factorial algorithms,
since the time costs are recorded for one agent, the total time cost is
that amount multiplied by the number of agents.

Note that a large acceptable number of FFDPP samples not only
relies on Fast-food but also on the factorial policy for decomposing the
one-time evaluation of a huge number of action preferences to several
sequential evaluations, as we will verify in the next section.

5.3.3. Unfactorized fast-food DPP
In this section the efficacy of factorial policy is empirically verified.

Unfactorized Fast-food DPP (UFDPP) is run on the same task to obtain
empirical evidence. As shown in Fig. 4, UFDPP’s failure might be due to
ineffective exploration, insufficient samples, or too many action prefer-
ences to learn. The learning curve was averaged over ten independent
experiments.

In summary, RL on a plant-wide process control requires many
samples for building a robust controller. The KDPP and FKDPP bot-
tleneck lies in the failure to process such a huge number of samples.
On the other hand, the ability to efficiently search in high-dimensional

7



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

Fig. 5. Comparison between learned three RL policies and model-based controller derived by Machida et al. (2016) and Seki et al. (2010). Red solid lines show performance of
model-based controller. Blue solid lines, red dotted lines, and green dashed lines show performance of three learned policies, and black dashed lines show mean of respective
policy lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Performance comparison between DPP, KDPP, FKDPP, Fast-food DPP, and FFDPP on investigated task. Acceptable number of samples indicates
maximum capacity of each algorithm before triggering Error indicator. Maximum computation and policy evaluation times are evaluated for
maximum acceptable number of samples.

Algorithm Acceptable number
of samples

Maximum
computation time (s)

Maximum policy
evaluation time (s)

Success Error

DPP 5000 552.5 0.0152 No Yes
KDPP (𝜂 = 0.9) 20000 586.8 0.0015 No Yes
FKDPP (𝜂 = 0.9) 30000 178.5 × 5 0.0014 × 5 No Yes
FDPP (unfactorized) > 70000 285.9 0.1405 No No
FFDPP > 70000 31.9 × 5 0.0044 × 5 Yes No

actions space is indispensable, even if equipped with the capability of
processing such a large number of samples. In this experiment, Fast-
food approximation is exploited to tackle the first problem; factorial
policy is leveraged to handle the latter.

6. Discussion

FFDPP was successfully applied to a commercial VAM simulator
that is comprised of eight sub-systems for materials feeding, reacting,
and recycling. We solved the process control problem by an FFDPP
agent that observed 13-dimension states and manipulated five con-
trollers with 510 possible actions to improve the production and product

quality while maintaining the process stability. As the first step toward
real-world applications, our proposed algorithm successfully learned
a model-free policy whose performance is comparable to the state-
of-the-art model-based controller within 70 iterations, demonstrating
the potential of FFDPP applications on the autonomous control of
large-scale chemical plants.

From an algorithmic perspective, we proposed a novel RL algorithm
suitable for large-scale system control problems. FFDPP’s efficacy relies
on the synergy of three components: Fast-food for transforming the
problem of obtaining enough samples in high-dimensional space into
sampling in the frequency domain; a factorial policy for decomposing

8



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

Fig. 6. Analysis of controlled behavior using learned FFDPP policy. Top subplot shows eight temperature sensors’ reading during rollout. Middle subplots mark changes of main
observations in blue. Bottom subplot depicts common adaptation made by FFDPP agent to maintain process stability and high profit. Label Quality refers to quality sensor 2 since
it shares similar trend with sensor 1. Controller refers to flow controller 2. Agent’s behavior greatly changes starting from time step A and goes through two stages of change in
periods marked by yellow rectangles B and C. After time step D agent manages to restore normal temperature distribution of distillation column.

large action spaces into independent ones by assuming conditional
independence between control units, which holds for process control
problems since the units are designed to be independent; and DPP
for ensuring smoothness and convergence in large-scale systems by
exploiting the Kullback–Leibler relative entropy between the baseline
and current policies.

One logical question is whether the performance can be reproduced
or improved using DRL techniques. Sample complexity may be a major
obstacle. To recover three units from malfunctioning, Kubosawa et al.
(2018) used 4500 iterations, each of which consisted of a 30-minute
simulation (135,000 min in total). For improving the product quality,
production rate, and process stability in our complicated plant-wide
control scenario that leveraged 18 units, we used 70 iterations, each
of which consisted of around 2000 min (140,000 min in total), which
is almost the same as their used time. Their simple task and the
long induced time suggest extremely high sample complexity of DRL
approaches, which is the reason they were excluded from consideration
in plant-wide control.

The performance curves of the learned FFDPP policy in subfigure C
of Fig. 2 changed as the result of the choice of reward function, because
the reward function in Eq. (25) of the investigated control problem
has no terms that restrict the variance of performance. However, the
robustness and stability of the proposed algorithm can be seen from
the multiple learned policies in Fig. 5.

