
Computer Networks 177 (2020) 107230

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

MARVEL: Enabling controller load balancing in software-defined networks

with multi-agent reinforcement learning

Penghao Sun

a , Zehua Guo

b , ∗ , Gang Wang

b , c , Julong Lan

a , Yuxiang Hu

a

a National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450002, China
b Beijing Institute of Technology, 5 Zhongguancun ST South, 100081, Beijing, China
c University of Minnesota Twin Cities, 117 Pleasant ST, 55455, Minneapolis, USA

a r t i c l e i n f o

Index Terms:

Multi-agent reinforcement learning
Neural networks
Software-defined networking
Switch migration

a b s t r a c t

The control plane plays a significant role in Software-Defined Networking (SDN). A large SDN usually implements
its control plane with several distributed controllers, each controlling a subset of switches and synchronizing with
other controllers to maintain a consistent network view. Under the fluctuating network traffic, a static controller-
switch mapping relationship could lead to imbalanced workload allocation. Controllers may getoverloaded and
reject new requests, eventually reducing the control plane’s request processing ability. Most existing schemes
have relied heavily on iterative optimization algorithms to manipulate the mapping relationship between con-
trollers and switches, which are either time-consuming or less satisfactory in terms of performance. In this paper,
we propose a dynamic controller workload balancing scheme, that is termed MARVEL, based on multi-agent re-
inforcement learning for generation of switch migration actions. MARVEL works in two phases: offline training
and online decision making. In the training phase, each agent learns how to migrate switches through interacting
with the network. In the online phase, MARVEL is deployed to make decisions on migrating switches. Experimen-
tal results show that MARVEL outperforms competing existing schemes by improving the control plane’s request
processing ability at least 27.3% while using 25% less processing time.

1

n

e

f

a

w

a

p

[

s

a

e

t

d

l

e

s

t

i

b

t

a

d

m

m

t

o

t

p

t

i

n

[

d

s

t

p

d

h
R
A
1

. Introduction

Due to the powerful programmability and flexible management on
etworks, Software-Defined Networking (SDN) [1] has attracted inter-
sts from both academia and industry. SDN decouples the control plane
rom the data plane, and the network operator can monitor and oper-
te the network conveniently through a logically centralized controller
ith a global network view. To address the limited processing ability
nd single node failure of the single controller, several works have pro-
osed to realize the control plane using multiple distributed controllers
2–4] . In the multi-controller control plane, each controller manages a
ubset of switches and synchronizes with other controllers to maintain
 consistent network view.

The flow requests from switches may change in practice [6] . How-
ver, their static switch-controller relationship cannot accommodate to
he dynamic traffic changes. Thus, the processing workload could be
istributed among controllers in an unbalanced way, and some highly-
oaded controllers are prone to be fully loaded and reject new requests,
ventually reducing the control plane’s request processing ability. To
olve the problem, Dixit et al. [6] developed an elastic distributed con-
roller architecture named ElastiCon that aims to balance the process-
∗ Corresponding author.
E-mail address: guo@bit.edu.cn (Z. Guo).

ttps://doi.org/10.1016/j.comnet.2020.107230
eceived 21 November 2019; Received in revised form 26 February 2020; Accepted
vailable online 26 April 2020
389-1286/© 2020 Elsevier B.V. All rights reserved.
ng workload of controllers by dynamically establishing the mapping
etween switches and controllers. Also, OpenFlow v1.4 [7] enabled
he distributed control plane by presenting a coordination mechanism
mong multiple controllers. Nonetheless, both ElastiCon and OpenFlow
o not provide details in the problem of switch migration on how to
igrate switches. The Switch Migration Problem (SMP) is usually for-
ulated as an optimization problem [8,9] , whose complexity is proved

o be NP-hard. Solving the SMP either takes a long time to obtain the
ptimal result, which may not be acceptable under a dynamic traffic dis-
ribution, or produces heuristic solutions not good enough in migration
erformance.

Several attempts have been made to address this challenge, but
hey also come with limitations. Wang et al. [10,11] focused on real-
zing load balancing of the control plane for data center networks and
eglected the communication cost of switch migration. Huang et al.
12] introduced a middle layer between the control plane and the
ata plane to distribute flow requests to multiple controllers, but this
cheme may significantly increase the processing delay due to inser-
ion of the middle layer. BalCon [13] addressed the SMP with a graph
artition method, yet at the price of a complicated processing proce-
ure, as it analyzes the communication pattern of all switches in the
21 March 2020

https://doi.org/10.1016/j.comnet.2020.107230
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107230&domain=pdf
mailto:guo@bit.edu.cn
https://doi.org/10.1016/j.comnet.2020.107230

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

c

m

w

t

M

c

d

t

a

m
T

d

a

t

o

a

m

i

2

p

2

w

i

o

a

v

m

d

s

t

r

p

I

s

T

c

a

t

b

n

n

Controller 1 Controller 2 Controller 3

Consolidation
Controller 1 Controller 2 Controller 3

Workload

Fig. 1. An example of the workload consolidation.

2

s

a

w

t

w

l

t

o

o

t

d

t

r

t

c

m

i

t

s

i

c

m

t

l

1

t

s

2

a

t

[

T

r

f

r

l
ontrol region of an overloaded controller to carry out one step of
igration.

In this paper, building on recent advances in artificial intelligence,
e propose a dynamic controller workload balancing scheme, that we

erm MARVEL based on Multi-Agent Reinforcement Learning (MARL).
ARL is a distributed version of reinforcement learning (RL) and ex-

els at generating dynamic control actions in distributed systems. The
istributed processing nature of MARL makes it appealing for interac-
ions and decision making of the distributed control plane in SDN. After
 proper training phase, the MARL agents residing in controllers can
ake quick decisions on the control strategy of SMP.
he main contributions of this paper are summarized as follows:

1. We model the distributed control plane as a multi-agent system
with the purpose of tackling the SMP in a distributed fashion. We
design a zero-sum game mechanism for the multi-agent system
model to reach an equilibrium as the ending signal of an SMP
process.

2. We design a Deep Reinforcement Learning (DRL) framework for
each agent in the MARL model. The DRL-based solution takes
the workload pattern in the control plane as input and generates
the migration decision as the output. After the training phase,
the DRL agent can quickly and accurately decide how to migrate
switches among the controllers.

3. We evaluate the performance of MARVEL with convincing simu-
lations, and the results show that MARVEL improves the control
plane request processing ability by at least 27.3% while reducing
the processing time by about 25%.

The remainder of this paper is organized as follows. Section 2 intro-
uces the background and motivation of this paper. Section 3 provides
 brief overview of MARVEL. Section 4 formulates the resource utiliza-
ion problem of the control plane. Section 5 illustrates the framework
f MARVEL and elaborates on its training process, working procedure,
nd practical implementation details. Section 6 compares the perfor-
ance of MARVEL with existing schemes. Related works are discussed

n Section 7 with conclusions drawn in Section 8 .

. Background and motivation

In this section, we introduce the background of the switch migration
roblem, and illustrate scenarios where a switch migration is required.

.1. Background

In an SDN, the control plane is in charge of calculating the net-
ork routing policies and deploying the policy into the network by

nstalling/deleting/updating flow entries in related switches. Because
f the decoupled control plane and data plane, the control plane can
cquire a global view of the network and use the view to implement di-
erse manipulations on network operations. Typically, a controller has
any functions, such as traffic prediction [14] , and abnormal traffic
etection [15] .

