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A B S T R A C T

In this paper, we define and investigate a novel model-free deep reinforcement learning frame-
work to solve the taxi dispatch problem. The framework can be used to redistribute vehicles
when the travel demand and taxi supply is either spatially or temporally imbalanced in a
transportation network. While previous works mostly focus on using model-based methods, the
goal of this paper is to explore the policy-based deep reinforcement learning algorithm as a
model-free method to optimize the rebalancing strategy. In particular, we propose an actor-critic
algorithm with feed-forward neural networks as approximations of both policy and value func-
tions, where the policy function provides the optimal dispatch strategy and the value function
estimates the expected costs at each time stamp. Our numerical studies show that the algorithm
converges to the theoretical upper bound with less than 4% optimality gap, whether the system
dynamics are deterministic or stochastic. We also investigate the scenario where we consider user
priority and fairness, and the results indicate that our learned policy is capable of producing a
superior strategy that balances equity, cancellation, and level of service when user priority is
considered.

1. Introduction

In the past decade, we have seen rapid expansion of ride sharing services and the emerging development in self-driving tech-
nologies. We believe that over the coming decades, ride sharing companies such as Uber and Lyft may aggressively begin to use
shared fleets of electric and self-driving cars that could be summoned to pick up passengers and shuttle them to offices and stores.
One major operational challenge such systems might encounter, however, is the imbalance of supply and demand. The travel patterns
are asymmetric both spatially and temporally, thus causing the vehicles to be clustered in certain regions at certain times of day, and
customer demand may not be satisfied in time. The primary goals of our research, therefore, is to come up with a centralized, yet
efficient, operational strategy such that it can: (1) deal with the imbalanced demand and supply of the ride sharing service; (2)
guarantee the level of service in both high and low demanding areas and times; and (3) ensure the equity of the users.

For traditional taxi fleets, ride sharing operators such as Uber and Lyft usually use pricing incentives (e.g. surge pricing, spatial
pricing) to help redistribute vacant vehicles and attract drivers towards regions with high demand. Zha et al. (2018) build a model
based on a geometric matching framework and investigate the effects of spatial pricing and its regulation in ride-sourcing markets.
Banerjee et al. (2015) build a queueing-theoretic economic model to study the value of dynamic pricing in ride sharing platforms, and
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they find that while the performance of the system under any dynamic pricing strategy is not better than that under the optimal static
pricing policy, dynamic pricing is much more robust to fluctuations in the system parameters compared to static pricing. On the other
hand, however, studies have been conducted to question the effectiveness of dynamic pricing in real-world ride sourcing market.
Based on real data collected from Uber’s smartphone application, Chen et al. (2015) observe that on a micro-scale, surge prices have a
strong negative impact on passenger demand, and a weak positive impact on car supply. The authors also argue that Uber’s reliance
on discrete surge areas introduces unfairness into its system – two users standing a few meters apart may receive dramatically
different surge multipliers.

From the perspective of autonomous taxi fleet, however, the operator can directly control all the vehicles and thus make cen-
tralized decisions on how to dispatch the vacant vehicles at any time of interest. Lots of model-based methods have been proposed in
the open literature to optimize the strategy that controls the fleet. Pavone et al. (2012) develop a real-time rebalancing policy based
on a fluid model of the system, in which they assume that all the pickups and drop-offs happen at a set of stations. The authors show
that under their rebalancing policy, every station will reach an equilibrium in which there are excess vehicles and no waiting
customers. Similarly in Volkov and Aslam (2012), Volkov et al. establish an analytical Markov-based framework to describe an urban
transportation network, in which there are discrete pickup and drop-off locations, and they propose a practical redistribution policy
and show that it performs favorably in light of different optimization criteria. Zhang and Pavone (2016) propose a queueing model for
the control of autonomous mobility-on-demand (MOD) system, and they show that an optimal open-loop policy can be found by
solving a linear program, based on which they develop a closed-loop real-time rebalancing policy and then apply it to a case study of
New York. In more recent studies, Iglesias et al. (2019) further extended the analysis of the MOD system in Zhang and Pavone (2016)
by introducing a Baskett-Chandy-Muntz-Palacios (BCMP) queuing-theoretical framework, in which the vehicle repositioning problem
has been formulated as a non-linear optimization problem. The authors cast the original problem into a linear program by assuming
infinite fleet supply, and provided rigorous mathematical proofs to the asymptotic property of infinite supply system. With the
approximated framework, this work enables the analysis of probabilistic distribution of the fleet, and can also be greatly used to
synthesize both vehicle routing and rebalancing policies. Braverman et al. (2019) continued the thread of BCMP approach to the
empty-car repositioning problem in the ride sharing system. In their work, the authors proposed a (non-linear) fluid-based optimi-
zation problem and proved that when fleet supply grows to infinity, the routing policy from the program is asymptotically optimal
when the system is at its steady state. This policy, while under somewhat unrealistic assumptions, gives a valueable asymptotically
tight upper bound to a ride sharing system. Shou et al. (2019), on the other hand, proposed a Markov Decision Process to determine
the optimal sequential passenger-seeking strategy for e-hailing drivers, in which dynamic programming and Monte Carlo simulation
have been employed. Such framework is deemed to be especially beneficial to the autonomous e-hailing platform as it can sig-
nificantly improve the system level reward and vehicle utilization.

While the above studies rely on steady-state formulations and their control policies are time-invariant, there is another branch of
study that incorporates demand forecasting and utilizes model predictive control (MPC) method. Miao et al. (2016) present a re-
ceding horizon control (RHC) framework for large-scale taxi dispatching system. In the study, they utilize both historical and real-
time GPS and occupancy data to build demand models, and apply predicted models and sensing data to decide dispatch locations for
vacant taxis considering multiple objectives. Zhang et al. (2016) present a model predictive control (MPC) approach to optimize
vehicle scheduling and routing in an autonomous MOD system. At each optimization step, the vehicle scheduling and routing pro-
blem is formulated as a mixed integer linear program (MIP), and their case study shows that the MPC method outperforms previous
time-invariant control strategies. While in Miller and How (2017), Miller and How present a predictive positioning algorithm which
uses customer arrival rate information to position vehicles at key nodes in a MOD network graph in order to minimize the expected
customer waiting time. Later, Iglesias et al. (2018) propose a MPC algorithm that leverages short-term demand forecasts based on
historical data to compute rebalancing policies, and their algorithm is built on a formulation that computes the optimal rebalancing
strategy and the minimum feasible fleet size for a given travel demand. With simulations based on real data from DiDi Chuxing, they
show that the approach scales well for large systems.

