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A target-missile-defender engagement is considered, in which the missile attempts to intercept the 
target and the defender tries to prevent this interception via missile’s interception. In this engagement, 
finding an optimal launch time of the defender and an optimal target guidance law before and after 
launch, which can be formulated as a switched system optimization problem, is crucial for improving 
performance of the target-defender team. The objective of this paper is to examine the potential of 
using deep reinforcement learning in switched system optimization. To that end, we propose estimating 
the optimal launch time of the defender and the optimal guidance law of the target online, using a 
reinforcement learning based method. A policy suggesting at each decision time the bang-bang target 
maneuver and whether or not to launch the defender was obtained and analyzed via simulations. 
Simulations showed the ability of the reinforcement learning based method to obtain a close to optimal 
level of performance in terms of the suggested cost function.

© 2020 Elsevier Masson SAS. All rights reserved.
1. Introduction

In the scenario of an attacking missile and an evading target, 
numerous guidance laws were devised for both scenario partic-
ipants [2,11]. In an effort to avoid interception, the target can 
deploy countermeasures. For example, a defending missile can be 
deployed by the target, in order to intercept the attacking mis-
sile, a scenario which is commonly referred in the literature as a 
target-missile-defender (TMD) engagement. The guidance laws of 
the TMD scenario participants were investigated using tools such 
as optimal control theory [30,22,23], differential games [25,21,28], 
nonlinear control theory [12], etc.

A common assumption in such an investigation is the given 
initial conditions of all the participants, an approach that avoids 
addressing the launching stage of the defender. By introducing the 
launch of the defender, the problem of optimal control has to be 
solved for two stages: the first stage, which consist out of a ma-
neuvering target and an attacking missile, and the second stage, 
which in addition to the participants of the first stage, includes the 
defender. In addition, the optimal transition between the stages, 
i.e., the optimal defender launch time has to be obtained. The au-
thors of [29] addressed this issue by assuming a constant accelera-
tion maneuver of the target prior to launch, followed by a weapon-
target-allocation algorithm, to obtain sub-optimal defender launch 
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time. The problem of obtaining an optimal guidance law for at 
least one of the scenario participants, together with obtaining an 
optimal launch time with respect to a given cost function, can be 
viewed as a switched system optimization problem.

A switched system is composed out of sub-systems and a 
switching law specifying the active sub-system at each time in-
stance [42]. In a case in which the switching sequence between 
sub-systems are an external input to the system, the system is 
called an externally forced switching system (EFS). For an internal 
input case [17], the system is called an internally forced switch-
ing system (IFS). Another distinction between several classes of 
switched systems is the presence of the controller in the model: 
for a model with an external controller, the system is named non-
autonomous, while the system without an external controller is 
named autonomous.

Two main approaches are used in the literature to solve optimal 
control problems of continuous-time non-autonomous switched 
systems with EFS. The first approach [38,39] uses two-stage op-
timization techniques to find the optimal control switching times 
and the optimal control input. The second approach [4,36] uses an 
embedding transformation technique, which is utilized to trans-
form the problem into a nonlinear optimization, solution of which 
can be obtained using nonlinear programming techniques. In the 
context of missile guidance, [34] developed the target evasion 
strategy from a missile performing multiple switches in the guid-
ance law. The authors suggested the use of a matrix game for 
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a case of unknown switching times, yielding a maximin evasion 
strategy, which guarantees a miss distance not smaller than the 
lower game value.

The optimal control of discrete-time non-autonomous switched 
systems with EFS, which will be investigated in this paper, was 
addressed for both linear systems with quadratic cost functions 
[41,10,40] and for nonlinear switched systems [8]. In [41], the au-
thors obtained the explicit optimal piecewise linear state feedback 
controller via a solution of a set of difference Riccati equations 
(DRE). The switching times and the switching sequence were ob-
tained through dynamic programming. In addition, the authors 
pointed out the problem of exponential growth of the positive 
semi-definite matrix set with time. A similar problem was en-
countered in [10], which the authors tackled by considering a sub-
optimal cost function. The authors of [8], addressed the optimal 
control problem of discrete-time nonlinear switched systems, by 
decomposing the problem into two sub-problems and iteratively 
solving said sub-problems. In the first sub-problem, the optimal 
control input was obtained for a given switching sequence, while 
in the second sub-problem, the optimal switching sequence was 
obtained, utilizing the discrete filled function method. The au-
thors of [7,6] suggested a solution to the autonomous switched 
system with fixed switching sequence problem by suggesting a 
formula for the cost gradient, and utilized said formula in the as-
sociated gradient-descent algorithms. For online implementations, 
the authors of [5] used a Newton-like optimization algorithm and 
showed that the convergence rate of the algorithm is quadratic for 
small estimation errors.