Given the limited processing ability, a single controller is likely to
uffer from resource exhaustion. Reference [16] shows that a single con-
roller can only manage a limited flow arrival rate in proportion to its
esources. To address the scalability issue, a distributed control plane is
roposed, which uses multiple controllers to perform the control logic.
n a distributed control plane, each controller is in charge of multiple
witches in a domain by fixed mapping these switches on the controller.
he fluctuation of network traffic brings different burdens to different
ontrollers at different times, and a static mapping between switches
nd controllers leads to insufficient utilization of control resources. In
his context, we are prompted to develop an adaptive mapping scheme
etween the control plane and the data plane based on the real-time
etwork variations. The aim of this adaptive mapping is to handle more
etwork requests with available network resources.
.2. Motivation

Typically, we can categorize the SMP into two cases: workload con-
olidation and workload balancing. First, unbalanced network traffic
llocation can lead to the idling in some controllers, which causes a
aste of power. In this case, under an acceptable migration cost (e.g.,

he communication delay between a switch and a controller), previous
orks have proposed to design a strategy to consolidate the workload of

owly utilized controllers into several other controllers through which
he power consumption of idle controllers can be saved [19,20] . More-
ver, they also assume that the controllers can maintain consistent view
f the network. Fig. 1 shows an example of workload balancing, in which
here are three controllers in the control plane and six switches in the
ata plane. Each switch belongs to a control region managed by a con-
roller. Controller 2 ′ s load decreases since its controlled Switch 3 ′ s load
educes. At the same time, its neighbor Controller 1 has the capability
o take over the work of Controller 2. Under this situation, Switch 3
an be migrated to Controller 1 from Controller 2. We call this switch
igration process a consolidation operation.

Subsequently, under the fluctuation of spatial-temporal distribution
n network traffic, some switches may reach their peak workload, and
his may consume most controller resources to handle the requests of
uch switches. In the worst case, the workload may exceed the capac-
ty of this controller. Therefore, this calls for a strategy to dynami-
ally distribute the workload in a balanced way to each controller to
inimize the probability of overloading [13,21] . The overloaded con-

roller should detach some switches from its controlled region to light-
oaded controllers. For example, in Fig. 2 , if the workload of Controller
 reaches a certain threshold, it can release some of its burden to Con-
roller 2, and Switch 4 may be picked for the migration. We call this
cenario the overload prevention.

.3. Challenges and opportunities

The two scenarios described above constitute the main background
nd motivation of studying SMP. However, when and where to carry out
he migration is difficult to decide in practice. For example, Cello et al.
13] showed that the controller load balancing problem is NP-Complete.
raditional solutions to the NP-Complete problem employ heuristics to
educe the computation cost, which usually cannot reach a good per-
ormance. On the other hand, development of artificial intelligence in
ecent years has brought us to a set of new tools to tackle complex prob-
ems. As a kind of RL, DRL has gained a wide attention since its proposal

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

Controller 1 Controller 2 Controller 3

Workload Balancing
Controller 1 Controller 2 Controller 3

Fig. 2. An example of workload balancing to prevent overloading controllers.

[

a

fi

s

b

b

p

t

b

c

N

3

T

p

Workload Balancing

Workload Consolidation

Controller 1 Controller 2 Controller 3

Controller 1 Controller 2 Controller 3

Controller 1 Controller 2 Controller 3

Fig. 4. An example of the MARVEL’s working process.

l

c

c

m

w

m

t

m
24] . DRL combines advantages of both Deep Neural Networks (DNN)
nd RL, and it is capable of dealing with huge input state spaces and ef-
ciently generating a control action for the target system. Compared to
upervised learning technologies such as deep learning, DRL can evolve
ased on interactions with the training environment without a large la-
eled data set. DRL has proven powerful in diverse fields, such as game
laying [24] , robot control [32] , resource allocation in big data sys-
ems [33] , and routing [34,35] . Also, a single-agent version of DRL is
ased on a centralized control logic, which is insufficient for distributed
ontrol in SDN. In this paper, we make the first attempt to solve the
P-Complete SMP in a distributed fashion using MARL.

. Overview of MARVEL

This section starts with an overview of our design to handle the SMP.
he system design of MARVEL is shown in Fig. 3 . We model the control
lane as a multi-agent system and invoke a multi-agent reinforcement
communication in
control plane

controller

DRL agent

controller

DRL agent

controller

DRL agent

controller

DRL agent

controller

DRL agent

migrationworkload

Performance metric

distribution action

Fig. 3. Overview of MARVEL.

Fig. 3. Overview of MARVEL.

b

c

g

t

S

e

6

t

i

t

w

fi

a

t

u

4

c

l

4

d
earning model to solve the SMP in the control plane. In the distributed
ontrol plane, each controller is regarded as a DRL agent. All DRL agents
onstitute a multi-agent system. Each DRL agent uses its workload infor-
ation in real time while keeping exchanging its switch migration intent
ith others agents. After a comparison of all intents in the agents, the
ulti-agent reinforcement system finally decides how a switch migra-

ion should take place.
To reach the migration goal described in Section 2.2 , there are

ainly two types of operations: workload consolidation and workload
alancing, as illustrated in Fig. 4 .

First, we evaluate the workload in the control plane. If there is a
ontroller with a workload lower than the threshold, we consider mi-
rating its workload to other controllers if there is enough capacity on
he remaining controllers. For the example of Fig. 4 , Controller 3 has just
witch 6 in charge, which can be migrated to other controllers. Consid-
ring the communication cost from Switch 6 to other controllers, Switch
 is migrated to Controller 2.

Then, among the active controllers, we migrate switches to balance
he workload distribution among them based on their available capac-
ty in real time. To achieve a balanced workload distribution, we model
he resource utilization in controllers as an optimization problem, which
ill be explained in Section 4 . After the consolidation process, we can
nd that the workload between Controller 1 and Controller 2 is unbal-
nced in Fig. 4 . Therefore, we then migrate Switch 3 from Controller 2
o Controller 1 to balance their workload. The details of the algorithms
sed in these two phases will be illustrated in Section 5 .

. Control plane workload balancing problem

In this section, we discuss the workload balancing problem in the
ontrol plane, and proposed a mathematical model to solve this prob-
em.

.1. Control plane resource utilization modeling

To reach a balanced workload among the working controllers, we
esign a resource utilization model to measure the requesting process-

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

i

r

s

w

m

C

b

c

e

s

f

c

o

b

w

c

u

t

i

𝑆

a

X

c

e

n

s

F

s

𝑈

w

s

b

𝑈

i

4

t

e

i

t

l

m

s

∑

∑

∑

𝛿

w

s

m

p

n

o

t

t

4

t

o

m

C

t

m

o

c

d

o

o

o

m

s

5

a

M

i

e

5

(

(

w

t

a

l

c

i

𝑀

t

𝑃

fi

f

s

t

w

c

p

S

f

𝑉

q

𝑄
ng ability of the control plane, since under limited resources a higher
esource utilization results in a better request processing ability. The ba-
ic idea is to maximize the request processing ability of the control plane
ith limited resources as the requests are unbalanced distributed. In this
odel, we take three types of resources into consideration: bandwidth,
PU, and memory usage. Cost of such resources by different events may
e different. For example, in a wide area network (WAN), the switches
an be categorized into core switches and edge switches, and differ-
nt switches have different patterns of events [19] . For example, some
witches may produce many Packet_in (defined in OpenFlow) messages
or flows with special routing request (e.g., QoS routing), so controllers
orresponding to such switches should conduct more CPU-consuming
perations such as routing calculations, and other controllers may not
e tasked with many CPU-consuming operations, leading to different
orkload on controllers.