While most previous works focus on model-based methods to solve for the optimal rebalancing strategy, these methods have three
main drawbacks. First of all, model-based methods usually use a finite set of parameters to represent the network dynamics, such as
the customer demands and travel times, which need to be estimated before solving the model. Second, in these methods, strong
assumptions, such as Markovian property and constant arrival rate, have to be made on the network, which are typically difficult to
validate in the real-world networks. Third, some of the proposed methods suffer from the curse of dimensionality and therefore do not
scale well in large systems. With these concerns, the aim of this paper is to explore model free methods to solve for the rebalancing
strategy of the autonomous taxi fleet. Specifically, we will incorporate the framework of Reinforcement Learning (RL), which is
primarily concerned with how to obtain an optimal policy when the model of Markov decision process (MDP) is not available.
Therefore, instead of relying on any prior information of the model, the RL learning agent will interact with the transportation
network and update the control strategy directly. Recently, there are a lot of studies working on the application of RL methods in the
domain of transportation engineering, and interested readers may refer to other RL applications such as (Prashanth and Bhatnagar,
2011; Li et al., 2016; Abdulhai et al., 2003) for traffic signal control, (Mao and Shen, 2018) for adaptive routing, and (Zhu and
Ukkusuri, 2014; Walraven et al., 2016) for traffic management. Among these studies, we found the study by Lin et al. (2018) most
relevant to our research. In their work, the authors have formulated a fleet management problem for the ride-sharing platform using
multi-agent framework, and they have proposed a contextual multi-agent RL algorithm that incorporates first training and then
coordinating multiple homogeneous single agents. However, we would like to mention that their work, though tackles a similar
problem in our study, has a significantly different goal such that their policy is decentralized that may sacrifice system level op-
timality. In this paper, however, we define and investigate a variate of actor-critic algorithm, which belongs to the family of policy
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gradient algorithms (Sutton et al., 2000), to learn a centralized policy that optimizes the system level returns.
The remainder of this paper is organized as follows. In Section 2, we formulate the problem and present our basic assumptions. In

Section 3, we first introduce the framework of the actor-critic method and the adaptation we have made; then we propose an integer
program to derive the theoretical upper bound of the total rewards we can obtain if we assume the dynamics of the system are
deterministic and known to us. In the meantime, we present two more realistic scenarios where we consider stochasticity, cancel-
lation and passenger priority. Section 4 presents the experimental results and implications of the RL methods under different sce-
narios. Section 5 offers the conclusions and directions for future research.

2. Problem formulation

In this section, we first formulate the taxi repositioning problem, and then introduce the environmental setup in our subsequent
learning process.

Suppose we are providing taxi services to a service region within a certain period of time. We first assume that the regions have
been discretized into a set of disjoint zones, each of which can be represented by a node (e.g., a “station”) in a directed graph. We
further assume the service time is represented by discrete time intervals of size t . The period of time under consideration is denoted
as = … T[1, 2, , ]. For simplicity, we assume the discrete time interval t is small, and all the deployment of vehicles happen at the
end of each time interval. Therefore, if a waiting passenger is not served at time t, he/she will have to wait until at least +t 1 to be
served, in other words, no dispatching arrangement will happen between t and +t 1. And all serving vehicles will become available
again after travelling for some time intervals and dropping passengers at the destination zone. And for now, we further assume we
will not lose any passengers even if we let them wait for a long time.

At the end of each time interval t, therefore, we need to decide the number of vehicles to be dispatched from zone i to zone
j , which is denoted as xijt. Suppose the number of waiting passengers who want to travel from zone i to zone j at time interval t is
pijt , and the number of available (empty) vehicles at zone i is vit . Once xijt has been determined, the number of passenger can be served
from zone i to j at this time interval t, denoted by yijt , can be determined by =y x pmin( , )ijt ijt ijt . Namely, if <x pijt ijt , then the supply is
less than the demand, and only a portion of the passenger calls can be answered; and if x pijt ijt, we have dispatched more vehicles
than the current number of waiting passengers. Therefore, not only all the passengers’ requests can be satisfied, but we also let some
empty vehicles to travel from i to j to meet the future potential demand in zone j.

From the passenger’s perspective, we assume there are costs associated with the waiting time experienced by all the passengers.
Let ijt be the cost of letting one customer who wants to go from i to j wait for one unit of time interval t at time t. Thus the total

waiting time costs from time t to +t 1 is p y ·i j ijt ijt ijt, . From the system operation’s perspective, there are costs resulting from

repositioning the empty vehicles between different zones. We assume the cost of repositioning an empty vehicle from zone i to zone j

at time t is cijt . Thus the total repositioning costs at time t is x y c·i j ijt ijt ijt, .

With the above assumptions and formulations, we then define the state space and action space of the problem under the structure
of reinforcement learning. The state space is defined as:

+
×

+t P V t P VS {( , , ): , , }t t t
n n

t
n (1)

Each state = t P Vs ( , , )t t t is characterized by the current time interval t, the waiting passenger demand vector
=P p i j{ : , }t ijt , and the available vehicle count vector =V v i{ : }t it . The corresponding action space for state s is defined

as:

= +x x v i j xA s( ): : , , ,t ijt
j

ijt it ijt
(2)

The action at at time interval t is characterized by x i j, ,ijt , which is the number of available vehicles to be dispatched from
zone i to zone j at the end of time interval t.

The reward we obtain from time t to +t 1 would be the negative of the costs we have incurred, which consists of the waiting time
costs and the costs of repositioning empty vehicles, and is formulated by Eq. (3).