The aforementioned solutions to the switched system optimiza-
tion problem suffer from the distinct drawback, if online perfor-
mance is required, due to the fact that each set of initial conditions 
posses a different numerical optimization problem, which is com-
putationally demanding. A different methodology is the utilization 
of reinforcement learning (RL) based methods, the advantage being 
a general, state dependent policy, that can be viewed as a closed 
loop guidance and switching law. In particular, deep reinforcement 
learning (DRL) uses a deep neural network (an artificial neural net-
work [18], with a deep architecture, i.e., several hidden layers) as 
a function approximator in the RL algorithms. For an autonomous 
switched system, the problem can be treated as a classification 
or a regression problem of an unknown parameter out of a priori 
known set (discrete or continuous respectively), by treating the dy-
namical system as a time series with a given interval which can be 
solved using the deep learning (DL) method, as presented in [27].

RL is a mathematical framework in artificial intelligence that 
concerns autonomous learning using experience [33]. The RL agent 
interacts with an environment, thus collecting useful data regard-
ing the dynamics of the environment, and uses said information 
to improve its policy, i.e., controller, with respect to a reward col-
lected till the end of the scenario. In general, RL is divided into two 
types of methods (other divisions exist, such as gradient-based and 
gradient-free methods): the value function based methods and the 
policy gradient based methods. The value function based methods 
are based on the evaluation of functions such as the state-value 
function v or the action-value function q, and the synthesis of pol-
icy π from said value functions. Two of the popular algorithms 
utilizing those value functions are Q-learning [35] and SARSA [24]. 
On the other hand, the policy gradient methods are based on eval-
uating the policy directly. The approach of directly evaluating the 
policy has spawned numerous algorithms, such as REINFORCE [37], 
guided policy search [14], trust region policy optimization [26], 
and actor-critic methods such as the deterministic policy gradients 
[32].

In the past, the RL framework lacked scalability and thus were 
limited to low-dimensional problems. This problem was mitigated 
in the recent years, thanks to the advances in deep learning, which 
showed the great potential of deep neural networks in represent-
ing a high dimensional data such as images in a compact low-
dimensional form. The use of deep learning algorithms within the 
RL framework spawned the field of deep reinforcement learning. In 
general, DRL is based on training deep neural networks to approx-
imate the optimal policy π∗ , and/or the optimal value functions 
v∗ and q∗ . The DRL framework was used to tackle previously in-
tractable decision making problems [20,31,15,13,9]. In [20], Atari 
2600 video games were played using a DRL algorithm, with super-
human performance, thus demonstrating the fact that the RL agent 
can be trained solely based on the reward signal. In [31], the au-
thors used supervised and reinforcement learning together with a 
heuristic search to defeat the human world champion at the game 
Go. In robotics, DRL algorithms were used to synthesize a control 
policy directly from camera inputs [13], for tasks such as screwing 
on a bottle cap and placing a shaped block in the correct hole. The 
authors of [19] utilized the RL formulation to obtain the naviga-
tion capability. Un/self-supervised tasks were used to improve data 
efficiency and task performance. In [16], RL was utilized for the 
design of an optimal controller for a nonlinear system with non-
linear faults and unmeasured states. A brief survey of DRL methods 
is given in [1].

In this paper, we propose utilizing the RL framework in order 
to solve a switched system optimization problem. More specifically, 
we intend to use the DRL method in order to obtain a sub-optimal 
launch time of the defender and a sub-optimal bang-bang con-
troller for the target in the TMD scenario. The advantage of using 
this approach as apposed to the classical optimization techniques 
is that it is capable of producing an accurate prediction of the op-
timal defender launch time and optimal target maneuver online. 
This capability stems from the fact that at the online stage, a neu-
ral network which represents the maneuver and the launch time, 
uses pre-defined function transformations that are determined at 
the offline stage, without the need of performing additional nu-
merical simulations for the given initial conditions. The additional 
advantages of this approach are its validity for both linear and non-
linear systems, and the minimal additional online computational 
cost for the extension to a multi-agent engagement.

The remainder of the paper is organized as follows. Section 2
formulates the engagement. Section 3 presents the suggested solu-
tion to the optimal launch time and guidance problem. Section 4
presents the implementation of the DRL estimator and its perfor-
mance in terms of the total reward. Section 5 presents the main 
conclusions of the paper.

2. Engagement

In this section, let us present the formulation of the follow-
ing engagement, addressed throughout the course of this paper: 
an attacking missile tries to intercept the target, the target tries to 
evade the missile, and the defender tries to intercept the missile 
before it intercepts the target. In addition, let us make the follow-
ing engagement assumptions:

1. Perfect state knowledge of all the scenario participants, i.e., the 
guidance laws of the defender and the missile are assumed to 
be known.

2. The scenario takes place in the end game phase. This assump-
tion allows us to use linearization along the initial line of 
sights (LOSs). The speed of the vehicles is assumed constant 
during this phase. Note that the methodology of the problem 
solution does not depend on this assumption, and its made 
strictly for engagement simplification purposes.