In previous work (Cui et al., 2018), FKDPP was proposed to solve
the VAM process control problem. However, such a huge number of
high-dimensional samples severely limited the effectiveness of FKDPP.
To alleviate the computation burden, assumptions about unlimited
materials feeding and the decanter part of the simulation were made.
On the other hand, in this paper, those unrealistic assumptions were
successfully removed by activating all eight parts of the process and
introducing only a constant amount of raw materials at each time step,
which contributed to FFDPP’s efficiency.

The performance of the learned FFDPP policy was also analyzed
from the process control perspective. Specifically, the relationship be-
tween the actions made and the state changes of one rollout was
examined in Fig. 6, and Temps 1–8 refer to the temperature sensors
in Table 1(a). At the time step marked by the straight line A, the VAM
production rate and the profit reach their minima. After this point, the

behavior of the FFDPP policy changes greatly; all five PID controllers
marked in red are actuated to increase the VAM production. Due to
this attempt, in the period marked by the long, yellow rectangle B the
temperature distribution of the distillation column changes, and Temp
4 plummets because the agent increased the amount of VAM reflux to
the top of the distillation column using flow controller 2 (marked by the
blue dashed rectangle in period B). As Temp 4 enters a steady zone in
period C, the amounts of reflux and steam are almost constant. Since
Temp 4 remains at a lower level than the normal behavior, Temp 5 is
also affected, quickly dropping to around the same level as Temp 4. To
restore normal temperature distribution, flow controller 1 is actuated to
feed more steam into the distillation column.

The operation sequence of the learned FFDPP policy on the temper-
ature distribution of the distillation column resembles an operator who
has the ability to look inside the column and monitor the temperature
distribution in real time.

7. Conclusion

The contribution of this research is twofold. From an algorithmic
perspective, we proposed a novel RL method called FFDPP that is appli-
cable to problems with high-dimensional state space and a large-scale
discrete action set. FFDPP adopts the following:

1. a Fast-food method that efficiently approximates the state value
function of high dimensionality, significantly reducing the com-
putational complexity;

2. a factorial framework that divides a large set of discrete actions
and share samples between agents, reducing the computational
complexity without affecting the exploration range;

3. a smooth policy update based on the Kullback–Leibler diver-
gence to unify the Fast-food and factorial framework to achieve
both high sample efficiency and learning stability.

Our future work will focus on two directions. First, it is promising
to apply FFDPP to a real-world VAM process to achieve model-free
control. Real-world applications are more complicated because such
factors as safety, reading errors, and control errors are possible. On the
other hand, exploiting RL in a realistic environment might be beneficial
for attaining insights into model-based design and applying RL to other

9



L. Zhu, Y. Cui, G. Takami et al. Control Engineering Practice 97 (2020) 104331

real-world problems. Our second direction is to automatically deter-
mine the number and the values of suitable discrete actions. Instead of
empirically choosing a suitable 𝑁 , it might be promising to estimate it
from a sample trajectory of other relevant information.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix. Relationship with kernel DPP

In previous work (Cui et al., 2018), a factorial policy was applied to
be combined with kernel DPP (KDPP). As a solution to the intractable
computational cost of DPP with high-dimensional state space, Cui et al.
(2017a) proposed KDPP to relieve the computation burden by selecting
kernel subset 𝑘𝑒𝑟𝑛𝑒𝑙:

𝐾 ≈ 𝐾𝑁𝑁 ′𝐾𝑁 ′𝑁 ′𝐾𝑇
𝑁𝑁 ′ , (A.1)

where 𝐾𝑁 ′𝑁 ′ = �̄��̄�𝑇 . Feature map �̄�, which is computed based on
selected kernel subset 𝑘𝑒𝑟𝑛𝑒𝑙, is distinguished from �̂� in this paper,
which is approximated using Fast-food. The computation relief of KDPP
is ensured by the size of 𝑘𝑒𝑟𝑛𝑒𝑙, which is smaller than the total number
of samples: 𝑁 ′≪𝑁 . KDPP, which can search for high-dimensional state
space with limited samples, is applied to a 32-dimension, robot-arm
manipulation (Cui et al., 2017a).

On the other hand, the advantages of KDPP are effaced by the
almost linear growth of 𝑘𝑒𝑟𝑛𝑒𝑙 during learning that results from high-
dimensional state space, which renders the feature map intractable
to compute and limits KDPP’s utility in multi-controller problems. In
the investigated task of this paper, both KDPP and FKDPP failed to
address the large amount of samples in reasonable time, as seen from
the comparison in Table 3 of Section 5.3.2.