= +r p y x y cs a,t t
i j

ijt ijt ijt ijt ijt ijt
, (3)

Therefore, the objective of our dispatching system is to provide the optimal vehicle dispatch strategy at the lowest expected total
operational costs (a.k.a., highest expected total rewards). Let a s( )t t denote the policy (a.k.a. dispatching strategy) we are interested
in, which produces an action at given the state st. Notice that the policy a s( )t t is parametrized by that can be optimized by solving
the following problem.

=
=

r s aargmax { ~ [ ( , )]}
t

T

t ts a a s
1

( , ) ( )t t t t
(4)
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To solve the above dynamic sequential decision problem, we make the following three assumptions. First of all, to avoid the curse
of dimensionality that arises from discrete state and action space, we allow both the state and action vectors to be continuous,
specifically, p v,ijt it and xijt are all continuous variables. With such continuous state and action space, however, value-based re-
inforcement learning algorithms such as deep Q-learning (Mnih et al., 2013) become intractable. Therefore, in this paper, we mainly
focus on policy-based reinforcement learning methods. Lastly, our feasible action space is state-dependent, i.e. the number of vehicles
dispatched from one zone should equal to the number of available vehicles within that zone.

3. Methods

Considering the above challenges, in this section, we first introduce vanilla policy gradient algorithms. Second, we discuss the actor-
critic algorithm, which belongs to the family of policy gradient methods however is much more efficient than the vanilla methods. We
also introduce the adaptations we have made to the actor critic algorithm to enforce feasible actions. Third, we derive the theoretical
upper bound of the total rewards we can get if we assume the dynamics of the system are deterministic and known to us. Finally, we
introduce two different scenarios, in which more realistic settings such as cancellation and stochastic demand profiles are considered.

3.1. Vanilla policy gradient algorithms

Policy gradient methods are policy-based reinforcement learning techniques that rely on optimizing parametrized policies with
respect to the total expected return (long-term cumulative reward) by gradient descent algorithms. They do not suffer from many of
the problems that traditional value-based reinforcement learning methods might have, such as the complexity arising from con-
tinuous states and actions. The general idea of policy gradient is that, by generating samples of trajectories (sequences of tuples of
state, action and reward) from the environment based on the current policy function, we can collect the rewards associated with
different trajectories, then we can update our parametrized policy function such that high-reward paths will become more likely and
low-reward paths become less likely. One advantage of policy gradient methods is their strong convergence property, which is
naturally inherited from gradient descent methods.

Suppose we have a differentiable policy function a s( ), where a is the action, s is the state, and represents the actor’s
parameters to be updated and learned. Further suppose our reward function is r s a( , ), then from Eq. (3), the optimal policy can be
obtained by:

= = =J r r s aargmax ( ) argmax ~ [ ( )] argmax ~ ,
t

t t( ) ( )

where denotes a trajectory of the s a( , )t t tuples sampled from the policy a s( ).
Instead of solving the above problem analytically, the family of policy gradient algorithms apply the gradient descent algorithms

and sampling techniques to iteratively improve the performance of the policy due to the fact that the gradient of the objective
function J ( ) (Eq. (5)) can be approximated by Eq. (6) (Sutton and Barto, 2018), where the tuples of s a( , )i t i t, , are samples generated
by the up-to-date policy a s( )t t .

=J ra s s a( ) ~ log ,
t

t t
t

t t( )
(5)

=
J

N
ra s s a( ) 1 log ,

i

N

t
i t i t

t
i t i t

1
, , , ,

(6)

The vanilla policy gradient algorithm (a.k.a., REINFORCE algorithm (Sutton and Barto, 2018; Williams, 1992)) is summarized in
Algorithm 1. Within each iteration, step 1 samples state-action-reward tuples and steps 2 and 3 perform policy update. The process
has an intuitive appeal such that samples with higher rewards are more likely to be sampled and those “good” samples will further
improve the policy updating.

Algorithm 1. Vanilla policy gradient algorithm

Procedure Vanilla Policy Gradient
Initialize: A differentiable policy function a s( )
Initialize:
for each episode do

1. sample +rs a s a s{ , , ( , ), }i t i t i t i t i t, , , , , 1 from a s( ) (run it in the simulator)

2. calculate =J ra s s a( ) [( log ( ))( ( , ))]N i
N

t i t i t t i t i t
1

1 , , , ,

3. + J ( )
end for
end procedure
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3.2. Actor-critic algorithm

In previous sections we have shown that the essence of policy gradient algorithm is to increase the probabilities of “good” actions
by a “sampling-updating” loop. Unfortunately, in practice the sampled rewards usually have very large variances, which induces
large variance of the estimated gradients. Therefore, the vanilla policy gradient method is prone to be unstable and inefficient.

Actor-critic methods solve those issues by adding a value function (“critic”) (Grondman et al., 2012) to the vanilla policy gradient
algorithm. During the training process, the policy (a.k.a., “actor”) generates a trajectory of samples as in Algorithm 1. However,
before updating the policy, the value function approximates the expected rewards and updates itself using the generated samples. The
value function is then used to update the policy’s parameters in the direction of performance improvement. Since the critic is modeled
by a bootstrap method, it reduces the variance so the learning is more stable than vanilla policy gradient methods.

Fig. 1 below shows the schematic structure of an actor-critic algorithm. The learning agent consists of a critic agent and an actor
agent. The actor is responsible for generating actions based on the states of the environment, and the critic evaluates the value
function of the current policy by observing the feedback (states and rewards) from the environment. Then the information of ad-
vantage (the improvement when compared with the average value of the current state) is sent to the actor to improve the current
policy function unit.

Following the notations in previous sections, suppose we have a policy function (actor) a s( ). Further denote the value function
(critic) corresponding to policy a s( ) as V s( ), which is parameterized by . Then the actor-critic algorithm works as in Algorithm
2.