3. The target uses a bang-bang controller, applied at discrete 
times, defined by the decision time interval �tc . The launch 
of the defender occurs at one of those discrete times, mean-
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Fig. 1. Planar engagement geometry.

ing, at that time instant, the target launches the defender and 
then executes its control command.

2.1. General kinematics and dynamics

Fig. 1 presents a schematic view of the planar end-game ge-
ometry of a target, a missile chasing said target, and a defender 
chasing the missile, where XI − O I − Y I is a Cartesian inertial 
reference frame. The notations MT and M D denote the attacking 
missile with an evading target and the attacking missile with de-
fending defender duo, respectively. The speed, normal acceleration, 
and flight-path angles are denoted by V , a, and γ , respectively. 
The range between the adversaries is r, and λ is the angle be-
tween a LOS and the XI axis. Note that L O SMT 0 is defended at 
the beginning of the end-game phase, while L O SM D0 is defined at 
the defender launch time.

The nonlinear kinematic equations for planer end-game geom-
etry, with neglected gravitation for the missile-target duo are:

ṙMT = −V M cos (γM + λMT ) − V T cos (γT − λMT ) (1a)

λ̇MT = [V M sin (γM + λMT ) − V T sin (γT − λMT )]/rMT (1b)

Similarly, the kinematic equations for the missile-defender duo 
are:

ṙM D = −V M cos (γM + λM D) − V D cos (γD − λM D) (2a)

λ̇M D = [V M sin (γM + λM D) − V D sin (γD − λM D)]/rM D (2b)

The rate of the path angle is defined as:

γ̇k = ak/Vk, k = {M, T , D} (3)

2.2. Linear scenario

Although the methodology of the problem solution is general, 
let us exemplify the solution on a sub-class of the problem, by 
assuming that the dynamics in the end game of all the participants 
can be represented by linear equations, and that the initial LOS’s 
of the target and the defender are identical.

The system can be formulated as a switched system with EFS. 
The dynamics of the defender before and after launch can be for-
mulated as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋk = Akxk + Bkuk

ak = Ckxk + dkuk

xD = xT

k = {M, T } , bef ore launch

ẋk = Akxk + Bkuk

a = C x + d u
k = {M, T , D} , af ter launch

(4)
k k k k k
where xk is the vector of an agent’s internal state variables and uk
is its controller.

2.2.1. Linearized kinematics
In the endgame phase, the vehicles are near the collision tri-

angles, meaning we can linearize the kinematics around the initial 
LOSs. We denote yMT as the relative displacement between the 
missile and the target, normal to L O SMT 0. Similarly, yM D is the 
relative displacement between the missile and the defender, nor-
mal to L O SM D0 (see Fig. 1). The state vector of the linearized 
problem is:

x =
[

xT
MT xT

M D

]T
(5)

where

xMT =
[

yMT ẏMT xT
M xT

T

]T
(6)

xM D =
[

yM D ẏM D xT
D

]T
(7)

The equations of motion are:

ẋ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋMT ,1 = xMT ,2

ẋMT ,2 = aT − aM

ẋM = AM xM + BM uM

ẋT = AT xT + BT uT

ẋM D,1 = xM D,2

ẋM D,2 = aM − aD

ẋD = AD xD + BD uD

(8)

and can be rewritten in a vector form as:

ẋ = Ax + B[uT uD ]T + CuM (9)

where

A =
[

AMT [0]
A21 AM D

]
, B =

[
BMT [0]
[0] BM D

]
, C =

[
CMT

CM D

]
(10)

AMT =

⎡
⎢⎢⎢⎣

0 1 [0] [0]
0 0 −CM CT

[0] [0] AM [0]
[0] [0] [0] AT

⎤
⎥⎥⎥⎦ , BMT =

⎡
⎢⎢⎢⎣

0

dT

[0]
BT

⎤
⎥⎥⎥⎦ ,

CMT =

⎡
⎢⎢⎢⎣

0

−dM

BM

[0]

⎤
⎥⎥⎥⎦

(11)

AM D =
⎡
⎣

0 1 [0]
0 0 −CD

[0] [0] AD

⎤
⎦ , BM D =

⎡
⎣

0

−dD

BD

⎤
⎦ , CM D =

⎡
⎣

0

dM

[0]

⎤
⎦

(12)

A21 =
⎡
⎣

[0] [0] [0]
[0] CM [0]
[0] [0] [0]

⎤
⎦ (13)

with [0] denoting a matrix of zeros with appropriate dimensions.
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2.2.2. Timeline
After linearization, under the assumption of small deviations 

from the collision triangle, the expected interception time is cal-
culated as follows:

t f ,MT = − rMT 0

ṙMT 0

= rMT 0

V M cos (γM0 + λMT 0) + V T cos (γT 0 − λMT 0)
(14)

t f ,M D = − rM D0

ṙM D0

= rM D0

V M cos (γM0 + λM D0) + V D cos (γD0 − λM D0)
(15)

�t is defined as the difference between the time at which missile 
is expected to intercept the target and the time the defender is 
expected to intercept the missile, thus requiring �t to be greater 
than zero.

