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A B S T R A C T

The success of the applications based on the Internet of Things (IoT) relies heavily on the ability to process large
amounts of data with different Quality-of-Service (QoS) requirements. Access control remains an important
issue in scenarios where massive Machine-Type Communications (mMTC) prevail, and as a consequence,
several mechanisms such as Access Class Barring (ACB) have been designed aiming at reducing congestion.
Although this mechanism can effectively increase the total number of User Equipments (UEs) that can access
the system, it can also harm the access delay, limiting its usability in some scenarios. In this work, we propose
a delay-aware double deep reinforcement learning mechanism that can dynamically adapt two parameters
of the system in order to enhance the probability of successful access using ACB, while at the same time
reducing the expected delay by modifying the Random Access Opportunity (RAO) periodicity. Results show
that our system can accept a simultaneously massive number of machine-type and human-type UEs while at
the same time reducing the mean delay when compared to previously known solutions. This mechanism can
work adequately under varying load conditions and can be trained with real data traces, which facilitates its
implementation in real scenarios.
1. Introduction

The Internet of Things (IoT) relies on the ability to gather, process,
and analyze massive amounts of data to make the appropriate decisions
at the right time. Computing systems have addressed this requirement
through the development of robust architectures that support real-time
analysis of massive data. From a radio access point of view, several
technologies have been proposed which aim at providing extensive
coverage, low power, and typically, low data rate transmissions. How-
ever, the characteristics of machine-type communications (MTC) [1]
impose different demands than those that existed for human-to-human
(H2H) communications, causing that current systems do not behave
appropriately under these new conditions [2]. Among the possible
wireless networks that compete in the IoT market, cellular networks
are one of the main options due in part to its extended coverage,
existing infrastructure, and standardization efforts. Nevertheless, it is
still necessary to adapt some mechanisms to new traffic types such as
MTC.

In cellular networks, high traffic loads can be controlled through
the Access Class Barring (ACB) mechanism, which defines a barring
rate that is broadcasted by the base station, delaying the access of a
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percentage of the active users (named UE herein). This mechanism can
successfully control high loads of simultaneous UEs trying to access the
medium, which results in fewer collisions and, therefore, in the long
term, a higher amount of UEs accessing the network. However, this
mechanism also produces a higher delay, which could be undesirable
for specific applications. Therefore, ACB must be combined with other
mechanisms that allow reducing its impact on delay. This can be done
by varying the periodicity of random access opportunities (RAOs),
which define the available slots where the devices can contend for
network access. We propose a Delay-Aware Double Deep Q-learning
mechanism that can adapt both the barring rate of ACB, in order to
increase the successful access probability of UEs even under very high
load scenarios, and also the RAO periodicity to reduce the impact on
delay. These parameters are adapted dynamically, which allows the
system to work successfully under different traffic conditions. Since
Reinforcement Learning (RL) is a method that relies on data, we use
traces obtained from a Telco to represent H2H traffic. We also rely
on the fact that both the barring rate and the RAO periodicity can be
modified; that is, our solution complies with the standards.

The contributions of this paper can be summarized as follows:
vailable online 25 August 2020
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• We model the access control problem as a Partially Observable
Markov Decision Process (POMDP) and design an adaptive access
control mechanism based on double deep RL that modifies the
barring rate of ACB and the RAO periodicity simultaneously. The
ability to modify the RAO periodicity allows greater control of the
access delay, which considerably reduces the mean access delay
when compared to our previous work in [3]. Hence, in this paper
it is possible to optimize two conflicting objectives: Increase the
successful access probability and reduce the mean access delay.

• We evaluate the system under simultaneous H2H and Machine-to-
Machine (M2M) traffic, where the former is obtained from traces
of a Telco, and the latter is modeled after the standards for heavy
load scenarios.

• We compare our Delay-Aware Double Deep Q-Learning mecha-
nism with two previous dynamic solutions and show that our
mechanism can reduce the mean access delay while maintaining
full successful access probability.

The remainder of this paper is organized as follows. In Section 2, we
eview the different solutions that have been proposed for handling the
ccess control problem with mMTC. In Section 3, we detail the random
ccess procedure and the ACB scheme following the 3GPP standards
losely. Then, in Section 4, we model the access control problem
s a POMDP and describe our Delay-Aware Double Deep Q-Learning
mplementation. In Section 5, we evaluate our proposed scheme under
ifferent traffic conditions and compare it against two other solutions
hat are also dynamic through different key performance indicators
KPIs). Finally, Section 6 concludes the paper. Note that in Table 1 we
rovide the notations used throughout the paper.