Algorithm 2. Batch actor-critic algorithm

Procedure Actor-critic
Initialize: A differentiable policy function a s( )
Initialize: for each episode do

1. sample +rs a s a s{ , , ( , ), }i t i t i t i t i t, , , , , 1 from a s( ) (run it in the simulator)

2. fit V s( ) to sampled reward sums

3. evaluate the advantage as = + +A r V Vs a s a s s( , ) ( , ) ( ) ( )i t i t i t i t i t i t, , , , , 1 ,

4. calculate =J Aa s s a( ) [ log ( )· ( , )]N i
N

t i t i t i t i t
1

1 , , , ,

5. + J ( )
end for
end procedure

In the algorithm, step 2 updates the value function using the generated samples and is later used to calculate the advantage
A s a( , )i t i t, , in step 3, which estimates how much better off the corresponding action is compared to the average value function we
have estimated. Therefore, by multiplying the gradient of the policy function with the advantage in step 4, the algorithm updates the
parameters such that high-reward actions become more likely. Also notice that the value function V s( ) in step 2 is estimated by a
bootstrap method, which significantly reduces the variance of the parameter estimation.

Although we can choose any parametric functions for the policy function a s( ) and critic function V s( ), in this study, we pick
feed forward dense neural networks to represent both functions due to their flexibility. However, in our problem formulation, the
number of vehicles dispatched from each zone should be non-negative and sum up to the total number of available vehicles in that
zone. Therefore, a special output transformation function (activation) has to be employed to the policy neural network to enforce
such constraints. To be more specific, suppose the output vector from the policy network s(· ) is a, and each element aij corresponds
to the edge between the origin zone i and the destination zone j. Then we can view aij as some weight factor and apply the following
transformation function to get the number of vehicles to dispatch from zone i to zone j:

Fig. 1. Schematic overview of actor-critic algorithm.
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Then the resulting actor vector x is a feasible action given the current state vector s. The above procedure is summarized in Fig. 2.

3.3. Theoretical bound - an integer program

Nomenclature
Parameters

ijt the cost of letting customer who wants to go from i to j wait for one unit of time at time t
ijt number of ride requests from zone i to zone j at time t

ijt the travel time from zone i to zone j at time t
cijt the cost of repositioning an empty vehicle from zone i to zone j at time t
ni the initial number of vacant vehicles in zone i
Sets

= + =j t t t{( , ): }it jit set of departure zones and times that would let vehicle arrive in zone i at time t
Variables
pijt number of outstanding passengers that are waiting to go from zone i to zone j at time t
vit number of vehicles available in zone i at the beginning of time t
xijt number of vehicles that are dispatched from zone i to zone j at time t
yijt number of passengers going from zone i to zone j that are served at time t

In this section, we aim to look at the case where we have full information on the travel demand and the system dynamics, both of
which are deterministic and known. We can then formulate the dispatching problem as an optimal control problem to maximize the
total expected rewards and solve the optimal dispatching strategy. Then we compare the resulting rewards with the rewards we
obtain from the model-free reinforcement learning method. The definition of the integer program is as formulated into problem P1.

+

=

p y x y c

y min x p i j t

P1: min

s. t. ( , ) , ,

x y p i j t
ijt ijt ijt ijt ijt ijt

ijt ijt ijt

, , ,

(1.1)

= ++ +p p y i j t, , )ij t ijt ijt ij t( 1) ( 1) (1.2)

=v x i t,it
j

ijt
(1.3)

=v n ii i0 (1.4)

= >v x t i0,it
j t

jit
( , ) it (1.5)

=p i j,ij ij0 0 (1.6)

Fig. 2. Post-processing of action function outputs.
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+x i j t, ,ijt (1.7)

In the formulation, the objective function consists of the waiting time costs for the passengers and the costs of repositioning empty
vehicles. The first constraint (1.1) states that the number of served customers at any time is either equal to the number of waiting
customers (when enough vehicles are dispatched) or the number of dispatched vehicles (when supply of vehicles is less than cus-
tomers). Constraint (1.2) ensures the conservativeness of the passenger demand, and constraints (1.3) and (1.5) enforce that the
number of arriving vehicles must equal to the number of departing vehicles. We assume that at the beginning of the planning horizon,
the initial number of available vehicles and waiting passengers in each zone are given, as shown in constraints (1.4) and (1.6).
Constraint (1.7) ensures the decision variables to be non-negative integers.

Notice that in our formulation, we treat idling vehicles in the same zone as a special case of repositioning. However, we can alter
the parameters ijt to reflect any realistic scenarios. For example, parking in the downtown area can be very expensive during
daytime, thus we can impose higher value to encourage the vacant vehicles to move out of the area during that time.

3.4. Different scenarios: consider user priority

One assumption we make in the above programs is that we will not lose any passengers regardless of their waiting time. In other
words, the optimal dispatching strategy does not differentiate passengers who have already waited for a long time and who just start
waiting. As a result, in our dispatching system, even if there are some areas where passengers’ requests have been dismissed for a long
period of time, we might still send vehicles to other areas where we can maximize the total rewards of the system. Such an as-
sumption, however, can hardly be true and is far from ideal in the real world. Passengers who have waited for a long time, or
impatient passenger, might just cancel their requests and thus induce higher costs. Therefore, we need to take into account users’
different tolerance of waiting time, in which impatient passengers have higher waiting costs. Specifically, we have considered two
scenarios in this paper. The first scenario, which assumes deterministic demand profile, only distinguishes two types of passengers
and does not consider cancellation. The second scenario, on the other hand, considers a more realistic case where the demand and
initial number of vehicles follow some distributions. In the meantime, we further distinguish passengers by using a linearly increasing
waiting costs function capped by a maximal waiting time by which users will cancel their request if exceeded. A detailed mathe-
matical illustration is presented below.

Scenario I
For simplicity, we let the waiting time penalty distinguishes patient passengers and impatient passengers by setting it to be a two-

valued function of the waiting time . Specifically, a customer who travels from zone i to zone j at time t, if his/her total waiting time
is , then the cost of letting him/her wait for one more unit of time is formulated by Eq. (7), where is a predetermined threshold
that specifies the maximal tolerance of waiting time to be an impatient passenger. We can imagine that if ijt ijt

2 1 , we are imposing a
very large penalty if we let customers wait more than units of time, thus we can ensure some level of service with regard to the
maximum waiting time.