We set up our resource utilization model on such basic ideas: the
ontrol plane should try to handle all the requests from the data plane
nder fixed resources in each controller. Consider a distributed con-
rol plane with N controllers and M switches. The set of controllers
s denoted as 𝐶 = { 𝑐 1 , 𝑐 2 , ... 𝑐 𝑁

} and the set of switches is denoted as
 = { 𝑠 1 , 𝑠 2 , ... 𝑠 𝑀

} . x i , y i and z i represent the usage of bandwidth, CPU,
nd memory per event in switch s i respectively where 1 ≤ i ≤ M , and
 j , Y j and Z j represent the bandwidth, CPU, and memory capacity in
ontroller c j , respectively, where 1 ≤ j ≤ N . Let w i be the number of
vent processing requests generated by switch s i counted by the event
umber. Let the binary indicator 𝛿i, j to denote whether switch i is as-
igned to switch j and U j denote the resource utilization in controller c j .
ollowing [19] , we consider the following utility as a linear weighted
um of different resource

 𝑗 =

𝑑 𝑋
𝑗

𝑋 𝑗

𝑀 ∑
𝑖 =1

𝛿𝑖,𝑗 𝑤 𝑖 𝑥 𝑖 +

𝑑 𝑌
𝑗

𝑌 𝑗

𝑀 ∑
𝑖 =1

𝛿𝑖,𝑗 𝑤 𝑖 𝑦 𝑖 +

𝑑 𝑍
𝑗

𝑍 𝑗

𝑀 ∑
𝑖 =1

𝛿𝑖,𝑗 𝑤 𝑖 𝑧 𝑖 (1)

here 𝑑 𝑋
𝑗
, 𝑑 𝑌

𝑗
, 𝑑 𝑍

𝑗
are the weights assigned for different types of re-

ources, and 𝑑 𝑋
𝑗
+ 𝑑 𝑌

𝑗
+ 𝑑 𝑍

𝑗
= 1 . If we denote 𝑈

𝑋
𝑗

=

∑𝑀

𝑖 =1 𝛿𝑖,𝑗 𝑤 𝑖 𝑥 𝑖
𝑋 𝑗

, (1) can

e written as follows

 𝑗 = 𝑑 𝑋
𝑗
𝑈

𝑋
𝑗

+ 𝑑 𝑌
𝑗
𝑈

𝑌
𝑗
+ 𝑑 𝑍

𝑗
𝑈

𝑍
𝑗

(2)

Note that when a controller’s processing request exceeds its process-
ng capability, this controller will be viewed as overloaded.

.2. Control plane load balancing problem formulation

Our objective is to avoid hot spots among the controllers in use when
he overall resources are adequate, i.e., to minimize max

1 ≤ 𝑗≤ 𝑁

𝑈 𝑗 . Given that

ach controller may have a different capacity, the balance of workload
n our model refers to a balanced resource utilization among the con-
rollers. We can formulate the control plane balancing problem as fol-
ows

in
𝛿

max
1 ≤ 𝑗≤ 𝑁

𝑈 𝑗 (3)

 . t.
𝑀 ∑
𝑖 =1

𝛿𝑖,𝑗 𝑤 𝑖 𝑥 𝑖 ≤ 𝑋 𝑗 , ∀𝑗 (4)

𝑀

𝑖 =1
𝛿𝑖,𝑗 𝑤 𝑖 𝑦 𝑖 ≤ 𝑌 𝑗 , ∀𝑗 (5)

𝑀

𝑖 =1
𝛿𝑖,𝑗 𝑤 𝑖 𝑧 𝑖 ≤ 𝑍 𝑗 , ∀𝑗 (6)

𝑁

𝑗=1
𝛿𝑖,𝑗 = 1 , ∀𝑖 (7)

𝑈 𝑗 =

𝑑 𝑋
𝑗

𝑋 𝑗

𝑀 ∑
𝑖 =1

𝛿𝑖,𝑗 𝑤 𝑖 𝑥 𝑖 +

𝑑 𝑌
𝑗

𝑌 𝑗

𝑀 ∑
𝑖 =1

𝛿𝑖,𝑗 𝑤 𝑖 𝑦 𝑖 +

𝑑 𝑍
𝑗

𝑍 𝑗

𝑀 ∑
𝑖 =1

𝛿𝑖,𝑗 𝑤 𝑖 𝑧 𝑖

𝑖,𝑗 ∈ {0 , 1} , ∀𝑖 ∈ [1 , 𝑀] , ∀𝑗 ∈ [1 , 𝑁] (8)
here X j , Y j , and Z j are positive constants depending on the physical re-
ources of controllers; and w i , x i , y i , and z i are positive constants deter-
ined by the network traffic. To optimize the objective function of (3) , a
ossible solution is to adjust the mapping of switches to controllers in the
etwork topology. Constraints (4–6) require that the resource utilization
f each type should be within a certain physical capability, (7) ensures
hat one switch must only be assigned to only one controller at the same
ime, and (8) defines U j .

.3. Complexity analysis

The problem defined in (3) aims to allocate M switches to N con-
rollers with a min-max load balancing such that the maximum load
ver all controllers isminimized. Such scheduling problem is a typical
ulti-dimensional vector scheduling problem, which is generally NP-
omplete [36] . Solutions to NP-Complete problems are usually heuris-
ic, which in general do not come with performance guarantees. Further-
ore, many centralized algorithms that place the migration calculation

n merely a single controller put too much calculation burden on the
ertain controller, thus a distributed manner is required to better ad-
ress this problem. To our best knowledge, existing schemes are based
n traditional optimization algorithms to solve the NP-hard problem
f SMP, which are either time-consuming or not satisfactory in terms
f performance. In this paper, we solve the problem in a distributed
anner using MARL, which will be discussed in detail in the following

ection.

. MARVEL system implementation

In this section, we illustrate our scheme to solve the workload bal-
ncing problem defined in Section 3 . First, we introduce the model of
ARL used in MARVEL. Then, we elaborate on how the MARL model

s trained and works. Finally, we provide the implementation details of
ach agent in our MARL model.

.1. Framework of MARVEL

RL algorithms learn by interacting with an unknown environment
e.g., the communication network). At each time step t , the algorithm
also called an agent) observes the state s of the environment, based on
hich it selects an action a . The action a is used to adjust the behavior of

he network (e.g., adjust the mapping relationship between controllers
nd switches). The influence of the action on the environment is trans-
ated into a reward r revealed to the agent, based on which the agent
an further improve the action generation policy. In MARL, each agent
nteracts with a Markov Decision Process (MDP), which is modeled as
 = (𝑆, 𝐴, 𝑅, 𝑃 , 𝛾) , where S is the space of state s, A is the space of ac-

ion a, R is the space of reward r, P is the transition probability function
 (𝑠 𝑡 +1 , 𝑟 |𝑠 𝑡 , 𝑎 𝑡) , and 𝛾 ∈ [0, 1) is the discount factor. Each agent aims to
nd an action policy under a certain environment state (e.g., a transition

unction T : S × A × S → [0, 1]) to maximize the expected discounted
um 𝐸(

∑∞
𝑘 =0 𝛾

𝑘 𝑟 𝑡 + 𝑘
𝑖

|𝑠 𝑡 = 𝑠) , where k denotes the action step. In MARVEL,
he environment is the SDN, and the definition of state, action, reward
ill be illustrated in Section 5.4 .

The form of discounted sum is widely adopted in RL because it can
ater to both the overall performance of a strategy and the short-term
rofit. In the MARL model, each agent maintains an individual policy 𝜋i :
 × A i → [0, 1], and under such policy, an agent can have a state-value
unction to evaluate the quality of this policy given a certain state

𝜋
𝑖
(𝑠) = 𝐸 𝜋

(∞∑
𝑘 =0

𝛾𝑘 𝑟 𝑡 + 𝑘
𝑖

|𝑠 𝑡 = 𝑠

)

(9)

Since the policy 𝜋i is actually an action choice function, the policy
uality is usually denoted as 𝑄

𝜋
𝑖
(𝑠, 𝑎 𝑖) , which is defined as

𝜋
𝑖
(𝑠, 𝑎 𝑖) = 𝐸 𝜋

(∞∑
𝑘 =0

𝛾𝑘 𝑟 𝑡 + 𝑘
𝑖

|𝑠 𝑡 = 𝑠 , 𝑎 𝑡 = 𝑎

)

(10)

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

a

(

n

a

𝑄

c

a

(

b

r

v

a

s

n

d

𝐿

o

𝑦

t

5

m

r

c

f

i

i

e

i

c

c

s

t

c

u

u

b

e

5

a

p

c

m

s

t

t

d

i

w

s

w

i

a

u

a

D

c

o

M

o

e

c

G

𝐶

D

,
This form of quality function evaluates the action value taken by
 certain policy at a certain state. Compared to formula (9) , formula
10) is more concrete in the measure of a policy.