�t = t f ,MT − t f ,M D (16)

2.2.3. Missile and defender guidance laws
Let us now present the general family of linear guidance laws, 

which are assumed to be used by both the missile and the de-
fender.

Under the assumptions of linear kinematics, perfect informa-
tion (including perfect knowledge about the future controls of the 
evader), and unbounded controls, the following general cost func-
tion can be minimized by using optimal control theory:

J = y2(t f ) + βP

2

t f∫
0

u2
P dt (17)

where y2(t f ) is the squared miss distance perpendicular to the 
initial LOS, subscript P stands for pursuer, and βP is weight on the 

control effort 
t f∫
0

u2
P dt .

The optimal solution results in a family of linear guidance laws, 
being a function of pursuer-evader engagement state variables and 
the evader’s control. In the case where the missile is the pursuer 
and target is the evader we get:

uM = KMT (tgo,MT , βM)xMT + SMT (tgo,MT , βM)uT (18)

KMT (tgo,MT , βM) = [
K1,MT K2,MT KM,MT KT ,MT

]
(19)

whereas for the case where the defender is the pursuer and missile 
is the evader we get:

uD = KM D(tgo,M D , βD)
[

xT
M D xT

M

]T + SM D(tgo,M D , βD)uM (20)

KM D(tgo,M D , βD) = [
K1,M D K2,M D KD,M D KM,M D

]
(21)

Among them, the familiar proportional navigation (PN), augmented 
proportional navigation (APN), and optimal guidance law (OGL), 
that can be written as:

uM = N ′
MT , j

ZMT , j

t2
go,MT

uD = N ′
M D, j

ZM D, j

t2
go,M D

, j = {P N, A P N, O GL} (22)

where for the PN guidance law, Z P N is equal to:

Z MT ,P N = yMT + ẏMT tgo,MT (23a)

Z M D,P N = yM D + ẏM Dtgo,M D (23b)
and for a finite weight β , N ′
P N is equal to:

N ′
MT ,P N = 3t3

go,MT

3βM + t3
go,MT

(24a)

N ′
M D,P N = 3t3

go,M D

3βD + t3
go,M D

(24b)

Remark: we chose the weights βD and βM to be finite, to ac-
count for the fact that, in a real scenario, the controls are bounded 
(the lower the bound on the controls, the larger the weights should 
be chosen). This choice leads, however, to a miss distance per-
pendicular to the initial LOS, even for a known evader control 
strategy.

3. Guide-Launch-Guide policy

Under the assumption of given guidance laws for the missile 
and the defender, the problem addressed in this paper is defined 
as finding an optimal defender launch time and an optimal guid-
ance law of the target before and after launch, in a single target, 
single missile, and single defender scenario. The minimal and max-
imal launch times are constrained by the time instance at which 
the attacking missile is discovered and by the required safe inter-
ception (defender - missile) distance from the target. The problem 
of finding the optimal launch time of the defender and the op-
timal guidance law of the target before and after launch (named 
the Guide-Launch-Guide policy) can be solved using various op-
timization techniques (see section 1). The drawback of most of 
those techniques is the fact that they require a significant amount 
of computational resources, which in turn translates to run times, 
which are not suitable for online performance, thus making the use 
of those techniques undesirable for the solution of our problem. 
For example, a greedy search of 20 optimal bang-bang maneuvers 
and an optimal launch time, results in 20 · 220 ≈ 2.1e7 permuta-
tions, for which the simulation has to be run.

To achieve the required online performance, let us suggest the 
use of the deep reinforcement learning method in order to identify 
the defender’s sub-optimal launch time, and to obtain the sub-
optimal bang-bang guidance law before and after launch. Note that 
this approach scales up to a multi-agent engagement, without in-
creasing the online computational load, as apposed to most online 
optimizers, that require significant amount of additional computa-
tions for each agent added to the scenario.

3.1. Simulated environment

In order to synthesize the optimal bang-bang controller, to-
gether with the optimal defender launch time, a simulated envi-
ronment is defined based on section 2.1, with ideal dynamics of 
all the scenario participants. The guidance laws for the defender 
and the missile are taken from section 2.2.

Remark: The weights βD and βM are tuning parameters which 
are responsible for limiting pursuer’s controller. Increasing the 
weight value decreases maneuvering capabilities, as can be seen 
from Eq. (22) and Eq. (24). The values of the weights were chosen 
as to reflect the class of the missile and the defender. The attack-
ing missile is an anti-aircraft missile designed to intercept targets 
with relatively low maneuvering capabilities, thus it is assumed 
that the missile will have relatively low maneuvering capabilities 
as well, a fact that is reflected by the value of βM = 1. The de-
fender is designed to intercept missiles, which are generally much 
more agile than aircrafts, thus a smaller weight on the control ef-
fort is typically used in guidance laws of such missiles. Following 
that logic, the value of βD = 0.01 was chosen for the guidance law 
of the defender. For the initial conditions addressed in section 4, 
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the miss distance of the defender was less than 1 [m] and the ab-
solute value of the acceleration for all agents was under 15 [g].