=
>

( )
, if
, ifijt

ijt

ijt

1

2
(7)

To solve the above problem with user priority, we modify the state space and the reward function as follows. For any origin
destination pair i j( , ) at any time t, the number of waiting passengers pijt can be divided into two groups: pijt

1 and pijt
2 , where pijt

1 is the
number of outstanding passengers who have waited less than or equal to units of time and pijt

2 is the number of those who have
waited more than . We call those pijt

1 passengers the patient passengers, and those pijt
2 passengers the impatient passengers.

Given xijt, i.e. the number of vehicles to dispatch from zone i to j at time t, we still have =y x pmin( , )ijt ijt ijt , where yijt is the number
of customers that can be served. Since “impatient passengers” have higher priority, the number of “impatient passengers” will

become as p p ymin ,ijt ijt ijt
2 2 , and the number of “patient passengers” will turn into p y pmax 0,ijt ijt ijt

1 2 . Therefore the associated

waiting time cost at this time is: +p p y p y pmin , · max 0, ·i j ijt ijt ijt ijt ijt ijt ijt ijt,
2 2 2 1 2 1 , and the repositioning cost stays the

same, i.e. x y c·i j ijt ijt ijt, . Now the new state space is defined as:

+
×

+
×

+t P P V t P P VS {( , , , ) , , , }t t t t
n n

t
n n

t
n1 2 1 2

Each state = t P P Vs ( , , , )t t t
1 2 is characterized by the current time interval t, the demand vector for those “patient passengers”

=P p i j: ,t ijt
1 1 , the demand vector for those “impatient passengers” =P p i j: ,t ijt

2 2 , and the available vehicle

count vector =V v i{ : }t it , while the action space stays the same.
Scenario II
Previous cases have assumed that the demand profile and initial vehicle distribution are both deterministic across the time-of-day

and OD pairs, however, we are also interested in a more realistic case where we allow stochasticity and randomness. Therefore, in this
scenario, we first relax the assumption of deterministic demand profile and vehicle distributions. Specifically, we let the OD demand

~ ( )ijt 1 , and initial vehicle number n ~ ( )i n 2 , where and n are the pre-specified distributions parameterized by respectively
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1 and 2.
Second, we further generalize the unit waiting time cost function ( )ijt to be a piecewise constant function (with m pieces) of

waiting time , as in Eq. (8), where k ’s and k’s are predetermined values that indicate respectively the level of waiting cost and a set
of thresholds to specify how “impatient” the passengers are; ( )k is an indicator function of k as in Eq. (9).

=
=

( ) · ( )ijt
k

m

k
1

k
(8)

= < +( ) 1 , if
0 , otherwise

k k 1
k (9)

Notice that to guarantee the monotonicity, we also let … +0 m m1 2 1, and … m1 2 .
Third, we introduce a new type of cost – cancellation cost – by eliminating passengers when their waiting time exceeds some

thresholds. Let denote the maximal tolerance of waiting time, then we define the cancellation cost for a passenger who requests a
travel from zone i to zone j at time t and has waited for to be:

=
<

( ) , if
0 , ifijt (10)

In the above equation, is a predetermined fixed value that ascribes the cancellation cost. Also notice that we let m and
+m 1 to guarantee monotonicity.

Similar to the Scenario I, we have modified the state space, the transition function, and the reward function to adapt to our actor-
critic algorithm. First of all, passengers who have requested service from zone i to j at time t p, ijt , will be divided into +m 1 groups:

…p p p, , ,ijt ijt ijt
m1 2 , and lijt, where p k m, 1ijt

k is the number of passengers who have waited for units of time that satifies
< +k k 1, and lijt is the number of passengers who would cancel their requests. Accordingly, the new state space is defined as:

… …+
×

+ +
×t L V P P P t L V P k mS {( , , , , , , ) , , , , {1, 2, , }}t t t t t

m
t

n n
t

n
t
k n n1 2

Each state = t P C Vs ( , , , )t
k

t t is characterized by the current time interval t, the demand vector for waiting passengers with different

waiting times =P p i j: ,t
k

ijt
k , in which …k m{1, 2, , }, the vector for cancelled requests =L l i j{ : , }t ijt , and the

available vehicles vector =V v i{ : }t it .
Second, we have adapted the transition function by introducing a queue for the waiting passengers. Specifically, given the number

of vehicles dispatched from zone i to j at t, the number of served passengers (yijt), and waiting passengers (pijt
k ) will respectively be:

= = = …
= +

y x p l p p p y p p y p k mmin , min , max 0, , 1, 2, , 1ijt ijt ijt ijt ijt
m

ijt
m

ijt
m

ijt ijt
k

ijt
k

ijt
r k

m

ijt
r

1

Accordingly, the total costs at this timestamp is:

= + + = + +
=

z z z z p l c x y· · ·t t
wt

t
cxl

t
rep

i j k

m

k ijt
k

i j
ijt

i j
ijt ijt ijt

, 1 , ,

where z z z, ,t
wt

t
cxl

t
rep are respectively the total waiting time costs, cancellation costs, and repositioning costs.

4. Case study

In this section, we first present the experimental setup of the case study, then we demonstrate the performance of the above actor-
critic method, followed by the comparison with both the vanilla policy gradient method and the theoretical upper bound derived by
the integer programming problem. Lastly, we discuss the implications of the two more realistic scenarios where we consider pas-
sengers’ different tolerance of waiting time, i.e., user priority.

4.1. Experimental setup

Generic settings
In our case study, we build simulators that resemble the current yellow cab service and transportation demand patterns in the

New York Manhattan area, however with the assumption that all taxis are autonomous vehicles and can be dispatched in a centralized
manner. Our goal, therefore, is to find an optimal taxi dispatching strategy using the proposed actor-critic algorithm with such
simulators.