However, the acquisition of future reward (from 𝑘 = 0 to 𝑘 = ∞) is
ot applicable in online learning. To solve this problem, the Q value can
lso be expressed in an iterative mode:

 𝑖 (𝑠 𝑡 , 𝑎 𝑖,𝑡) = 𝐸

[
𝑟 𝑡 , 𝛾𝑄 𝑖 (𝑠 𝑡 +1 , 𝑎 𝑖,𝑡 +1)

]
(11)

The quality function Q can be saved in a table if there are limited
ombinations of state s and action a . However, if there are too many (s,
), or even in a continuous environment where there are innumerable
 s, a), such a tabular method will fail. In SMP, the network state is just
eyond a tabular representation. Under such circumstances, we can rep-
esent the Q- value with a function approximator instead of storing all Q
alues in a table. In this paper, we use a neural network as the function
pproximator. Specifically, Q is specified as Q (s, a | 𝜃), where 𝜃 is the
et of parameters of the neural network. For optimization of the neural
etwork, we need a loss function to carry out the backpropagation. As
efined in [24] , the loss function can be e.g., the following

 (𝜃) = 𝐸

[
(𝑄 (𝑠 𝑡 , 𝑎 𝑡 |𝜃) − 𝑦 𝑡) 2

]
(12)

f which y t is defined as

 𝑡 = 𝛾max
𝑎 ′

𝑄 (𝑠 𝑡 +1 , 𝑎 ′|𝜃) (13)

The update of the neural network is based on backpropagation with
he loss defined in (12) .

.2. Training phase of MARVEL

In this section, we discuss how the agents are trained in a MARL
odel and present the detailed interaction among agents of multi-agent

einforcement learning. The goal of the training process is to train each
ontroller whether to export a switch to other controllers or import one
rom other controllers without human experience. The process is shown
n Algorithm I . For each DRL agent, the state, action and reward are
llustrated in detail in Section 5.4 Algorithm I mainly works as an it-
ration, through which the DRL agents get trained. Line 1 decides the
terations of the whole training process. In lines 2–7, each controller
alculates the resource utilization of all controllers in use and pick up a
ontroller as the master. In line 8–16, in each iteration one controller is
elected by the master as an actor (lines 9–11), and then the actor con-
roller generates a switch migration action (lines 13–16). Since the actor
Algorithm I

MARVEL training process.

Input: X j , Y j , Z j and
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑥 𝑖 ,

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗

𝑤 𝑖 𝑦 𝑖 ,
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑧 𝑖 , (1 ≤ j ≤ N);

Output: switch migration decision and trained parameters of DRL;

1: for epi_num ← 1 to EPISODE:

2: for each controller c j :

3: collect X j , Y j , Z j and
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑥 𝑖 ,

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗

𝑤 𝑖 𝑦 𝑖 ,
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑧 𝑖 ;

4: calculate U j ;

5: if this controller 𝑐 𝑗 1 satisfies 𝑐 𝑗 1 = arg max
𝑐 𝑗 ∈𝐶

𝑈 𝑗 :

6: 𝑐 𝑗 1 serves as the master;

7: set other controllers as followers;

8: for step_num ← 1 to STEP:

9: if this controller is a master:

10: pick controller C x with probability
𝑈 𝑥 ∑
𝑐 𝑗

𝑈 𝑗
as an actor;

11: inform C x .;

12: if this controller is an actor:

13: input state to the MARVEL agent, get action;

14: broadcast action to other controllers;

15: calculate reward and update the MARVEL agent;

16: else:

17: wait for action from the actor;

16: update
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑥 𝑖 ,

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗

𝑤 𝑖 𝑦 𝑖 ,
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑧 𝑖 according to action;

17: save the trained parameters in MARVEL agents;

18: End

,

r

s

c

w

i

t

A

t

g

t

t

I

l

m

t

t

p

r

l

a

ontroller is selected according to a probability based on the resource
tilization (line 10), as the training goes on, a more balanced resource
tilization will lead to a more balanced chance for each controller to
e selected as an actor. Therefore, each actor can be guaranteed with
nough training probability.

.3. Working phase of the MARVEL

In this section, we discuss how the trained MARL model works. To
pply the MARL model in the resource utilization problem in the control
lane, we must first design a game model so the agents can know how to
arry out the switch migration among each other and when to stop the
igration. The goal of the game model is to reach an equilibrium that

tands for optimal resource allocation in the control plane, and during
his process a MARL agent is implemented in each controller to calculate
he advantage of each step in the game playing.

We can map the SMP to the commodity transaction model. In our
esign, switches and controllers are treated as commodities and players
n a market, respectively. Switches are traded among controllers, during
hich process each controller tries to maximize its profit. Generally, a

witch could only be traded to the player near to its temporary owner,
hich can be realized by the punishment of communication delay (e.g.,

t may introduce much delay for controllers to control a switch that is far
way in the network). Also, a switch migration process takes place only
nder certain circumstances, i.e., a workload lower than a threshold or
 workload of a switch is higher than a threshold.

efinition 1. Game Engagement (GE): We call a switch transaction pro-
ess a Game Engagement (GE).

To ensure the state consistency of the controller, one controller can
nly engage in one GE at the same time. This requirement simplifies the
ARL training process since there is no need to consider the confliction

f two switch migration action.
As mentioned in the above, the goal of game playing is to find an

quilibrium that stands for an optimal workload allocation scenario that
an maximize the utilization of controlling resources. Suppose that in a
E, an action tuple 𝑃 = (𝑝 1 , 𝑝 2 , ... 𝑝 𝑛) is the joint action of controllers in
 = { 𝑐 1 , 𝑐 2 , ... 𝑐 𝑛 } , where p i stands for the action policy of controller c i .

efinition 2. (MARVEL equilibrium) In a GE, an action tuple 𝑝 ∗= (𝑝 1 ∗
 𝑝 2 ∗ , ... 𝑝 𝑛 ∗) is a Nash equilibrium if for any 𝑝 𝑖

′ ≠ 𝑝 𝑖 ∗ → 𝑝 ′ = (𝑝 1 ∗ , 𝑝 2 ∗
 ... 𝑝 𝑖

′, ... 𝑝 𝑛 ∗) , we have
∑

𝑐 𝑗
𝑈 𝑗 (𝑝 ∗) ≥

∑
𝑐 𝑗
𝑈 𝑗 (𝑝 ′) . We name this equilib-

ium in this paper as an MARVEL equilibrium.

The working procedure contains two main stages: consolidation deci-
ion and balancing decision, as shown in Fig. 5 . In the MARL model, each
ontroller continuously monitors the network status, and then decides
hether a consolidation decision and a balancing decision is required.

The process of consolidation detection in a controller is shown
n Algorithm II . Since the process is carried out in a parallel way
hat each controller executes its independent logic, the algorithm of
lgorithm II should be run at each controller. A consolidation actually

akes place only when the workload of a certain controller can be mi-
rated to other controllers (e.g., workload below a certain level) and at
he same time, there is another controller that can take the workload of
his controller. Therefore, a consolidation does not always take place.
n lines 1–3 of Algorithm II , each controller collects the resource uti-
ization of all other controllers, lines 5–6 select the controller with the
inimum workload for consolidation if its workload is below a certain

hreshold, lines 7–8 decide if there is another controller that can adopt
he workload, and line 9 executes the migration of switches.

When a trial of the consolidation process is finished, the balancing
rocess follows. During the gaming process, all agents work together to
each an equilibrium, which is shown in Algorithm III . In Algorithm III ,
ines 1–5 start a GE, and lines 6–13 operate the iteration of GE toward
 balanced workload.

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

Network status
monitor

Whether
a consolida�on is

required

Y

N

Controller
Consolida�on

Whether
a balancing is

required

Y

N

Controller
Consolida�on

Fig. 5. Working phase of MARVEL.

Algorithm II

Switch migration based on workload consolidation.