The simulated environment consists out of two main stages:

1. Initialization:
In the initialization stage, random initial conditions are se-
lected. The random variables are the X position of the missile, 
and the path angle of the target and the missile. This selection 
fully defines the 2D geometry of the engagement, for given 
guidance law parameters and vehicles’ velocities (the guidance 
law parameters and vehicles’ velocities were not randomized 
in order to keep the offline computation time short). In addi-
tion, at the initialization stage, the initial values of the follow-
ing 11 states of the problem are calculated:
• Target’s position (two states)
• Defender’s position (at the initialization stage it is identical 

to the target’s position - two states)
• Missile’s position (two states)
• The vehicles’ path angle (three states)
• The expected interception times of the target by the de-

fender and the missile by the target (two states - according 
to Eq. (14) and Eq. (15)).

2. Run:
(a) Input: the simulation receives the current state of the en-

gagement and an action command to the target. The action 
has four possible values:
• 0 - Do not launch, use maximum controller.
• 1 - Do not launch, use minimum controller.
• 2 - Launch the defender and then use maximum con-

troller.
• 3 - Launch the defender and then use minimum con-

troller.
After launch, actions 0 and 2 are identical (the same 
goes for actions 1 and 3).

(b) Output: the output of the simulation is determined by 
whether or not an interception occurred.
• No interception: the simulation calculates the reward, 

which is the minus of the weighted control effort of the 
defender in the decision time interval �tc :

Ri = −βD

ti+1=ti+�tc∫
ti

u2
Ddt (25)

This reward represents the fact that the defender has a 
limited control capability.

• Interception: the simulation returns the reward for the 
last step Rlast , which the minus of the sum of the control 
effort of the defender and the squared interception dis-
tance d2

M D(t f ,M D) (not to be confused with y2
M D (t f ,M D)

which is the squared miss distance perpendicular to the 
initial LOS). This is the stopping condition of the simula-
tion.

Rlast = −
⎛
⎜⎝d2

M D(t f ,M D) + βD

t f ,M D∫
ti

u2
Ddt

⎞
⎟⎠ (26)

3.2. Reinforcement learning essentials

In this section, let us present the RL framework (section 3.2.1) 
and two important methods within RL: value function based 
methods (section 3.2.2) and policy gradient based methods (sec-
tion 3.2.3).
Fig. 2. The agent - environment loop in a Markov Decision Process (adapted from 
[1]).

3.2.1. Reinforcement learning framework
An autonomous RL agent, used to learn and interact with the 

environment can be formally described as a Markov Decision Pro-
cess (MDP). The agent interacts with the environment at time t
using an action At ∈ A(St), based on the state St ∈ S (S is the 
set of possible states and A(St) is the set of actions available at 
state St ) and the reward Rt ∈ R. The action has the consequence 
of moving the agent to state St+1 and receiving the reward of Rt+1. 
The goal of the agent is to learn a control strategy (policy) π , that 
maximizes the expected return Gt , which is the cumulative and 
discounted reward until the termination of scenario (in the case of 
an episodic MDP):

Gt
.= Rt+1 + γ Rt+2 + γ 2 Rt+3 + · · · =

T∑
k=t+1

γ k−t−1 Rk (27)

In an episodic MDP, the state is reset after each episode of 
length T . Each episode is named a rollout, in which the reward 
discount factor, γ ∈ [0,1], is responsible for placing more emphasis 
on the immediate rewards. In the episodic MDP described above, 
the probability of specific values of the states and rewards are 
given by:

p(s′, r |s,a )
.= Pr

{
St = s′, Rt = r |St−1 = s, At−1 = a

}
(28)

The policy π is defined as a mapping from states to probabilities 
of selecting each possible action. The goal of the RL agent is to find 
the optimal policy π∗ .

The scheme of agent’s interaction with the environment in the 
MDP setting is given in Fig. 2.

3.2.2. Value function methods
The value function methods are based on estimating the value 

of how good it is to be in the given state, or how good it is to be 
in the given state and take the given action. The notion of “how 
good” is evaluated using the expected return [33].