. Related work

There have been numerous research efforts devoted to optimizing
he ACB barring factor for handling massive MTC (mMTC) connection
ttempts on the RACH through either static or dynamic approaches [4–
]. However, some studies [10–12] offer complex procedures, use
uestionable assumptions for getting high performance, or do not con-
orm with network specifications (e.g., without considering the number
f uplink grants or the updating period of notification information by
he base station).

Duan et al. [13] presented an ACB scheme that calculates the
ptimal barring rate at each RAO based on the estimation of the
umber of contending UEs using preamble information (i.e., successful,
nused). They also provide a scheme to dynamically select the number
f available preambles allocated to MTC devices. The performance of
he ACB schemes mentioned above is typically compared with that
f idealized solutions that exploit the advantages of having full state
nformation [7,13,14]. These full state information solutions are im-
ractical but provide an upper bound to the performance of the ACB
cheme. In this paper, we use as a benchmark the idealized and full
tate information scheme presented by Duan et al. [13].

RL-based ACB schemes are suitable approaches to optimize the
ccess control for wireless networks, and in particular, for cellular net-
orks such as LTE-A and NB-IoT [15–17]. El-Hameed and Elsayed [18]
ropose a Q-Learning mechanism that aims to assign preambles to H2H
r M2M UEs according to the traffic intensity. However, their scheme
equires that the system knows how much traffic per UE type is offered
o assign access priorities, similarly as Extended Access Barring. Bello
t al. [19] propose a Q-Learning approach in which each M2M UE
as to learn when to transmit. This mechanism does not use ACB,
nd it is entirely decentralized. Bear in mind that decentralized access
chemes do not conform to current LTE-A recommendations. Likewise,
u et al. [20] propose a decentralized mechanism to optimize access
ontrol. In this case, the UEs can learn the features of different coexist-
ng medium access control mechanisms, and adjust their transmissions
2

sing cognitive radio. Although this scenario is very promising, it f
heavily relies on the processing capacities of the terminals, which is
not feasible in scenarios with low-power, low-processing devices such
as those frequently found in IoT applications. A deep RL-based ACB
scheme was proposed in [21]; it considered differentiated MTC services
so that the high priority MTC UEs could transmit their data in a short
time. Moon et al. [22] used Q-learning to adjust the barring factor
by observing the access success rate. However, in these proposals is
assumed that the base station has complete knowledge of the number
of UEs contending for resources in the network, which is impractical.

In our previous work [3], we proposed a Double Deep Q-Learning
(DDQL) solution that was able to adapt to dynamic traffic conditions
through the barring rate but suffered from high delays. In this work,
we present a new mechanism that considerably reduces the access
mean delay while maintaining the successful access rate concerning our
previous proposal. We are able to address this two conflicting objectives
by simultaneously adapting the barring rate and the periodicity of the
RAOs, unlike our previous work which only addressed the reduction
of congestion through the adaptation of the barring rate. Also, this
mechanism can work properly only with the available information
at the base station which allows its integration into current cellular
systems.

3. Random access procedure and access control

The Random Access (RA) procedure is performed every time that a
UE wants to switch from idle to connected mode. The UEs first acquire
the network configuration parameters; then, they are subjected to the
ACB scheme; finally, after passing the barring check, they perform the
RA procedure as illustrated in Fig. 1.

The Random Access Channel (RACH) is used to signal the con-
nection request; it is allowed in predefined time/frequency resources,
hereafter RAOs [23,24]. The base station has a number of preambles
(𝑟) available for initial access to the network; these preambles [24,25]
are transmitted by the UEs for attempting the first access to the net-
work. The Master Information Block (MIB) and the System Information
Blocks (SIBs) are resources used by the base station to broadcast the
configuration information periodically. In particular, the SIB2 includes
some basic parameters, such as the periodicity of RAOs (𝑇RAO) and
the barring parameters. There are six possible values for 𝑇RAO =
{1, 2, 3, 5, 10, 20} measured in 𝑚𝑠. These values are set by the param-
eter prach-ConfigIndex [24,26]. Note that according to the specifica-
tions [26], the SIB2 messages are sent every 80 𝑚𝑠, and therefore when
𝑇RAO=5, there are 16 RAOs between two SIB2 messages, and when
𝑇RAO=20, there are only four RAOs between two SIB2 messages, as can
be seen in Fig. 2.