Input: X j , Y j , Z j and
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑥 𝑖 ,

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗

𝑤 𝑖 𝑦 𝑖 ,
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑧 𝑖 , (1 ≤ j ≤ N)

Output : switch migration decision

1: Initialization:

2: for controller c j (1 ≤ j ≤ N):

3: calculate U j ;

4: Consolidation:

5: if this controller 𝑐 𝑗 1 satisfies 𝑐 𝑗 1 = arg min
𝑐 𝑗 ∈𝐶

𝑈 𝑗 :

6: if 𝑈 𝑗 1 ≤ 𝑇 𝐻 𝑅𝐸𝑆𝐻 𝑂 𝐿𝐷 _ 𝐿𝑂 𝑊 :

7: find 𝑐 𝑗 2 = arg min
𝑐 𝑗 ∈𝐶 − 𝑗 1

𝑈 𝑗 ;

8: when constraints {

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗 1

𝑤 𝑖 𝑥 𝑖 +
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗 2
𝑤 𝑖 𝑥 𝑖 ≤ 𝑋 𝑗 2 ∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗 1
𝑤 𝑖 𝑦 𝑖 +

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗 2

𝑤 𝑖 𝑦 𝑖 ≤ 𝑌 𝑗 2 ∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗 1

𝑤 𝑖 𝑧 𝑖 +
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗 2
𝑤 𝑖 𝑧 𝑖 ≤ 𝑍 𝑗 2

are guaranteed:

9: and migrate 𝑆 𝑐 𝑗 1
to 𝑐 𝑗 2 ;

10: End

Algorithm III

Switch migration based on load balancing among controllers.

Input: X j , Y j , Z j and
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑥 𝑖 ,

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗

𝑤 𝑖 𝑦 𝑖 ,
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑧 𝑖 , (1 ≤ j ≤ N)

Output: switch migration decision

1: check GE requests from other controllers;

2: if this controller follows 𝑈 ≥ 𝑇 𝐻 𝑅𝐸𝑆𝐻 𝑂𝐿𝐷 _ 𝐻 𝐼 𝐺𝐻 :

3: send signal to other controllers for a GE;

4: if a GE is required:

5: set EQUILIBRIUM to 0;

6: while not EQUILIBRIUM:

7: for each controller c j :

8: collect X j , Y j , Z j and
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑥 𝑖 ,

∑
𝑠 𝑖 ∈𝑆 𝐶 𝑗

𝑤 𝑖 𝑦 𝑖 ,
∑

𝑠 𝑖 ∈𝑆 𝐶 𝑗
𝑤 𝑖 𝑧 𝑖 ;

9: input state to the MARVEL agent, broadcast action and reward;

10: wait for action and reward from other controllers;

11: execute the action with the maximum reward;

12: if the selected action moves no switch:

13: EQUILIBRIUM = 1;

14: End

5

c

n

o

(

Output Layer

Input Layer

Fig. 6. Neural network structure in the DRL agent of MARVEL.

i

n

a

d

o

p

m

w

t

t

t

i

u

a

w

c

p

l

a

t

𝑠

s

l

i

s

s

o

o

n

s

t

s

e

6

M

o

6

t
.4. Details of MARVEL model implementation

In this section, the detail of the MARL model implementation is dis-
ussed, which mainly includes the implementation details of the neural
etwork in the agents of MARL.

As illustrated in Section 4.1 , the agent is implemented with DRL. In
ur scheme, the neural network in DRL is implemented with an RNN
Recurrent Neural Network) [25] . The structure of the neural network
s shown in Fig. 6 . RNN is designed to process sequence data and has
ow various popular versions such as LSTM (long short-term memory)
nd GRU (Gated Recurrent Unit) [26] . After each time step, the output
ata also serve as the inputs in the next time step. Then, the output
f all RNN units is connected to a feedforward neural network, which
roduces the final outcome. In the multi-agent reinforcement learning
odel, the network state is the resource utilization of each controller,
hich is normalized and sent to the RNN as the input data. Therefore,

he number of input layer neurons corresponds to the number of con-
rollers. The output layer has three neurons, which correspond to three
ypes of actions, namely, import, stay still, and export.

If the action is stay still, there is no switch migration. If the action is
mport, then the agent picks the controller with the maximum resource
tilization U from whom to import a switch. If the action is export, the
gent picks the controller with the minimum resource utilization U to
hom to export a switch. The choosing of a certain switch relies on the

alculation of resource utilization distribution, which is based on the
rinciple that the chosen switch should compensate the resource uti-
ization gap between the exporting controller and importing controller
s much as possible. For example, if controller c i should export a switch
o controller c j , then the switch to be migrated could be

 = arg min
𝑠 ℎ ∈𝑆 𝑐 𝑖

{

𝑑 𝑥
𝑗

[
𝑋 𝑖 (𝑈

𝑋
𝑖

− 𝑈

𝑋
𝑗
) − 𝑤 ℎ 𝑥 ℎ

]2
+ 𝑑

𝑦

𝑗

[
𝑌 𝑖 (𝑈

𝑌
𝑖
− 𝑈

𝑌
𝑗
) − 𝑤 ℎ 𝑦 ℎ

]2
+ 𝑑 𝑧

𝑗

[
𝑍 𝑖 (𝑈

𝑍
𝑖

− 𝑈

𝑍
𝑗
) − 𝑤 ℎ 𝑧 ℎ

]2 }

(14)

The reward is computed mainly based on the improvement of re-
ource utilization balancing, while the change of communication de-
ay from the migrated switch to different controllers can also be taken
nto consideration. Suppose that the resource utilization before and after
witch migration is U j , 𝑈

′
𝑗

for controller c j and U i , 𝑈

′
𝑖
for controller c i re-

pectively, and the extra communication delay caused by the migration
peration can be denoted with 𝜇ji . With 𝜇ji , the unexpected controlling
ver distant switches can be avoided. Therefore, even though we do
ot explicitly impose a constraint in the problem formulation that the
witches controlled by one controller should form a connected subgraph,
he controlling relationship between a controller and the switches can
till cater to the practical need. Specifically, the reward value can be
xpressed as 𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑈 𝑖 − 𝑈 𝑗) 2 − (𝑈

′
𝑖
− 𝑈

′
𝑗
) 2 − 𝜇𝑗𝑖 .

. Simulation and performance evaluation

In this section, we introduce our simulation environment to test
ARVEL and compare the performance of MARVEL with other state-

f-the-art schemes.

.1. Simulation setup

The performance of the proposed model is simulated with six con-
roller instances [9] on a host machine with Intel E5-2600 processor,

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

3

o

t

a

t

s

6

a

6

i

r

r

6

t

c

a

t

c

w

t

a

s

s

c

F

o

t

m

r

8

i

F

i

e

l

6

c

t

I

s

p

s

s

L

i

l

D

v

8

1

d

6

s

s

r

c

w

i

2

(

r

M

m

w
2GB DDR4 memory and two GTX1080Ti graphics cards. The DRL agent
f MARVEL is implemented with Keras based on TensorFlow. The sta-
istical characteristics of the request follow a Poisson process added to
 periodical fluctuation [9,13,34] which can ensure both the adaption
o randomness and the reproducibility of performance of the proposed
cheme.

.2. Comparison schemes

To evaluate the performance of MARVEL, we make comparisons
mong the following schemes:

DHA-LB [9] : DHA-LB uses a distributed hopping algorithm to mi-
grate a switch among controllers. In DHA-LB, there is a random
selection of switch, and then the selected switch continuously
chooses a controller at random until the chosen controller satis-
fies the resource utilization constraints.

BalCon [13] : BalCon analyzes the switch behavior and uses a clus-
tering algorithm to migrate a cluster of switches from the over-
loaded controller to another controller.

MARVEL (this paper) : MARVEL runs an DRL agent at each con-
troller. Each DRL agent can make their own decision of switch
migration until an equilibrium is reached.

.3. Simulation results

In this section, we show and compare the performance of MARVEL
n the following aspects: effectiveness of MARVEL, comparison of flow
equest processing capability, improvement of resource utilization, and
esource consumption of different schemes.

.3.1. Effectiveness of MARVEL

Fig. 7 shows the original workload distribution over the six con-
rollers within 200 mins. Each controller is denoted by a line with a
ertain color, and the workload is shown in the form of the percent-
ge of the maximum capacity of a controller. As shown in the figure,
he workload distribution on controllers varies with time, and different
ontroller meets their peak workload value at different times. When the
orkload of a controller exceeds 100% (such as the red line), such con-

roller is overloaded, we discard the requests that exceed the processing
bility of such controller. In practice, there should always be some re-
ource reserved for other incidents and affairs (e.g., when the dynamic
witch migration process also requires some calculation and communi-
ation resource), thus the ideal workload should not exceed a certain
ig. 7. Original distribution of workload in each controller (Each color denotes
ne controller).

b

p

a

m

t

6

V

s

u

U

v

t

m

c

t

t

t

s

M

i

i

hreshold, which will also serve as a trigger for a balancing process as
entioned in Algorithm III .