To setup simulators, We first obtained a geo-spatial dataset that partitions the Manhattan area into 64 zones by the NYC TLC (Taxi
& Limousine Commission), as shown in Fig. 3 and Fig. 4. Second, we obtained a yellow taxi trip dataset from the NYC TLC within the
period of June 2016 to see how the travel demand varies across regions and along the day. Each observation is an actual taxi trip that
records the pick-up and drop-off times/locations, trip distances, itemized fares, rate types, payment types, and driver-reported
passenger counts in the New York City. To uncover the spatio-temporal traffic patterns, we estimate the travel demand for each zone
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in Fig. 4 throughout a day and across the month by respectively aggregating its hourly departure and arrival trips. Figs. 5 and 6 show
the traffic patterns for two representative zones 116 and 161, of which the former is an uptown residential area and the latter
represents the midtown business area. In each figure, the blue and green curves show respectively the average amount of departure
and arrival trips for a particular hour of the day in June, and the upper and lower caps identify the 95% confidence interval. While
both figures confirm the significant imbalance of traffic demand, there exists obvious spatial difference with respect the demand
distribution. Zone 161, whilst the central business area, has significantly higher but more concentrated demands than zone 116 across
a day. Temporally, zone 116’s arrival peak is around midnight and departure peak is around 7 am, while zone 161 has an arrival peak
at around 7 am and multiple departure peaks after 12 pm.

In order to reduce the computational burden of the simulation, we have the following three simplifications. First of all, we
aggregate the taxi zones into larger zones that yields a smaller network. In particular, we partition the region into 8 service zones as
shown in Fig. 7. Second, we divide the morning peak (6 am - 10 am) into 16 time intervals with fixed interval size of 15 min, and we
calculate the average number of ride requests for every time interval on an average day with the data. Notice that in our simulation,
the data only helps us come up with the daily demand distribution to reflect the “imbalance” nature in real traffic networks. Third, we
assume by the end of each day, all vehicles will return to their origins so the initial number of vehicles in each zone will be the same
at the beginning of different days. Note that the first two simplifications are solely for the purpose of reducing computational time
and numerical validation of our approach. And the third assumption is to ensure that at the beginning of each episode (each day), the
initial state would be the same or at least similar, which is essential for the convergence of total return in RL algorithms’ learning
process. Our methods, however, can be generalized to any size of network and time intervals given enough computational power.

Without loss of generality, all other parameters, such as travel times between any pair of zones and waiting costs, are set by the
authors manually. Notice that the waiting time penalty is much higher than the penalty of repositioning empty vehicles so that we
can achieve higher level of service for the customers. And our goal is to decide the number of vehicles to dispatch between each pair

Fig. 3. Manhattan taxi zone partition.
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Fig. 4. Network by representing each zone with a node.

Fig. 5. Arrival and departure rates for zone 116.
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of zones at the beginning of each time interval.
Scenario specific settings – Scenario I
As we have discussed in Section 3.4, if we would like to provide higher level of service to the customers, we need to impose higher

penalty on the waiting time of those passengers who have already waited for a long time. In this scenario where we distinguish two
types of passengers, we set the threshold = 1 in Eq. (7), i.e. those who have waited more than = 1 time interval are treated as
“impatient passengers” and others are “patient passengers”. To compare the behaviors of the optimal policies with and without
considering user priority, we have conducted two experiments using the proposed actor-critic algorithms. The first experiment

Fig. 6. Arrival and departure rates for zone 161.

Fig. 7. Partition of Manhattan into 8 zones.
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considers the user priority and therefore the waiting time penalty configuration has been set as = 15·ijt ijt
2 1 : penalty on the waiting

time of “impatient passengers” is much higher; the second experiment (base case), on the other hand, does not distinguish “impatient
passengers” from “patient passengers” and therefore, we let =ijt ijt

2 1 .
Scenario specific settings – Scenario II
In this scenario, we have determined three sets of parameters: (1) demand profile ( )1 and vehicle distributions ( )n 2 ; (2) unit

waiting time cost function ( )ijt ; and (3) cancellation cost function ( )ijt .
First of all, we have assumed that the demand profile for each OD pair i j( , ) at a specific time t follows a Gaussian distribution, of

which the mean and variance are derived from the historical NYC TLC data discussed in the generic settings. Namely, µ~ ( , )ijt ijt ijt
where µijt and ijt are historical means and standard deviations. Similarly, we have assumed that the initial number of vehicles follows
a multinomial distribution where the probabilities of each zone are proportions to the aggregated historical demand at each zone.

Second, we set the parameters in Eqs. ()()()(8)–(10) such that the simulator can distinguish four different types of passengers:
“patient passengers” who have only waited for one time interval, “impatient passengers” who have waited for respectively two and
three time intervals, and passengers who would cancel their requests after waiting for more than three time intervals. Therefore, in
Eqs. (8) and (9), we have set = = = = = = = =m 3, 1, 2, 3, 4, , 5· , 7·ijt ijt ijt1 2 3 4 1

1
2

1
3

1 to ensure a increasing marginal
waiting cost (see Eq. (7) for the definition of ijt

1 ). Accordingly, we set the cancellation rules in Eq. (10) as = =4, 25· ijt
1 so that a

cancellation would receive a higher penalty than the waiting costs.

4.2. Model performance

In our case study, we have conducted a set of experiments, including a benchmark vanilla policy gradient algorithm, with
different training configurations to see how different model specifications affect our learned policies. Our neural networks’ archi-
tectures are summarized in Table 1. Other generic parameters, such as learning rate and trajectory batch size, have been set re-
spectively to be ×5 10 5 and 512 for all experiments. Last but not least, in order to compare the performance of the actor critic
algorithm with the theoretical upper bound we have derived in Section 3.3, we set the travel demand to be deterministic in our
simulator, i.e. from day to day there are a fixed number of passengers who need to travel between each pair of zones at a certain time
of day. Thus we can solve for the optimal dispatching strategy based on the integer programming (IP) model we have formulated. A
more general case with stochastic demand will be later discussed in Section 4.3.

After distributing all five experiments on an Amazon EC2 p xlarge2. instance for 30,000 epochs of training process, we first
visualize the training process by plotting the average return at each epoch in Fig. 8. In the figure, experiment 1 fails to converge and
experiment 5 just starts to reaching its plateau, while experiments 2, 3, and 4 all have plateaued out after 30,000 epochs. However,
experiment 2 has a far better convergence rate than 3 and 4. In the meantime, the final converged values with their standard
deviation and the training speeds per epoch for the five experiments suggest that with similar training speed, experiment 2 is able to
train a better policy with higher average return. Those observations suggest that while the actor critic algorithm is obviously better
than the vanilla policy gradient, a deeper neural network architecture performs better than a shallow neural network. Second,
comparing the plateaued total rewards of experiment 2 with the theoretically optimal upper bound, the actor critic algorithm
converged to around ×5.02 105, while IP model reports the optimal value of ×4.86 105 – the optimality gap is around 3.4%.