The state-value function is given by:

vπ (s)
.= Eπ [Gt |St = s ] (29)

whereas the action-value function (otherwise known as the quality 
function) is given by:

qπ (s,a)
.= Eπ [Gt |St = s, At = a ] (30)
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To learn the state-value function, the Markov property is used, 
to obtain the Bellman equation [3] for the state-value function:

vπ (s) =
∑

a
π (a |s )

∑
s′,r

p
(
s′, r |s,a

) [
r + γ vπ (s′)

]
(31)

similarly, the Bellman equation for the action-value function is:

qπ (s,a) =
∑

s′,r
p

(
s′, r |s,a

) [
r + γ

∑
a′ π

(
a′ ∣∣s′ )qπ (s′,a′)

]
(32)

The optimal state-value function is the maximal state-value 
function achievable by any policy for state s, and is given by the 
state-value Bellman optimality equation:

v∗(s) = max
a

∑
s′,r

p
(
s′, r |s,a

) [
r + γ v∗(s′)

]
(33)

The optimal action-value function is the maximal action-value 
function achievable by any policy for state s and action a, and is 
given by the action-value Bellman optimality equation:

q∗(s,a) =
∑

s′,r
p

(
s′, r |s,a

) [
r + γ maxa′q∗(s′,a′)

]
(34)

3.2.3. Policy gradient methods
The policy gradient methods, as opposed to the value function 

methods seek to directly find the policy π(a |s, θ ) (without neces-
sarily using a value function for action selection) and update the 
parameters θ to maximize the expected return E (G |θ ) by gradi-
ent based or gradient free optimization.

Gradients provide a strong learning signal in terms of in which 
direction to improve the policy. The computation of the expected 
returns requires averaging, that in the model-free RL setting uses 
a Monte Carlo estimate of the expected return. This sample based 
approach hinders the use of gradient based methods, so an esti-
mator of the gradient is commonly used. This estimator, known as 
the REINFORCE rule, computes the gradient of expectation over a 
function of a random variable X with respect to parameters θ :

∇θEX [ f (X, θ)] = EX [ f (X, θ)∇θ log p(X)] (35)

The use of rollout’s empirical return results in a high vari-
ance gradient. To reduce the variance, unbiased estimates are in-
troduced, via baseline substraction. An algorithm which uses the 
REINFORCE rule with a baseline is the selected RL algorithm for 
this paper and thus will be extensively presented in section 3.3.1.

3.3. Reinforcement learning model

In this section let us present the chosen deep reinforcement 
learning model. In the current setting, we use 11 states and 4 ac-
tions as described in section 3.1. At the start of each decision time 
interval �tc , the RL agent suggests an action, and receives the up-
dated states and reward. Prior to interception, the reward at each 
�tc is Ri , given Eq. (25), while at the last step prior to interception 
the reward is Rlast , given Eq. (26).

Thus the total reward of the episode is given by the sum all the 
intermediate reward:

R =
last∑
i=0

Ri = d2
M D(t f ,M D) + βD

t f ,M D∫
0

u2
Ddt (36)

3.3.1. Reinforcement learning algorithm
As previously mentioned, we used REINFORCE with baseline as 

our RL algorithm. REINFORCE uses the following algorithm to up-
date the parameters θ (which in our case are the weights of the 
neural network) of the policy π :
Algorithm 1: REINFORCE with Baseline, adapted from [33].
Input: a differentiable policy parametrization π (a |s, θ )

Input: a differentiable state-value parametrization v̂ (s,w)

Parameters: step sizes αθ > 0, αw > 0

Initialize policy parameter θ and state-value weights w
Repeat forever:

Generate an episode S0, A0, R1, . . . , ST −1, AT −1, RT , following π (· |·, θ )

For each step of the episode t = 0, . . . , T − 1:
Gt ← return from step t
δ ← Gt − v̂ (St ,w)

w ← w + αwγ tδ∇w v̂ (St ,w)

θ ← θ + αθγ tδ∇θ lnπ (At |St , θ )

θ t+1
.= θ t + αGt

∇θπ (At |St, θ t )

π (At |St, θ t )
(37)

Due to the fact that REINFORCE uses the complete return Gt

it is classified as a Monte Carlo algorithm, and as such may be 
of high variance and thus produce slow learning. To reduce the 
variance and thus speed up the learning process, a baseline can 
be used, in which case, the update rule of the policy weights be-
comes:

θ t+1
.= θ t + α (Gt − b (St))

∇θπ (At |St, θ t )

π (At |St, θ t )
(38)

One possible choice for the baseline is an estimate of the state-
value function v̂ (St ,w), where w ∈ Rm are the state-value func-
tion weights. The pseudocode for the REINFORCE with baseline 
algorithm is given Algorithm 1, using the learned state-value func-
tion as the baseline.

The algorithm is set to run 2e4 iterations, i.e., 2e4 random ini-
tial conditions are considered.

As a function approximation, deep neural networks were used. 
Both the neural network of the policy and the neural network of 
the baseline consist out of 5 fully connected layers with N neurons 
at each layer. In the current paper, two networks are considered: 
F C1, in which N = 850 and F C2 in which N = 400. The explo-
ration algorithm used is the ε-greedy, with linear annealing from 
0.1 at the first iteration to 0 at the 14000 iteration. The discount 
factor used is equal to 0.92.

We evaluated several RL algorithms, including DQN and Actor-
Critic algorithms with several deep neural network architectures. 
We omit a full comparison from the paper, presenting only the 
REINFORCE with baseline algorithm with a fully connected deep 
neural network, which achieved the best results.