Fig. 8 shows the workload distribution in MARVEL under the same
equest pattern from switches within 200 mins. Comparing Figs. 7 and
 we can see that when the DRL agents of MARVEL start to work, there
s an apparent improvement on the balance of workload distribution.
irst, it is clear that there is no overloaded controller in MARVEL. The
mprovement of workload distribution can reduce the failure rate of the
vent processing request from switches and improve the resource uti-
ization to process more events with fixed resources.

.3.2. Flow request processing capability

Fig. 9 compares the performance of MARVEL with DHA-LB and Bal-
on under the same request pattern. The three schemes are tested under
he same simulation network with the same event generation source.
n the figure, we take the same time interval of running of the three
chemes and place their performance into the same coordinate for com-
arison. In our simulation, overloaded controller discards extra requests,
o different schemes show different actual request processing rates. As
hown in the figure, MARVEL can process the most events, while DHA-
B performs the worst. The reason of the difference in the event process-
ng number is that when some controllers are overloaded and not re-
ieved in time, some processing requests are dropped in our controllers.
uring our whole experiment time, the average event processing rate
ersus the overall capacity in a period of MARVEL is 85.3%, BalCon is
0.1%, and DHA-LB is 73.3%, which means that MARVEL can process
6.3% and 6.4% more events than DHA-LB and BalCon respectively un-
er our test traffic.

.3.3. Resource utilization

Fig. 10 shows the resource utilization improvement of different
chemes under different intensities of workload over static mapping of
witches. In this figure, the workload is measured by the average rate of
equests in the experiment network, and the resource utilization is cal-
ulated according to the capacity of the whole network. As Fig. 9 shows,
ith the growth of the intensity of workload from 8,000 to 16,000, the

mprovement of network resource utility of MARVEL rises from 10.3% to
0.5%, which is better than BalCon (from 9.6% to 16.1%) and DHA-LB
from 6.1% to 12.2%). We can also notice in the figure that as the rate of
equest rises, the improvement of BalCon and DHA-LB rises slower than
ARVEL. This is because that in both BalCon and DHA-LB, the switch
igration process concentrates on only one controller at a time. In this
ay, only after the workload processing of one certain controller has
een finished can the load balancing process of other controllers take
lace. In contrast, in MARVEL, the load balancing process takes place
mong all controllers at the same time. When the request rate rises,
ore controllers tend to be overloaded at the same time, thus making

he working scheme of BalCon and DHA-LB less efficient than MARVEL.

.3.4. Resource consumption

In Fig. 11 , we compare the time and resource consumption of MAR-
EL and DHA_LB. Since the switch migration process itself also takes up
ome resources, too much occupancy of resource of the migration will
ndermine the controller’s capacity to deal with regular packet events.
nder different workloads and in different controllers, the consumption
aries a lot, thus we use a normalized value with the average consump-
ion of DHA_LB as a metric. The run time, bandwidth consumption and
emory consumption of DHA_LB are set to 1 in Fig. 10 , and the ratio of

onsumption on different resources of MARVEL and BalCon compared
o DHA_LB is shown in the bar. From the figure, we can see that the run
ime of MARVEL and BalCon is 45% and 27% less than DHA_LB respec-
ively. BalCon takes up the most memory resources because it needs to
tore the workload changes in switches. The bandwidth consumption of
ARVEL is a little higher than BalCon, and this is mainly because there

s more interaction and information sharing among different controllers
n MARVEL during the balancing process.

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

Fig. 8. Workload comparison in each controller without (denoted in solid line) and with (denoted in dotted line) the use of MARVEL. Fig. 8 (a)~7(f) correspond
to controller 1 to controller 6 respectively.As shown in the figure, the original workload distribution (without MARVEL) fluctuates greatly, while after applying
MARVEL to the controllers the workload is more evenly distributed.

Fig. 9. Comparison of flow request processing rate in the control plane. The
Y axis shows the actual request processing rate versus the overall processing
capacity in the control plane measured by corresponding resources.

7

7

p

d

s

[

l

p

s

e

t

c

Fig. 10. Average improvement of resource utilization and event handling num-
ber under different workloads.

Fig. 11. Run time and resource consumption comparison among different
schemes.
. Related work

.1. Elastic control in SDN

A static mapping between the multi-controller control plane and data
lane in SDN is hard to adapt to the frequent change of spatial-temporal
istribution of network traffic [2,5] . To solve this problem, some works
uggested offloading some workload from the controllers to switches
37–39] . On the other hand, several works concentrated on the work-
oad processing techniques within the control plane. ElastiCon [6] is
roposed to dynamically change the number of controllers and migrate
witches among different controllers according to traffic load; Yaz ı c ı 1
t al. [17] proposes a framework for the scalability and reliability of dis-
ributed control planes; B. Heller et al. [11] propose a scheme to place
ontrollers based on the propagation latency. However, the works men-

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

t

m

I

t

t

b

c

o

t

a

e

t

p

s

7

f

t

i

i

i

a

a

t

w

w

d

r

m

M

M

8

i

w

t

A

t

o

s

t

“

n

f

t

D

i

t

A

h

N

I

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ioned above do not solve the SMP about how to select a switch for
igration and how to pick a target controller based on the workload.

nfact, such solutions on dynamic controller provisioning are based on
he change of the amount and location of controllers via reassigning
he switches to controllers, which may lead to network instability and
roadcast storm due to a large number of state synchronizations among
ontrollers. Papers [9,18,20] try to find a switch migration path with-
ut changing the distribution of controllers. Such schemes use optimiza-
ion arithmetic to model the SMP (e.g., Boolean integer linear program)
nd try to find a near-optimal solution based on heuristic methods or
xtra constraints, which are time-consuming and cannot ensure the to-
al performance. Guo et al. [21–23] also study the switch allocation
roblems in the control plane, which use heuristic algorithms to find
olutions.

.2. MARL

Deep neural networks have recently boosted the notion of “learning
rom data ” with field-changing performance improvements on different
asks [24,48,49] . RL is an area of machine learning, aiming at design-
ng agents which can learn to achieve a certain goal in a long term by
nteracting with an unknown environment [39] . Combining deep learn-
ng with RL [24,40] , deep reinforcement learning has created the first
rtificial agents capable of achieving human-level performance across
 number of challenging domains, including AlphaGo [24] , intelligent
ransportation systems [41] , resource allocation in cyber-physical net-
orks [42–45] , traffic engineering [46,47] .

There is now an emerging line of research of RL called MARL [40] ,
hich is designed to solve the problem in a Multi-Agent System (MAS),
ealing with a group of agents that can sense and interact with an envi-
onment, and target a certain goal. MARL has been successfully used in
any fields such as QoS routing in ATM [27] . There are many types of
ARL techniques such as [28,29,50] , among which equilibrium-based
ARL [30,31] are the most important approaches.

. Conclusions

In this paper, we have made the first attempt to introduce artificial
ntelligence into load balancing of the control plane in SDN. The SMP
as modeled as an MARL among controllers, and the DRL agents in con-

rollers make switch migration decisions without any human experience.
fter a period of training, the DRL agents gather enough knowledge

hrough interactions with the network, and make automatic decisions
n switch migration. According to our experiments, the MARL-based
cheme performs better than other competing alternatives, and it is less
ime-consuming. This corroborates that artificial intelligence tools can
learn ” to solve the challenging NP-Complete optimization problem of
etwork resource utilization, thus considerably saving human labor. Our
uture research will leverage other distributed AI models to further boost
he performance.

eclaration of Competing Interest

The authors declare that they have no known competing financial
nterestsor personal relationships that could have appeared to influence
he work reported in this paper.

cknowledgements

The research of this paper is supported by the National Key Researc-
and Development Plan (grant number 2017YFB0803204),the National
atural Science Fund (grant numbers 61521003,61872382) and Beijing

nstitute of Technology Research Fund Program for Young Scholars.
upplementary materials

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.comnet.2020.107230 .

eferences

[1] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,
et al. , OpenFlow: enabling innovation in campus networks, in: Processings of ACM
SIGCOMM Computer Communication Review, 38, ACM, 2008, pp. 69–74 .