4.3. Policy robustness

To test the robustness of the performance of the proposed actor critic algorithm, we further allow stochasticity in the travel
demand realization. In particular, we prepare two different travel demand profiles, which we term as outbound and inbound profile
respectively, and on each day we randomly pick, with equal probability, one travel demand profile for the transportation network.
While we keep the outbound demand profile the same as the one we use for experiments 1–5, we transpose its OD matrix and reduce
the demand by 5% to serve as the inbound demand profile. This tries to mimic a lower traffic circumstances during weekends/holiday
periods. Our actor-critic learner, however, has no prior information about this setup, and we train our algorithm using the same
training configurations with experiment 2 shown in Table 1. At the same time, we use the proposed IP model in Section 3.3 to

Table 1
Training Configurations.

Exp. Algorithm Policy network architecture Value network architecture Convergence Last epoch Return

1 Vanilla policy
gradient

4 layers with size
{128, 128, 128, 128}

None Not converged –

2 Actor critic 4 layers with size 4 layers with size Fast convergence
{128, 128, 128, 128} {128, 128, 128, 128} 1.91 s/epoch × ±5.02 10 523.15

3 Actor critic 3 layers with size 3 layers with size Medium convergence
{128, 128, 128} {128, 128, 128} 1.80 s/epoch × ±5.06 10 488.95

4 Actor critic 2 layers with size 2 layers with size Slow convergence
{128, 128} {128, 128} 1.74 s/epoch × ±5.12 10 656.65

5 Actor critic 1 layer with size 1 layer with size Not converged
{128} {128} 1.64 s/epoch –
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respectively solve the optimal returns under outbound and inbound demand profiles. Notice that the true optimal should be found by
solving a stochastic integer program, and our IP approach only gives an upper and a lower bound of the optimal return. However, we
leave the stochastic programming problem as a future work since it is not the main scope of the paper.

We compare the actor-critic training curve with the two bounds in Fig. 9. As can be seen, the optimal solution we get for outbound
demand profile is around ×4.86 105, and for inbound profile it is around ×4.32 105. Our proposed actor critic algorithm, with the
same network configuration as experiment 2 in Table 1, reports the final converged total rewards to about × ±4.49 10 409.75 ,
which is close to the upper bound. Also notice that the true optimal value should be between the converged return and the upper
bound. Therefore, when the travel demand is stochastic and unknown to us beforehand, the actor critic method, although may not
given the theoretical optimal, still provides satisfying results. In real traffic networks, however, since the network dynamics (demand,

Fig. 8. Training Curve of Actor-Critic Method Under Deterministic Demand.

Fig. 9. Training Curve of Actor-Critic Method Under Stochastic Demand.
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travel time etc.) are highly complex and stochastic, establishing closed-form models to reflect such complicated dynamics would be
challenging. In this case, the proposed model free reinforcement learning method (i.e., actor critic) is an efficient alternative way to
solve for reliable and close-to-optimal solutions.

4.4. Consider user priority – Scenario I

In these experiments, we use the same training specifications as described in Section 4.2 and have trained our policy networks
until convergence. Fig. 10 shows the average returns for our experiments as the training proceeded. For the sake of current interest,
we only focus on the green and blue curves, which respectively represent the training processes for the experiments with (i.e.,
scenario I) and without (i.e., base case) considering the user priority, and the green and blue curves use the left and right hand side y
axes, respectively. Though plateaued at different values, which is due to the different waiting cost settings, both experiments achieve
convergence at about the same rate. Second, We keep track of the total waiting times of all the passengers and the “impatient
passengers”. The results are summarized in Table 2, where the numbers after the plus/minus signs are the standard deviations of the
corresponding waiting time. As can be seen, when we consider user priority and choose to first serve those “impatient passengers”,
the total waiting time of all the passengers is around ×5.25 104, which is 4% higher than the case without user-priority. However, the
waiting time of those “impatient passengers” is significantly smaller ( ×5.42 104 vs ×5.74 104), which matches our expectation. If we
do not differentiate between passengers based on their waiting time, the algorithm learns an optimal policy that would benefit the
system the most, or “system optimal”, even if it makes “impatient passengers” wait longer. However when we want to guarantee level
of service and grant priorities to those “impatient passengers”, our actor critic algorithm, though still learns a case-specific optimal
policy, yields a “sub-optimal” policy that sacrifices the system optimality but drastically reduces those extreme long waiting time.

To further understand the spatial effect of considering user-priority, we run (feed-forward pass) both learned optimal dispatching
policies with and without user priority on the same typical day, and compare the average waiting time per each OD pair throughout a
day. The results are summarized in the heat maps shown in Fig. 11, where the first two subplots (a) and (b) show respectively the
cases with and without user priority, subplot (c) shows the difference in average waiting time (subtract subplot 1 from subplot 2), and
subplot (d) shows the total OD demand profile for the evaluation day. For each heat map, the two axes represent the indices of the
simplified network nodes shown in Fig. 4. Both waiting time heat maps (a and b) confirm that the average waiting time in high-
demand OD pair (e.g., zone 4 to zone 5) is significantly lower than that in low-demand OD pair (e.g., zone 0 to zone 1), which

Fig. 10. Training Curve of the User Priority Scenarios.

Table 2
Waiting time comparison with and without user-priority.

Total waiting time of all passengers Total waiting time of impatient passengers

With user-priority
( = 15·ijt ijt

2 1 )
× ±5.25 10 41.74 × ±3.42 10 32.04

Without user-priority
( =ijt ijt

2 1 )
× ±5.04 10 44.64 × ±3.74 10 61.64
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suggests that the learned policies successfully identify these “hot” areas and dispatch more vehicles to those locations to reduce the
waiting time. However, those passengers in the less popular areas would suffer from longer waiting time. And such unfairness can be
mitigated by considering user priority. More specifically, the first heat map shows a smaller standard deviation (1.97 vs. 2.39) with
respect to the waiting time of all OD pairs, which implies that by considering user priority, our proposed algorithm produces a more
equitable policy that reduces the variance of waiting time across passengers and zones. This conjecture is further proved by subplot
(c) of Fig. 11, where the average waiting times for less-demanding OD pairs (e.g., zone 1 to zones 0 – 3) are significantly higher in the
case without considering user priority, and vice versa for high-demanding OD pair (e.g., zone 4 - zone 5).