3.4. Genetic algorithms

Throughout this section, a RL-based solution was demonstrated 
in detail. To evaluate the performance of the RL method, let us 
solve the problem of optimal launch time and guidance law using a 
computationally heavy optimization method, that is able to tackle 
mixed integer optimization problems. One possible method is the 
genetic algorithm (GA).

The GA is based on natural selection. The algorithm defines a 
population of individuals, each one with certain genes (which are 
the parameters to be optimized, as to achieve the minimization of 
the cost function, otherwise known as a fitness function). At each 
generation, the population evolves via three possible mechanisms:

• Elitism: the individual from the previous generation, called a 
parent, carries over to the next generation. The individual in 
the next generation is called a child.

• Mutation: several genes from the parent are modified to pro-
duce a child.

• Cross-over: a combination of two parents is selected to pro-
duce a child.
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Fig. 3. Mean total reward vs. iteration, for neural network architectures F C1 and F C2.
Table 1
Initial conditions.

Name XM [m] γM [rad] γT [rad]

IC1 6601 0.049 −0.164
IC2 5331 −0.243 −0.058
IC3 6500 −0.062 −0.125

The algorithm stops when a certain stopping criterion is met 
(such as maximum generations number, time limit, etc.).

4. Analysis and discussion

In this section, the performance of the DRL method is eval-
uated using the simulated environment, described in section 3.1. 
The scenario was simulated for participants having ideal dynamics, 
with speeds of 500[m/s], 1000[m/s] and 1000[m/s] for the target, 
the missile, and the defender respectively. The weights used by 
the proportional navigation guidance laws of the defender and the 
missile are βD = 0.01 and βM = 1 respectively. The decision time 
interval �tc is taken as 0.2[s], and the absolute value of the target 
maneuver is taken as 10[g]. The maximal launch time of the de-
fender is equal to t f ,MT − 1 to ensure safe interception (defender -
missile) distance from the target.

The performance of the trained RL policy is exemplified for 
three initial conditions, presented in Table 1.

To present the learning process of the RL algorithm, and to 
compare the performance of several neural network architectures 
(F C1 and F C2, as defined in section 3.3.1), for the REINFORCE with 
baseline algorithm, let us compute the mean total reward (total re-
ward, as presented in Eq. (36), averaged for the last 100 episodes) 
at each episode. Fig. 3 presents the mean total reward (down-
sampled for presentation purposes) vs. iteration (episode number).

From Fig. 3, it is evident that the RL agent improves the policy 
as more episodes are introduced, for both neural network architec-
tures (the overall slope of the mean total reward is positive), until 
it reaches a policy capable of producing a mean total reward of 
about −150 for F C1 and about −200 for F C2. Due to the fact that 
slightly better results were obtained using architecture F C1, it is 
selected to be used in our RL model throughout the remainder of 
this section.

To illustrate the obtained policy, let us evaluate it for the initial 
conditions IC1, IC2, and IC3 (Table 1). The obtained actions of 
the target and the trajectories of the vehicles are given in Fig. 4
and Fig. 5 respectively. In Fig. 4, the actions are marked by ©
and the launch of the defender is marked by +. The doted line in 
Fig. 5 is the trajectory of the target (marked by T ), from which the 
defender (marked by D) is launched towards the attacking mis-
sile (marked by M), until the defender - missile interception point 
(marked by ∗).

It is interesting to note that according to Fig. 4, the target 
chooses to launch the defender before it reaches the maximal al-
lowable launch time of the defender for IC1 and IC3 (which was 
set to t f ,MT − 1[s] to ensure safe defender - missile interception 
distance from the target), while for IC2 the safety limit served as 
the launch trigger.

From Fig. 5 it is evident that the target tries to position itself to 
launch the defender in a state which will ensure a relatively linear 
trajectory of the defender, thus minimizing its control effort, which 
is the second objective in our multi-objective cost function, which 
was introduced in Eq. (36) (the scale of the y axes in Fig. 5(c) 
is tens of meters, which leads to the misleading appearance of a 
nonlinear defender trajectory). Some maneuvering of the defender 
is expected, as to ensure the minimization of the squared inter-
ception distance, which is the first part of our multi-objective cost 
function. The fact that the launch of the defender was chosen at 
the second half of the flight time interval is consistent with the 
intuition that the target will first attempt to maneuver to a favor-
able interception (by the defender) geometry without any penalty, 
and only then will launch the defender to ensure safe defender -
missile interception distance from the target.

To evaluate the performance of the RL method in terms of 
policy optimality, the performance of the trained RL policy is com-
pared to the solution obtained by the GA optimization technique. 
Fig. 6 presents the mean and the best individual scores of the GA 
at each generation for IC1, evaluated using a loss function which 
is the minus of the total reward. The GA optimization ran for 50
generations, with the population size of 40 individuals.

From the evolution of the loss presented in Fig. 6, it is evi-
dent that the GA has troubles with converging to a minimum, 
illustrating the fact that finding an optimal solution to the Guide-
Launch-Guide optimization problem is difficult.