[2] T. Koponen , M. Casado , N. Gude , J. Stribling , L. Poutievski , M. Zhu , et al. , Onix: a
distributed control platform for large-scale production networks, in: Processings of
9th USENIX Symposium on Operating Systems Design and Implementation (OSDI
2010), 2010, pp. 351–364 .

[3] ZehuaGuo, WendiFeng, SenLiu, WenchaoJiang, YangXu, and Zhi-LiZhang,
RetroFlow: maintaining Control Resiliency and Flow Programmability for Software-
Defined WANs",IEEE/ACM International Symposium on Quality of Service 2019
(IWQoS’19).

[4] A.W. Tam , K. Xi , H. Chao , Use of devolved controllers in data center networks,
in: Processings of the IEEE Computer Communications Workshops, IEEE, 2011,
pp. 596–601 .

[5] S. Hassas Yeganeh , Y. Ganjali , Kandoo: a framework for efficient and scalable of-
floading of control applications, in: Proceedings of 1st Workshop on Hot Topics in
Software Defined Networking (HotSDN 2012), HotSDN, 2012, pp. 19–24 .

[6] A. Dixit , F. Hao , S. Mukherjee , T. Lakshman , R. Kompella , Towards an elastic dis-
tributed SDN controller, in: Proceedings of 1st Workshop on Hot Topics in Software
Defined Networking (HotSDN 2013), HotSDN, 2013, pp. 7–12 .

[7] OpenFlow. https://www.opennetworking.org/images/stories/downloads/sdn-reso
urces/onf-specifications/openflow/openflow-spec-v1.4.0.pdf .

[8] H. Chen , G. Cheng , Z. Wang , A game-theoretic approach to elastic control in soft-
ware-defined networking, China Commun. 13 (5) (2016) 103–109 .

[9] X. Ye , G. Cheng , X Luo , Maximizing SDN Control Resource Utilization via Switch
Migration, Comp. Netw. (2017) S1389128617302669 .

10] T. Wang , F. Liu , J. Guo , H. Xu , Dynamic SDN controller assignment in data cen-
ter networks: stable matching with transfers, in: Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9 .

11] T. Wang , F. Liu , H. Xu , An Efficient online algorithm for dynamic SDN controller
assignment in data center networks, IEEE/ACM Trans. Netw. 25 (5) (Oct. 2017)
2788–2801 .

12] V. Huang , Q. Fu , G. Chen , E. Wen , J. Hart , BLAC: a bindingless architecture for
distributed SDN controllers, in: Proc. IEEE 42nd Conf. Local Comput. Netw. (LCN),
Oct. 2017, pp. 146–154 .

13] M. Cello , Y. Xu , A. Walid , et al. , BalCon: a Distributed Elastic SDN Control via Effi-
cient Switch Migration, IEEE International Conference on Cloud Engineering, IEEE,
2017 .

14] A. Azzouni , G. Pujolle , Neutm: a neural network-based framework for traffic matrix
prediction in sdn, in: NOMS 2018-2018 IEEE/IFIP Network Operations and Manage-
ment Symposium, IEEE, 2018, pp. 1–5 .

15] T.Wang, Z.Guo, H.Chen, and W.Liu, “Bwmanager: mitigating denial of service at-
tacks in software-defined networks through bandwidth prediction, ” IEEE Transac-
tions on Network.

16] S. Mallon , V. Gramoli , G. Jourjon , Are today’s sdn controllers ready for prime-
time? in: 2016 IEEE 41st Conference on Local Computer Networks (LCN), Nov 2016,
pp. 325–332 .

17] V. Yaz ı c ı 1 , M.O. ˘.guz Sunay1 , Ö. Ali , 1. Ercan , Controlling a software-de-
fined network via distributed controllers, Process. NEM (2012) submit 2012,
arXiv:1401.7651 .

18] B. Heller , Rob Sherwood , Nick McKeown , The controller placement problem, in:
Proc. 1st Workshop on Hot Topics in Software Defined Networking (HotSDN 2012),
New York, ACM Press, 2012, pp. 7–12 .

19] G. Cheng , et al. , DHA: distributed decisions on the switch migration toward a scal-
able SDN control plane, 2015 IFIP Networking Conference (IFIP Networking), IEEE
Computer Society, 2015 .

20] T. Wang , F. Liu , J. Guo , H. Xu , Dynamic SDN controller assignment in data cen-
ter networks: stable matching with transfers, Proceedings of IEEE INFOCOM, IEEE,
2016 .

21] Z.Guo, M.Su, Y.Xu, Z.Duan, L.Wang, S.Hui and H.Chao. Improving the performance
of load balancing in software-defined networks through load variance-based syn-
chronization. Comp. Netw., 68, pp. 95–109.

22] Z. Guo , W. Chen , Y. Liu , Y. Xu , Z. Zhang , Joint Switch Upgrade and Controller De-
ployment in Hybrid Software-Defined Networks, IEEE J. Select. Areas Commun. 37
(5) (2019) 1012–1028 .

23] T.Hu, P.Yi, Z.Guo, J.Lan and Y.Hu. Dynamic slave controller assignment for enhanc-
ing control plane robustness in software-defined networks. Future Gen. Comp. Syst.,
95, pp. 681–693.

24] V. Mnih , K. Kavukcuoglu , D. Silver , Human-level control through deep reinforce-
ment learning, Nature 518 (7540) (2015) 529–533 .

25] S. Hochreiter , Jürgen Schmidhuber , Long Short-Term Memory, Neural Comput. 9
(8) (1997) 1735–1780 .

26] ChoK., Van MerriënboerB., GulcehreC., BahdanauD., BougaresF., SchwenkH., and
Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv: 1406.1078 .

27] A.F. Atlasis , N.H. Loukas , A.V. Vasilakos , The use of learning algorithms in ATM
networks call admission control problem: a methodology, Comp. Netw. 34 (3) (2000)
341–353 2000 .

https://doi.org/10.1016/j.comnet.2020.107230
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0006
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0022
http://arxiv.org/abs/arXiv:1406.1078
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0023

P. Sun, Z. Guo and G. Wang et al. Computer Networks 177 (2020) 107230

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

G

28] A.V. Vasilakos , G.I. Papadimitriou , A new approach to the design of reinforcement
schemes for learning automata: stochastic estimator learning algorithm, Neurocom-
puting 7 (3) (1995) 275–297 .

29] L. MacDermed , K.S. Narayan , L. Weiss , Quick polytope approximation of all corre-
lated equilibria in stochastic games, in: Proc. 25th AAAI Conf. Artif. Intell, 2011,
pp. 707–712 .

30] J. Hu , Nash Q-learning for general-sum stochastic games, J. Mach. Learn. Res. 4 (4)
(2003) 1039–1069 .

31] Y. Hu , Y. Gao , An B. Multiagent Reinforcement Learning with Unshared Value Func-
tions, IEEE Trans. Cybern. 45 (4) (2015) 647–662 .

32] A. Cully , J. Clune , D. Tarapore , J.-.B. Mouret , Robots that can adapt like animals,
Nature 521 (7553) (2015) 503 .

33] A. Mirhoseini , A. Goldie , H. Pham , B. Steiner , Q.V. Le , J. Dean , A hierarchical model
for device placement, in: Proc. of ICLR, 2018 .

34] Z. Xu , J. Tang , J. Meng , W. Zhang , Y. Wang , C.H. Liu , D. Yang , Experience-driven
networking: a deep reinforcement learning based approach, in: Proc. of IEEE INFO-
COM, 2018 .