References

Azar, M. G., Gómez, V., & Kappen, H. J. (2011). Dynamic policy programming
with function approximation. In International conference on artificial intelligence and
statistics (pp. 119–127).

Azar, M. G., Gómez, V., & Kappen, H. J. (2012). Dynamic policy programming. Journal
of Machine Learning Research (JMLR), 13(1), 3207–3245.

Badgwell, T. A., Lee, J. H., & Liu, K.-H. (2018). Reinforcement learning – overview of
recent progress and implications for process control. In 13th international symposium
on process systems engineering. Computer and chemical engineering (pp. 71–85).

Bellman, R. E. (2003). Dynamic Programming. New York, NY, USA: Dover Publications,
Inc.

Chen, R., Dave, K., McAvoy, T. J., & Luyben, M. (2003). A nonlinear dynamic model
of a vinyl acetate process. Industrial and Engineering Chemistry Research, 42(20),
4478–4487.

Cui, Y., Matsubara, T., & Sugimoto, K. (2017a). Kernel dynamic policy programming:
applicable reinforcement learning to robot systems with high dimensional states.
Neural Networks, 94, 13–23.

Cui, Y., Matsubara, T., & Sugimoto, K. (2017b). Pneumatic artificial muscle-driven robot
control using local update reinforcement learning. Advanced Robotics, 1–16.

Cui, Y., Zhu, L., Fujisaki, M., Kanokogi, H., & Matsubara, T. (2018). Factorial kernel
dynamic policy programming for vinyl acetate monomer plant model control. In
IEEE international conference on automation science and engineering (pp. 304–309).

Dotoli, M., Fay, A., Miśkowicz, M., & Seatzu, C. (2015). A survey on advanced control
approaches in factory automation. IFAC-PapersOnLine, 48(3), 394–399.

Ernst, D., Glavic, M., Geurts, P., & Wehenkel, L. (2005). Approximate value iteration in
the reinforcement learning context. Application to electrical power system control.
International Journal of Emerging Electric Power Systems, 3(1), 1–35.

Harp, S. A., Brignone, S., Wollenberg, B. F., & Samad, T. (2000). Sepia. a simulator
for electric power industry agents. IEEE Control Systems Magazine, 20(4), 53–69.

Hoskins, J. C., & Himmelblau, D. M. (1992). Process control via artificial neural
networks and reinforcement learning. Computers and Chemical Engineering, 16(4),
241–251.

Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control,
and quality improvement: recent developments and applications in steel industry.
Computers and Chemical Engineering, 32(1), 12–24.

Kubosawa, S., Onishi, T., & Tsuruoka, Y. (2018). Synthesizing chemical plant operation
procedures using knowledge, dynamic simulation and deep reinforcement learning.
In SICE annual conference (pp. 1376–1379).

Le, Q. V., Sarlos, T., & Smola, A. (2013). Fastfood-computing hilbert space expansions in
loglinear time. In Proceedings of the 30th international conference on machine learning
(pp. 244–252).

Lee, J. H., & Wong, W. (2010). Approximate dynamic programming approach for
process control. Journal of Process Control, 20(9), 1038–1048.

Liu, W., Tan, Y., & Qiu, Q. (2010). Enhanced Q-learning algorithm for dynamic power
management with performance constraint. In The conference on design, automation
and test in Europe (pp. 602–605).

Luyben, W. L. (2011). Design and control of a modified vinyl acetate monomer process.
Industrial and Engineering Chemistry Research, 50(17), 10136–10147.

Luyben, M. L., & Tyréus, B. D. (1998). An industrial design/control study for the vinyl
acetate monomer process. Computers and Chemical Engineering, 22(7–8), 867–877.

van der Maaten, L. (2014). Accelerating t-SNE using tree-based algorithms. Journal of
Machine Learning Research (JMLR), 15, 3221–3245.

Machida, Y., Ootakara, S., Seki, H., Hashimoto, Y., Kano, M., Miyake, Y., et al. (2016).
Vinyl acetate monomer (VAM) plant model: a new benchmark problem for control
and operation study: Vol. 49 (pp. 533–538). International Federation of Automatic
Control (IFAC).

Matsubara, T., Gómez, V., & Kappen, H. J. (2014). Latent Kullback-Leibler control
for continuous-state systems using probabilistic graphical models. In Conference on
uncertainty in artificial intelligence (pp. 583–592).

Metzger, M., & Polakow, G. (2011). A survey on applications of agent technology in
industrial process control. IEEE Transactions on Industrial Informatics, 7(4), 570–581.

Ng, Y. S., & Srinivasan, R. (2010). Multi-agent based collaborative fault detection and
identification in chemical processes. Engineering Applications of Artificial Intelligence,
23(6), 934–949.