4.5. Consider user priority – Scenario II

Using the same training specification as in the first scenario, our policy converges after 30,000 training epochs. We first observe
that in Fig. 10, of which the red curve shows the training process for the scenario II, the experiment converges after around 10,000
epochs. Second, for each experiment in the figure, we have plotted the standard deviation of returns within each epoch – each value
in the plot is surrounded by a three-standard-deviation band. We notice that the red curve demonstrates higher training variances
than the other two experiments, which is due to the fact that scenario II incorporates stochasticity including the Gaussian distributed
demand profile and multinomial distributed initial vehicle numbers.

Fig. 11. Heat maps of average passenger waiting time and OD demand.
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Third, we run the feed forward pass using the learned optimal policies with and without considering the user priority, and
compare the resulting average passenger waiting time and cancellations. In the feed forward run, we control the inputs to both feed
forward runs the same, including the vehicle distributions and the demand profiles (we use the same OD demand profile as in
Fig. 11(d)). Notice that we also let both runs to have passengers cancel their requests even though the policy without user priority
does not explicitly consider such case during the training. However, such controlled experiments allow us to address the question that
in a realistic world, would a policy with the treatment of user priority dominate the one without? And if so, by how much? Fig. 12
summarizes the results. In the figure, subplots (a) and (b) demonstrate the average waiting time with and without considering the
user priority, respectively. Subplot (c) shows the difference between (a) and (b) in which positive values are shown in reds and
negative values are shown in blues. Subplots (d) and (e) show the cancellation rate, which is defined as the ratio of the accumulated
cancelled requests by each OD pair to each OD demand across a day. Subplot (f) illustrates the difference between the cancellation
rates. We first compare the subplots (d) – (f) and observe that the cancellation rates for both policies are significantly lower in the
central areas, or “hot” areas, than those less popular areas such as 1 5. On the other hand, however, the policy with user priority
achieves noticeably better cancellation rates in many OD pairs than the other policy, of which the effect is mostly announced in the
less popular OD pairs – the largest difference is as high as 60%. Then we compare subplots (a) – (c). While the implications for the
average waiting time largely agree with those concluded from scenario I in Section 4.4, the difference of the two policies are less
significant: the policy with user priority does produce a more fair dispatching strategy with lower waiting times in less-demanding
areas but the magnitudes are smaller. However, this is caused by that passengers who waited for more than four time intervals cancel
their requests. In fact, since the policy with user priority has significantly lower cancellation rate, it serves more passengers than the
policy without, while still being able to achieve a comparable waiting time. Therefore, such policy is deemed as a superior policy that
balances well with respect to fairness and level of service.

5. Conclusion

In this paper, we present a deep reinforcement learning (RL) approach for the problem of dispatching autonomous vehicles for taxi
services. In particular, we propose an actor-critic framework with deep neural networks as approximations for both the actor and critic
functions. Second, we derive the theoretical upper bound of the total costs if we assume the dynamics of the system are deterministic
and known to us beforehand. Third, we implement our actor-critic method and apply it to a simplified transportation network based on
the New York yellow taxi services. We conduct a set of experiments to compare the effectiveness of the proposed actor-critic algorithm
with deep neural networks against vanilla policy gradient method and shallow neural networks, which is a surrogate of the approximate

Fig. 12. Heat maps of average passenger waiting time and cancellation rate.
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dynamic programming method. The results suggest that the proposed algorithm outperforms the other algorithms with respect to
convergence rate and quality. Fourth, we test the robustness of the proposed algorithm by allowing stochastic traffic demand profile, the
experiment suggests that our RL method can always converge to a value close to the true optimal. Lastly, we have investigated two more
realistic scenarios where we have considered user priority, passenger cancellations, and stochasticity to both take account the extreme
passenger waiting time and the random nature of demand and vehicular distributions. Our case study shows that with the consideration
of user priority, the total waiting time of all passengers will increase, however the total waiting time of “impatient passenger” reduces,
when comparing to the case without user priority. We also show that with user priority, the optimal policy is more equitable across the
passengers and OD pairs. In the scenario where we consider cancellation, we conclude that the policy with user priority is more superior
than the policy without with respect to user fairness, cancellation rate, and level of service.

This paper leaves a lot of extensions for future research. First of all, our current experiments are conducted on a rather simplified
transportation network, however, it has long been a challenge to adapt a centralized policy to large scale experiments with deep feed
forward neural networks due to the growing state/action space. However, one may tackle this issue by embedding the space and
action into recurrent neural networks (RNN) (Hochreiter and Schmidhuber, 1997) or graph neural networks (GNN) (Scarselli et al.,
2008). Besides, one can also incorporate the multi-agent RL framework to give a decentralized solution, as in Lin et al. (2018), to
balance the trade off between system optimality and running efficiency. Second, our current experiments only considered single
mode (autonomous vehicles), while in the near future the vehicle fleet will most likely be made up of a mixture of human-driven
vehicles and autonomous vehicles. Therefore, we can adapt our framework to a mixed fleet case by incorporating a larger state and
action space. Third, for profitable companies such as Uber and Lyft, our algorithm could also combine the surge pricing strategy for
the human-driving vehicles with the dispatch strategy for the autonomous vehicles. Fourth, incorporating explicit demand fore-
casting into the proposed RL framework (as in the model predictive control framework) could be another interesting extension, and
we may expect this extra information to improve the system level expected returns and convergence speed. Lastly, we could consider
the effect of ride sharing on our dispatch strategy. Currently we assume that different trips are independent from each other and
should be served with different vehicles. However, if we allow ride sharing and trip matching, we would expect a more cost-efficient
policy to be learned by dispatching less vehicles to regions where there are more trips matched together.
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