Upon arrival, the UEs are subjected to the ACB scheme. The main
goal of ACB is to redistribute the access requests of UEs through time
using a barring rate (𝑃ACB) and a barring time (𝑇ACB); by doing so,
the number of access requests per RAO is reduced. This fact helps
to evade massive-synchronized accesses demands to the RACH, which
might endanger the fulfillment of QoS objectives. UEs subjected to the
ACB scheme must perform a barring check before initiating the RA
procedure (i.e., before the transmission of their first preamble) as de-
scribed in Algorithm 1 [26,27]. There are 16 possible values for 𝑃ACB =
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}.

UEs that succeed in the barring check are no longer subject to the
ACB scheme and proceed to perform the RA procedure as follows.

A four-message handshake is performed in the contention-based
random access. In Message 1 (Msg1), a UE transmits a randomly chosen
preamble from the preamble pool during one of the available RAOs.
A preamble will be detected at the base station if it has not been
chosen by more than one UE in the same RAO. Otherwise, a collision
occurs. Then, the base station sends a random access response message,
Message 2 (Msg2), which includes one uplink grant for each detected
reamble. Msg2 is used to assign time–frequency resources to the UEs

or the transmission of Message 3 (Msg3). UEs wait for a predefined
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Table 1
Important notation utilized in this paper.

Notation Description

IoT Internet of Things
QoS Quality of Service
mMTC Massive Machine-type Communication
ACB Access Class Barring
UE User Equipment
RAO Random Access Opportunity
H2H Human-to-human Communications
RL Reinforcement Learning
POMDP Partially Observable Markov Decision Process
DDQL Double Deep Q-Learning
3GPP Third Generation Partnership Project
LTE-A Long-term Evolution Advanced
NB-IoT Narrow Band IoT
KPI Key Performance Indicator
RA Random Access
RAR Random Access Response
RACH Random Access Channel
PRACH Physical RACH
MIB Master Information Block
SIB System Information Block
RTT Round-trip Time
EPS Evolved Packet System
𝑟 Available preambles for contention-based RA
prach-ConfigIndex PRACH Configuration Index
preambleTransMax Maximum number of preamble transmissions
𝑇RAO Periodicity of RAOs
𝑃ACB Barring rate
𝑇ACB Barring time
𝑊RAR RAR window size
𝑁𝑝𝑠𝑢 Number of preambles successfully received
𝑁RAR Maximum number of uplink grants per subframe
𝑁𝑈𝐿 Maximum number of uplink grants per RAR window
𝑃𝑑 Preamble detection probability
𝐵𝐼 Backoff Indicator
𝐸𝑅 Size of the experience replay buffer
𝛾 Discount Factor
𝜖 Exploration probability
𝑁𝐿 Num. hidden layers (feedforward neural network)
𝜏 Update period (events) of the second neural network
 Delay-Aware DDQL Action set
 Delay-Aware DDQL State set
𝑎 Action that represents a combination of 𝑃ACB and 𝑇RAO values
𝑠 State
 Reward set associated to the action 𝑎 taken in state 𝑠
𝑄(𝑠, 𝑎, 𝜃) Q value for a given action 𝑎, taken in state 𝑠 and a neural network defined by the set 𝜃
𝜃− and 𝜃 Weights that define each neural network
𝑁𝑝𝑠𝑢 Mean number of successfully received preambles among the RAOs available between two SIB2 messages
𝐶𝑉𝑁𝑝𝑠𝑢

Coefficient of variation of the number of successfully received preambles among the RAOs available between two
SIB2 messages

𝛥𝑁𝑝𝑠𝑢 Difference of 𝑁𝑝𝑠𝑢 between the current and the previous observation
𝐿𝑖 Iteration loss function in DDQL
𝑌 𝐷𝐷𝑄𝐿 Target for DDQL
𝑁𝑝𝑡 Number of UEs transmitting a preamble on a given RAO
𝐷 Access Delay
𝑘 Number of preamble transmissions
𝑃𝑠 Probability of successful access
d
t
a
N
a
r
o
a
s

time window to receive the uplink grant. If the end of this window
receives no uplink grant and the maximum number of access attempts
has not been reached, the UEs wait for a random time and then perform
a new access attempt. That is, they select a new preamble and transmit
it at the next RAO. The UEs that receive an uplink grant send their
connection request message, Msg3, using the resources specified by the
ase station. Finally, the base station responds to each Msg3 transmis-

sion with a contention resolution message (Msg4). The interested reader
is referred to [23,26,28–30] for further details.