35] P. Sun , Y. Hu , J. Lan , L. Tian , M. Chen , TIDE: time-relevant deep reinforce-
ment learning for routing optimization, Future Gen. Comp. Syst. 99 (2019) 401–
409 .

36] C. Chekuri , S. Khanna , On multi-dimensional packing problems, in: Proceedings of
the tenth annual ACM-SIAM symposium on Discrete algorithms, Society for Indus-
trial and Applied Mathematics, 1999, pp. 185–194 .

37] A.R. Curtis , J.C. Mogul , J. Tourrilhes , et al. , DevoFlow: scaling flow management for
high-performance networks, in: ACM SIGCOMM Computer Communication Review,
41, ACM, 2011, pp. 254–265 .

38] J. Yang , X. Yang , Z. Zhou , et al. , Focus: function offloading from a controller to
utilize switch power, in: 2016 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), IEEE, 2016, pp. 199–205 .

39] S. Zhu , J. Bi , C. Sun , et al. , “Sdpa: enhancing stateful forwarding for software-de-
fined networking, in: 2015 IEEE 23rd International Conference on Network Protocols
(ICNP), IEEE, 2015, pp. 323–333 .

40] R.S. Sutton , A.G. Barto , Reinforcement Learning: An Introduction, MIT press, Cam-
bridge, MA, 2018 .

41] M.Bojarski, D.Del Testa, D.Dworakowski, B.Firner, B.Flepp, P.Goyal, L.D.Jackel,
M.Monfort, U.Muller, J.Zhanget al., “End to end learning for self-driving cars, ”
arXiv: 1604.07316 , 2016.

42] Alireza Sadeghi , Gang Wang , Georgios Giannakis , Deep Reinforcement Learning for
Adaptive Caching in Hierarchical Content Delivery Networks, IEEE Transactions on
Cognitive Communications and Networking 5 (4) (2019) 1024–1033 .

43] Qiuling Yang, Gang Wang, Alireza Sadeghi, Georgios Giannakis, Jian Sun,
Two-timescale voltage control in distribution grids using deep reinforce-
ment learning, IEEE Transactions on Smart Grid 11 (3) (2020) 2313–2323,
doi: 10.1109/TSG.2019.2951769 .

44] Penghao Sun , Julong Lan , Zehua Guo , Di Zhang , Xianfu Chen , Yuxiang Hu , Zhi Liu ,
DeepMigration: flow Migration for NFV with Graph-based Deep Reinforcement
Learning, IEEE International Conference on Communications, 2020 .

45] PenghaoSun, ZehuaGuo, SenLiu, JulongLan, and YuxiangHu, QoS-aware Flow con-
trol for Power-Efficient Data Center Networks with Deep Reinforcement Learning,
IEEE International Conference on Acoustics, Speech, and Signal Processing 2020
(ICASSP’20).

46] Junjie Zhang , Minghao Ye , Zehua Guo , Chen-Yu Yen , H.Jonathan Chao , CFR-RL:
traffic Engineering with Reinforcement Learning in SDN, IEEE J. Select. Areas Com-
mun. (2020) .

47] Penghao Sun, Junfei Li, Zehua Guo, Yang Xu, Julong Lan, and Yuxiang Hu, SINET:
enabling Scalable Network Routing with Deep Reinforcement Learning on Par-
tial Nodes", ACM Special Interest Group on Data Communication (SIGCOMM’19
poster).

48] Liang Zhang , Gang Wang , Georgios Giannakis , Real-time power system state estima-
tion and forecasting via deep unrolled neural networks, IEEE Transactions on Signal
Processing 67 (15) (2019) 4069–4077 .

49] Gang Wang , Georgios Giannakis , Jie Chen , Learning ReLU networks on linearly sep-
arable data: Algorithm, optimality, and generalization, IEEE Transactions on Signal
Processing 67 (9) (2019) 2357–2370 .
50] Jun Sun , et al. , Finite-Time Analysis of Decentralized Temporal-Difference Learning
with Linear Function Approximation, Proc. of Intl. Conf. on Artificial Intelligence
and Statistics (2020) .

Penghao Sun is currently a Ph.D candidate in National Digital
Switching System Engineering and Technological R&D Cen-
ter (NDSC), China. He received the B.S and M.S degrees from
NDSC in 2014 and 2017 respectively. His current research in-
terests include network architecture, edge computing and ma-
chine learning on networking.

Zehua Guo received the B.S. degree from Northwestern Poly-
technical University, Xi’an, China, the M.S. degree from Xidian
University, Xi’an, China, and the Ph.D. degree from North-
western Polytechnical University. He was a Research Fellow
with the Department of Electrical and Computer Engineer-
ing, New York University Tandon School of Engineering, New
York, NY, USA, and a Research Associate with the Department
of Computer Science and Engineering, University of Minnesota
Twin Cities, Minneapolis, MN, USA. His research interests in-
clude software-defined networking, network function virtual-
ization, data center network, cloud computing, network secu-
rity, machine learning, and Internet exchange. Dr. Guo is an
Associate Editor for IEEE ACCESS and the EURASIP Journal on
Wireless Communications and Networking (Springer), and an
Editor for the KSII Transactions on Internet and Information
Systems. He was the Session Chair for the IEEE International
Conference on Communications 2018 and the Technical Pro-
gram Committee Member of Computer Communications (Else-
vier), ICCCN 2020, ICA3PP 2020, CSCloud 2020, SmartCloud
2020. He is a Senior Member of IEEE.

ang Wang is a postdoctoral research associate at University of Minnesota Twin Cities.

Julong Lan is currently a professor and the chief engineer in
National Digital Switching System Engineering and Techno-
logical R&D Center (NDSC), China. His is also the Chief scien-
tist of China National Program on Key Basic Research Project
(973 Program). His current research interests include 5 G com-
munication system, next generation of computer network and
artificial intelligence.

Yuxiang Hu received his Ph.D.degree in 2011 in National
Digital Switching System Engineering and Technological Re-
search Center ofChina. He is currently a associate professor,
and hisresearch interests include Internet architecture, novel-
switching and routing, multimedia network technologyand so
on.

http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0039
http://arxiv.org/abs/arXiv:1604.07316
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0040
https://doi.org/10.1109/TSG.2019.2951769
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31566-X/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31566-X/optSe7gTktvku
http://refhub.elsevier.com/S1389-1286(19)31566-X/optSe7gTktvku
http://refhub.elsevier.com/S1389-1286(19)31566-X/optSe7gTktvku
http://refhub.elsevier.com/S1389-1286(19)31566-X/optSe7gTktvku
http://refhub.elsevier.com/S1389-1286(19)31566-X/optLN2qpHmjye
http://refhub.elsevier.com/S1389-1286(19)31566-X/optLN2qpHmjye
http://refhub.elsevier.com/S1389-1286(19)31566-X/optLN2qpHmjye
http://refhub.elsevier.com/S1389-1286(19)31566-X/optLN2qpHmjye
http://refhub.elsevier.com/S1389-1286(19)31566-X/optKAVaX2o7rq
http://refhub.elsevier.com/S1389-1286(19)31566-X/optKAVaX2o7rq
http://refhub.elsevier.com/S1389-1286(19)31566-X/optKAVaX2o7rq

	MARVEL: Enabling controller load balancing in software-defined networks with multi-agent reinforcement learning
	1 Introduction
	2 Background and motivation
	2.1 Background
	2.2 Motivation
	2.3 Challenges and opportunities

	3 Overview of MARVEL
	4 Control plane workload balancing problem
	4.1 Control plane resource utilization modeling
	4.2 Control plane load balancing problem formulation
	4.3 Complexity analysis

	5 MARVEL system implementation
	5.1 Framework of MARVEL
	5.2 Training phase of MARVEL
	5.3 Working phase of the MARVEL
	5.4 Details of MARVEL model implementation

	6 Simulation and performance evaluation
	6.1 Simulation setup
	6.2 Comparison schemes
	6.3 Simulation results
	6.3.1 Effectiveness of MARVEL
	6.3.2 Flow request processing capability
	6.3.3 Resource utilization
	6.3.4 Resource consumption

	7 Related work
	7.1 Elastic control in SDN
	7.2 MARL

	8 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References