Fig. 7 presents the mean and the best individual scores of the 
GA, for a generation which achieved the best total reward (minimal 
loss) for the initial conditions of IC1, IC2, and IC3, in comparison 
to the results obtained by the RL method (recall that the loss is 
minus of the total reward).

From Fig. 7, it can be seen that both the RL and the GA methods 
are able to produce near optimal results (recall that the reward is 
non-positive by the definition of our reward function), with GA 
producing better results. The mean reward of each GA generation 
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Fig. 4. Bang-bang actions using the trained policy for three initial conditions: (a) IC1; (b) IC2; (c) IC3.
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Fig. 5. Vehicles’ trajectories using the trained policy for three initial conditions: (a) IC1; (b) IC2; (c) IC3.
presented in Fig. 7 is around 600, emphasizing the quality of the 
policy obtained by the RL method.

To further illustrate the performance level of the proposed ap-
proach, let us compare its performance to another online TMD 
method [27] which addressed switched system optimization. In 
it, the defender’s launch time is optimized using DL under the 
assumption of a constant target maneuver. This assumption is nec-
essary to reduce the number of classes to be classified by the DL 
estimator. The performance comparison is given in Fig. 8.

Fig. 8 demonstrates the fact that the RL method, which is not 
subject to the constraint of a constant target maneuver can obtain 
higher level of performance in terms of the selected cost function.
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Fig. 6. Loss vs. generation, for initial conditions IC1 using GA.

Fig. 7. Loss comparison between GA and RL, for three initial conditions: IC1, IC2, and IC3.

Fig. 8. Loss comparison between RL and DL, for three initial conditions: IC1, IC2, and IC3.
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Fig. 9. Mean reward vs. iterations for different selections of states used in the RL algorithm.
Up until now, 11 states were used in the state-space repre-
sentation of the RL method, as presented in section 3.1. Let us 
evaluate the contribution of particular states to the learning pro-
cess, by training the policy using a subset of those states. Fig. 9
presents the mean total reward vs. iteration on a subset of states 
in comparison to the full 11 states model. The set containing all 
11 states consists out of position, path angle, and the expected in-
terception time states and is appropriately named as “Pos., γ , t f ”. 
The second set consists out of position and the expected intercep-
tion time states and is named as “Pos., t f ”. The third set contains 
only the position states and is named as “Pos.”.

From Fig. 9 it is clear that the RL method can obtain the close 
to optimal strategy (under the previously mentioned assumptions), 
based only on the position of the vehicles. Furthermore, the posi-
tion only set yielded the best performance (in terms of the mean 
total reward), suggesting a high compatibility between the num-
ber of the states in the “Pos.” set, and the DRL parameters (such 
as the architectures of the neural networks and the RL algorithm 
parameters).

5. Conclusions

Throughout the course of this paper, a general method for cal-
culating a sub-optimal launch time and a sub-optimal guidance 
law was presented and evaluated for a scenario in which a tar-
get aircraft is protected by a defending missile from an incoming 
interceptor. The method utilized deep reinforcement learning, thus 
performing most of the calculations at the offline stage.

The method consists out of training a function approximator in 
a form of a neural network, using the REINFORCE with baseline al-
gorithm, which belongs to a class of deep reinforcement learning 
algorithms. As the product of the proposed method, a trained neu-
ral network is obtained, which given a particular state of vehicles, 
returns the required target action, i.e., whether or not to launch 
the defender, and which maneuver to perform.

The actions obtained by the reinforcement learning method 
were found to be near optimal, by comparing the results to the 
ones produced by genetic algorithms and to the lower limit of the 
non-negative loss. In addition, the investigation of the sensitivity of 
the results to state selection pointed out the fact that using only 
the position of the vehicles as the representing states yields better 
performance the full set of states which consisted of position, path 
angle, and the expected interception time.

The fact that the presented level of performance can be 
achieved online, makes reinforcement learning an attractive meth-
od in switched system optimization problems that demand online 
performance. Furthermore, the fact that the proposed approach 
can be scaled up without a significant addition of computational 
time at the online application stage, due to the nature of the 
training/application stages of the method, makes the proposed ap-
proach even more suitable for multiple switches case in switched 
system optimization in general, or in the proposed application, in 
a multi-agent launch time and maneuver optimization.

The method was exemplified on a perfect information case. If 
missile’s guidance law could unexpectedly change mid-flight, an 
estimator, such as the multiple model adaptive estimator or the 
interacting multiple model estimator must be added to the simu-
lation which produces the data set for the neural network. To add 
robustness against guidance law switches, the proposed strategy 
can utilize a neural network that is trained on a data set consist-
ing out of scenarios in which such switches occurred. One method 
to obtain such data set is by simulating scenarios in which mis-
sile’s guidance law switches randomly from one type to the other 
(with some constraints on the number of switches). The investiga-
tion of this topic is left for future research.
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