4. Delay-Aware Double Deep Q-learning solution

As explained in Section 3, the access control mechanism in the
Base Station defines specific slots called RAOs, when UEs are allowed
3

t

to request access to the system. The period between RAOs (𝑇RAO) is
efined by the parameter prach-ConfigIndex. Also, the number of simul-
aneous UEs that are allowed to contend for access to the network in
specific RAO is controlled through the ACB barring probability 𝑃ACB.
ormally, there is a trade-off between the successful access probability
nd the mean access delay. We propose a new solution that aims to
educe the congestion (and increase the successful access probability)
n each RAO through 𝑃ACB while at the same time reducing the mean
ccess delay through 𝑇RAO. That is, in scenarios with high load, our
olution should reduce 𝑃ACB so fewer UEs contend for access, while at

he same time reducing 𝑇RAO, so more RAOs are available in the same
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Fig. 1. Contention-based random access procedure.
Fig. 2. Random Access Opportunities for different 𝑇𝑅𝐴𝑂 values.
Algorithm 1: ACB Scheme
repeat

Set the mean barring time 𝑇ACB(𝑛) and the barring rate 𝑃ACB(𝑛)
broadcast by the base station in the 𝑛th SIB2;
Generate  [0, 1) = a random number with uniform distribution
between 0 and 1;
if  [0, 1) ≤ 𝑃ACB(𝑛) then

initiate the random access procedure;
else

Generate a new  [0, 1);
Set the barring time as

𝑇barring = [0.7 + 0.6 [0, 1)] 𝑇ACB(𝑛); (1)

wait for 𝑇barring;
end

until the random access procedure is initiated;
4

window of time, reducing the overall delay. In this section, we first
model the access control problem as a POMDP. Then, we propose a
Double Deep-Q Learning solution to the POMDP.
4.1. System model:POMDP

As illustrated in Fig. 1, the Base Station provides access to both M2M
and H2H UEs distributed under its coverage area. However, the base
station does not differentiate between the two types of UEs. The Base
Station can only know the number of contending UEs by the number
of preambles successfully received 𝑁𝑝𝑠𝑢 on each RAO. However, the
number of received preambles might differ from the number of sent
preambles due to collisions or transmission errors. Collisions occur
when two or more UEs transmit the same preamble in the same RAO.
Therefore, the Base Station cannot know the real number of contending
UEs. On the other hand, the Base Station can only communicate with
the UEs through SIB2 messages to update the 𝑇RAO and 𝑃ACB values.
Hence, we have a discrete-time system, synchronized with the constant
period of SIB2 messages, as it can be seen in Fig. 2. The state–space
 of the system is defined on these specific times and should account
for the accumulation of observations that occurred during each period.
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Therefore, in Fig. 2(a), the state at time 𝑛 is composed of the observa-
tions of 4 RAOs, while in Fig. 2(b), the state at time 𝑛 is composed of
the observations of 16 RAOs.

Each state 𝑠 that belongs to  is composed of 5 variables: 𝑠 =
(

𝑁𝑝𝑠𝑢, 𝐶𝑉𝑁𝑝𝑠𝑢
, 𝛥𝑁𝑝𝑠𝑢, 𝑃ACB, 𝑇RAO

)

. First, there is the mean number of
uccessfully received preambles among the RAOs available between
wo SIB2 messages, 𝑁𝑝𝑠𝑢. Therefore in Fig. 2(a), the mean will be

calculated between 4 observations, while in Fig. 2(b) the mean will
be calculated between 16 observations. These values are discretized so
𝑁𝑝𝑠𝑢 ∈ N. However, since there are only 𝑟 = 54 available preambles,
𝑁𝑝𝑠𝑢 ≤ 54. Due to the variations of received preambles that can occur
between two RAOs, we have included 𝐶𝑉𝑁𝑝𝑠𝑢

, which is the coefficient
of variation of the number of successfully received preambles among
the RAOs available between two SIB2 messages. These values are
discretized so, 𝐶𝑉𝑁𝑝𝑠𝑢