Olsen, D. G., Svrcek, W. Y., & Young, B. R. (2005). Plantwide control study of a vinyl
acetate monomer process design. Chemical Engineering Communications, 192(10),
1243–1257.

Omega Simulation Corp. Visual Modeler. https://www.omegasim.co.jp/contents_e/
product/vm/.

Qian, Y., Huang, Q., Lin, W., & Li, X. (2000). An object/agent based environment for the
computer integrated process operation system. Computers and Chemical Engineering,
24(2), 457–462.

Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel machines. In
Advances in neural information processing systems (pp. 1177–1184).

Seki, H., Ogawa, M., Itoh, T., Ootakara, S., Murata, H., Hashimoto, Y., et al.
(2010). Plantwide control system design of the benchmark vinyl acetate monomer
production plant. Computers and Chemical Engineering, 34(8), 1282–1295.

Spielberg, S. P. K., Gopaluni, R. B., & Loewen, P. D. (2017). Deep reinforcement learning
for process control. In International symposium on advanced control of industrial
processes (pp. 201–206).

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In Advances in neural information processing systems (pp.
1038–1044).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT press
Cambridge.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy gradient methods
for reinforcement learning with function approximation. In Advances in neural
information processing systems (pp. 1057–1063).

Syafiie, S., Tadeo, F., & Martinez, E. (2007). Model-free learning control of neutral-
ization processes using reinforcement learning. Engineering Applications of Artificial
Intelligence, 20(6), 767–782.

Todorov, E. (2006). Linearly-solvable Markov decision problems. In Advances in neural
information processing systems (pp. 1369–1376).

Tsurumine, Y., Cui, Y., Uchibe, E., & Matsubara, T. (2019). Deep reinforcement learning
with smooth policy update: application to robotic cloth manipulation. Robotics and
Autonomous Systems, 112, 72–83.

Uchibe, E. (2018). Model-free deep inverse reinforcement learning by logistic
regression. Neural Processing Letters, 47(3), 891–905.

Wang, H., & Zhang, Y. (2008). Multi-agent based chemical plant process monitoring and
management system. In 2008 4th international conference on wireless communications,
networking and mobile computing (pp. 1–4).

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine learning, 8(3–4), 279–292.
Yang, A., Braunschweig, B., Fraga, E., Guessoum, Z., Marquardt, W., Nadjemi, O., et

al. (2008). A multi-agent system to facilitate component-based process modeling
and design. Computers and Chemical Engineering, 32(10), 2290–2305.

Zhang, X., Kano, M., & Li, Y. (2017). Locally weighted kernel partial least squares
regression based on sparse nonlinear features for virtual sensing of nonlinear
time-varying processes. Computers and Chemical Engineering, 104, 164–171.

10

http://refhub.elsevier.com/S0967-0661(20)30018-6/sb2
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb2
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb2
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb4
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb4
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb4
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb5
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb5
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb5
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb5
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb5
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb6
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb6
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb6
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb6
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb6
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb7
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb7
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb7
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb9
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb9
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb9
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb10
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb10
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb10
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb10
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb10
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb11
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb11
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb11
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb12
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb12
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb12
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb12
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb12
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb13
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb13
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb13
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb13
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb13
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb16
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb16
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb16
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb18
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb18
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb18
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb19
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb19
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb19
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb20
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb20
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb20
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb21
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb21
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb21
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb21
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb21
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb21
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb21
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb23
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb23
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb23
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb24
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb24
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb24
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb24
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb24
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb25
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb25
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb25
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb25
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb25
https://www.omegasim.co.jp/contents_e/product/vm/
https://www.omegasim.co.jp/contents_e/product/vm/
https://www.omegasim.co.jp/contents_e/product/vm/
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb27
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb27
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb27
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb27
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb27
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb29
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb29
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb29
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb29
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb29
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb32
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb32
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb32
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb34
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb34
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb34
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb34
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb34
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb36
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb36
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb36
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb36
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb36
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb37
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb37
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb37
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb39
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb40
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb40
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb40
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb40
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb40
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb41
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb41
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb41
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb41
http://refhub.elsevier.com/S0967-0661(20)30018-6/sb41

	Scalable reinforcement learning for plant-wide control of vinyl acetate monomer process
	Introduction
	Preliminary
	Reinforcement learning
	Dynamic policy programming

	Proposed method
	Factorial policy with factor-wise smooth update
	Fast-food approximation
	Factorial fast-food DPP

	VAM manufacturing process control problem
	VAM process description
	Formulation of control problems

	Experimental results
	Implementation of RL on VAM process
	Experimental settings
	Experiment results
	FFDPP performance
	Comparison to other RL methods
	Unfactorized fast-food DPP


	Discussion
	Conclusion
	Declaration of competing interest
	Appendix. Relationship with Kernel DPP
	References