∈ {0, 0.2, 0.4, 0.6, 0.8}. In order to understand how
the traffic is changing between different SIB2 periods, we have included
𝛥𝑁𝑝𝑠𝑢, which represents the difference of 𝑁𝑝𝑠𝑢 between the current
𝑛) and the previous observation (𝑛 − 1). This value only represents
hree variations: If the difference is positive, that is if the mean traffic
s increasing, 𝛥𝑁𝑝𝑠𝑢=1. If the traffic is decreasing, 𝛥𝑁𝑝𝑠𝑢=2. If the

mean traffic remains constant, 𝛥𝑁𝑝𝑠𝑢=3. Finally, we include in the state
𝑠, the values of 𝑃ACB and 𝑇RAO, which directly affect the number of
contending UEs on the observed RAOs. As it was seen in Section 3,
there are 16 possible values for 𝑃ACB and 6 possible values for 𝑇RAO.

herefore, the state–space  is composed of 79 200 states. The action
et  is defined by the two control variables of the system, that is
ACB and 𝑇RAO. That is, each action 𝑎, represent a combination of
ACB and 𝑇RAO values that will affect the next SIB2 period. Therefore,
= {1, 2, 3,… , 96}.
Finally, we define the set of rewards  associated to each state

n . It is quite complex to define specific rewards for each of the
9 200 states. Therefore, in order to define the set of rewards , we
ave decided to focus on the impact that each of our control variables
ave on the performance of the system. First, we will focus on 𝑃ACB,
hich controls the ACB mechanism, and aims at reducing the number
f collisions on each RAO. According to [30], the Probability Mass
unction (PMF) of the number of successfully received preambles 𝑁𝑝𝑠𝑢
t the base station when there are 𝑁𝑝𝑡 UEs transmitting a preamble on a
iven RAO, and assuming that every preamble reaches the base station
s:

𝑛(𝑧) ≜ Pr(𝑧 ∣ 𝑛) =
𝑐max
∑

𝑐=0
𝑃𝑛(𝑧, 𝑐) (2)

eing

𝑛(𝑧, 𝑐) =
𝑟 − (𝑧 − 1 + 𝑐)

𝑟
𝑃𝑛−1(𝑧 − 1, 𝑐)

+ 𝑧 + 1
𝑟

𝑃𝑛−1(𝑧 + 1, 𝑐 − 1) + 𝑐
𝑟
𝑃𝑛−1(𝑧, 𝑐), (3)

where 𝑃0(0, 0) = 1, 𝑛 is the number of contending UEs in a RAO (i.e., the
UEs that transmit a preamble selected among the 𝑟 available preambles
with equal probability), 𝑧 is the number of preambles selected by
exactly one UE, 𝑐 is the number of collided preambles, and 𝑐max =
min{𝑟, ⌊𝑛∕2⌋}.

Following Eq. (2), we can obtain the number of received preambles
ith the highest probability for a given number of sent preambles, as

hown in Fig. 3. It can be seen that while the number of sent preambles
n a RAO is lower or equal to 10, it is more likely that the base
tation successfully receives as many preambles as were sent. However,
hen there are more than 10 preambles sent in a RAO, it is more

ikely to successfully receive less preambles than those that were sent.
ollisions cause this; that is, we are not considering other causes such
s transmission errors. Therefore, if we want to reduce the uncertainty
n the base station associated with collisions, the number of UEs that
ransmit should be equal or lower than 10. Although it is not possible
o guarantee this through ACB, we define our reward function in such
5

Table 2
Reward Function .
𝑃ACB 𝑇RAO 𝑁𝑝𝑠𝑢 𝐶𝑉𝑁𝑝𝑠𝑢

𝛥𝑁𝑝𝑠𝑢 𝑟

– Low – – – −100
– High – – – −100
Very High Medium Low < 0.4 1 20
Very High Medium Low < 0.4 2,3 80
Very High Medium Low >= 0.4 1 20
Very High Medium Low >= 0.4 2,3 40
Very High Medium Medium < 0.4 1 20
Very High Medium Medium < 0.4 2,3 60
Very High Medium Medium >= 0.4 2,3 20
Very High Medium High < 0.2 2 20
Very High Medium Very High < 0.2 1 −100
Very High Medium Very High < 0.2 2,3 −80
Very High Medium Very High >= 0.2 1 −100
Very High Medium Very High >= 0.2 2,3 −80
Medium Medium Medium < 0.4 1 40
Medium Medium Medium < 0.4 2 80
Medium Medium Medium < 0.4 3 60
Medium Medium Medium >= 0.4 1 40
Medium Medium Medium >= 0.4 2,3 60
Medium Medium High < 0.2 2 40
Medium Medium High < 0.2 3 20
Medium Medium High >= 0.2 2 20
Medium Medium Very High < 0.2 1 −60
Medium Medium Very High < 0.2 2,3 −40
Medium Medium Very High >= 0.2 1 −60
Medium Medium Very High >= 0.2 2,3 −40

a way that it promotes this behavior by penalizing the system every
time that 𝑁𝑝𝑠𝑢 > 10, that is, when it is evident that more than 10
UEs are contending for access. On the other hand, we want that the
system is able to reduce the delay, by creating more RAOs when the
traffic is high. Therefore, our reward function promotes this behavior
through an adequate value of 𝑇RAO while considering the current value
of 𝑃ACB.

The detailed reward function  is described in Table 2. We have
used values between [-100,100] in order to show more clearly the
differences in rewards. For a better understanding of the criteria used
to define the reward function, it is necessary to define ranges for 𝑃ACB,
𝑇RAO and 𝑁𝑝𝑠𝑢. In the case of 𝑃ACB, we have defined five ranges: very
low when 𝑃ACB < 0.3, low when 0.3 ≤ 𝑃ACB < 0.5, medium when
0.5 ≤ 𝑃ACB < 0.7, high when 0.7 ≤ 𝑃ACB < 1 and very high when 𝑃ACB = 1.
In the case of 𝑇RAO we have defined three ranges: low when 𝑇RAO < 3,
medium when 3 ≤ 𝑇RAO < 10 and high when 𝑇RAO >= 10. Finally, for
𝑁𝑝𝑠𝑢 we have defined four ranges: low when 𝑁𝑝𝑠𝑢 ≤ 3, medium when
< 𝑁𝑝𝑠𝑢 < 7, high when 7 ≤ 𝑁𝑝𝑠𝑢 ≤ 10 and very high when 𝑁𝑝𝑠𝑢 > 10.
lease notice that the ranges for 𝑁𝑝𝑠𝑢 were chosen according to the
xplanation above. The first observation that must be done about  is
hat those action-state combinations that do not appear in Table 2 have
eward 𝑟 = 0. On the other hand, all the action-states combinations
here 𝑇RAO is low or high are avoided, and have a reward 𝑟 = −100.

n the former case, this is done to avoid having too many RAOs, which
ight result in a waste of resources in the base station. In the latter

ase, this is done to avoid increasing the mean delay. A very high value
f 𝑃ACB is desirable when there is low traffic in order to accept UEs with
very low delay. Therefore, we reward this action when 𝑁𝑝𝑠𝑢 is low.

The amount of the reward depends on 𝐶𝑉𝑁𝑝𝑠𝑢
and 𝛥𝑁𝑝𝑠𝑢. The reward

rows when there is a small variation and when the traffic does not
row. When 𝑁𝑝𝑠𝑢 is medium we use the same criteria, but in this case

the rewards are smaller. If 𝑁𝑝𝑠𝑢 is high, then we only give a reward
when there is very little variation and the traffic is decreasing. On the
other hand, it is not convenient to accept all UEs when 𝑁𝑝𝑠𝑢 is very
igh, and therefore we assign negative values for 𝑟, based on 𝐶𝑉𝑁𝑝𝑠𝑢
nd 𝛥𝑁𝑝𝑠𝑢. Since we want that the system adapts to dynamic traffic
onditions, we have to set rewards when 𝑃ACB < 1. The objective of
educing 𝑃ACB is to maintain 𝑁𝑝𝑠𝑢 below 10, according to what was

explained earlier. Therefore, we consider that the medium range of 𝑃
ACB
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s adequate for that purpose. Since 𝑃ACB should not be lower than zero
hen 𝑁𝑝𝑠𝑢 is low, the reward remains zero in those cases. As 𝑁𝑝𝑠𝑢 grows

to medium, we assign rewards depending on 𝐶𝑉𝑁𝑝𝑠𝑢
and 𝛥𝑁𝑝𝑠𝑢. The

eward is higher if 𝐶𝑉𝑁𝑝𝑠𝑢
is low, and grows as 𝛥𝑁𝑝𝑠𝑢 shrinks. If 𝑁𝑝𝑠𝑢

rows to high, the same criteria is used, although the rewards are lower.
n the other hand, if 𝑁𝑝𝑠𝑢 is very high, then the assignment of 𝑃ACB has
ot been successful, and therefore we try to avoid those states.
.2. Delay-Aware Double Deep Q-learning implementation

Double Deep Q-Learning [31] (DDQL), aims at optimizing an ob-
ective function while representing the action values 𝑄(𝑠, 𝑎) through

neural network [32]. Therefore, this solution replaces the Q tables
sed in traditional Q-Learning [33] with a neural network, which
llows representing continuous state spaces or action sets, but more
mportantly, it can assign action values to previously unvisited states.
n each iteration 𝑖 of DDQL, the system aims to minimize a loss

unction defined by:

𝑖 =
1
2
(

𝑟 + 𝛾 𝑄(𝑠′,max
𝑎′∈

[

𝑄(𝑠′, 𝑎′, 𝜃𝑖)
]

, 𝜃−𝑖 ) −𝑄(𝑠, 𝑎, 𝜃𝑖)
)2, (4)

where 𝑟 is the reward associated to the action 𝑎 taken in state 𝑠, 𝛾
is the discount factor, which controls the impact of future rewards,
𝑄(𝑠′, 𝑎′, 𝜃−𝑖 ) represents the Q value for a given action 𝑎′, state 𝑠′ and
eural network defined by the set 𝜃−𝑖 , and 𝑄(𝑠, 𝑎, 𝜃𝑖) represents the Q
alue for a given action 𝑎, taken in state 𝑠 and a neural network defined
y the set 𝜃𝑖. The sets 𝜃−𝑖 and 𝜃𝑖 represent the weights that define
ach neural network for iteration 𝑖. This error function is minimized
n each iteration by modifying the weights 𝜃𝑖 (associated with the
rediction). Please notice that this error minimization function depends
n the definition of , and therefore it is expected that in the long
erm the impact of  grows. As it was shown, DDQL uses two different
eural networks aiming at reducing the inherent overestimations that
esult from calculating the future rewards of taking action 𝑎 on a state
derived from the 𝑚𝑎𝑥 operator seen in Eq. (4). This overestimation
ay result in finding a local optimum, or in divergence [31]. In DDQL,

ne neural network (𝜃−) is used to evaluate the current policy, while
he other is used to obtain the action that maximizes future rewards
𝜃). Therefore, the target for DDQL is represented by:
𝐷𝐷𝑄𝐿 = 𝑟 + 𝛾 𝑄(𝑠′,max

𝑎′∈

[

𝑄(𝑠′, 𝑎′, 𝜃)
]

, 𝜃−), (5)

where the roles of each neural network are interchanged every 𝜏 itera-
6

tions; also, experience replay is implemented [34]. The purpose of this A
technique is to break the dependency of consecutive experiences of the
system with the environment by saving them on a buffer (of size 𝐸𝑅)
and then sampling them randomly for training. In our implementation,
each neural network consists of a Multi-layer Perceptron with an input
layer with five neurons (one for each variable of the state–space), 𝑁𝐿
hidden layers of 5 neurons, and an output layer of 96 neurons (one for
each action).

Algorithm 2 describes the Delay-Aware DDQL mechanism. In every
RAO, the BS saves the 𝑁𝑝𝑠𝑢 value, as shown in line 17. When a SIB2
message is expected to be sent immediately after the RAO, it is possible
to calculate the state variables and obtain 𝑠, as it is shown in line 3.
Then, it is possible to define what will be the next action that the system
will take, that is, the 𝑃ACB and 𝑇RAO values that will be sent to the UEs
in the following SIB2. This action depends on the parameter 𝜖, which
s the exploration probability. Following a greedy policy, the system
ill always choose the action that maximizes the expected immediate

eward, but it is possible to choose a random one to explore the state–
pace. In line 5, the system calculates the reward 𝑟 that results from the
alues obtained in line 3, and all the information is then saved in the
uffer of size 𝑁𝐿. If the buffer has reached its capacity, then it is time
or training the system. The training will be done in batches of size 𝜏,
nd will use two neural networks with weights 𝜃 and 𝜃−, respectively.
or each observation, the weights 𝜃 will be trained to minimize the
oss function per iteration, as shown in Eq. (4). Every time the batch
f size 𝜏 is finished, the weights 𝜃− are updated to 𝜃. Please recall that
he weights 𝜃− are used to calculate the expected Q value, as shown in
q. (5).

. Experimentation

We consider a single base station that provides coverage for UEs of
2M and H2H communications simultaneously. We consider that M2M

raffic follows the specifications [35], where it is stated that in high
oad scenarios, M2M traffic can show a bursty behavior associated with
he simultaneous activation of, e.g., alarms, or event-driven wireless
ensor networks. This behavior is represented by a Beta distribution
3,4) for 10 s. The intensity for a high load scenario is set in 30 000
2M UEs. In the case of H2H traffic, we use traces from the Telco
elecom Italia, which provided the data as part of a ‘‘Big Data Chal-

enge’’ in 2014. Since this data is aggregated for periods of 10 min, we
onsider that H2H traffic has a constant intensity during this period.

lso, because this data does not provide units, we use the observation
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Algorithm 2: Delay-Aware Double Deep Q-Learning Mechanism.
1: while there are new RAOs available do
2: if a SIB2 will be sent immediately after RAO then
3: calculate 𝑁psu, 𝐶𝑉𝑁psu

, 𝛥𝑁psu, and state 𝑠
4: select action 𝑎 (𝑃𝑎𝑐𝑏 and 𝑇𝑅𝐴𝑂) according to 𝜖 policy
5: calculate reward 𝑟
6: save 𝑎,𝑠,𝑟,𝑠′ in buffer
7: if buffer of size 𝑁𝐿 is full then
8: randomize buffer order
9: while there is data left in buffer do
0: take subset of size 𝜏 data from buffer
1: while there is data in 𝜏 subset do
2: for data in 𝜏 train 𝜃 to minimize the loss function in Eq.

Eq. (4)
3: end while
4: clean subset 𝜏 data from buffer
5: update the neural networks: 𝜃−=𝜃
6: end while
7: end if
8: else
9: save 𝑁psu
0: end if
1: end while

provided in [36], where it is stated that the maximum load that can
be provided by a base station is 55 EPS Radio Access Bearer setups
per second. Based on this value, we normalize the H2H traffic from
the traces. Unless otherwise stated, the values of the system are as
appear in Table 3. In this work, we evaluate the performance of the
system through different KPIs: Mean Delay 𝐸[𝐷], Mean Number of
preamble transmissions 𝐸[𝑘], and Probability of successful access 𝑃𝑠.
These KPIs can be obtained individually for each type of UE, and have
been evaluated in previous studies.

It is essential to make a distinction between the training and eval-
uation of the system. For training our Delay-Aware DDQL solution, we
use 144 episodes, each one associated with the data obtained from
the traces for H2H UEs for one day, which are aggregated in periods
of 10 min. Therefore, on each of these episodes, the H2H traffic is
constant, and the traces give its intensity. We have picked the trace
obtained on November 1 from the most active cell on that day. In
the case of M2M traffic, we use on each episode a beta distribution
(3,4) with 30 000 UEs. The parameter 𝜖 is set to 1 at the beginning
of each episode, and then it is reduced linearly to 0. On the other
hand, in the evaluation phase, we use a single episode where H2H
traffic is constant and has a maximum intensity of 55 user arrivals per
second. For M2M traffic, we also use a beta distribution (3,4), although
the intensity changes according to the experiment. Please notice that
although training is done with 30 000 M2M UEs, the experiments can
be done with different values: 1000, 10 000, 20 000, 30 000 and 40 000
M2M UEs, that is, the system does not need to be retrained for each
intensity value. For the evaluation of the Delay-Aware DDQL solution,
the parameter 𝜖 is set to 0, that is, we use the best policy. In every
result shown, we perform 100 independent experiments.

In Figs. 4 and 5, the variation of 𝑃𝐴𝐶𝐵 and 𝑇𝑅𝐴𝑂 can be seen for
our Delay-Aware DDQL mechanism when there are 30 000 M2M UEs
and the Backoff Indicator is set to 120 ms. It can be seen that at
the beginning of the simulation, as M2M UEs begin to transmit, 𝑃𝐴𝐶𝐵
suffers a significant reduction that sets its value close to 0, and then
again to 1. This behavior occurs because when there are no UEs, 𝑇𝑅𝐴𝑂 is
20, and when suddenly UEs begin to transmit, the system rapidly reacts
to adapt to this new traffic conditions. After this, the system maintains
𝑇𝑅𝐴𝑂 between 3 and 5. It should be noted that part of the dynamic
adaptation of 𝑃𝐴𝐶𝐵 and 𝑇𝑅𝐴𝑂 consists of simultaneously reducing 𝑇𝑅𝐴𝑂
with 𝑃𝐴𝐶𝐵 in order to reduce collisions. In Fig. 5, it can be seen that
after the RAO number 5000, there is a substantial reduction of 𝑇𝑅𝐴𝑂.
7

This occurs not because the value is set to 0, but because whenever a
Table 3
Default System Configuration for Evaluation Purposes.

Parameter Setting

PRACH Configuration Index prach-ConfigIndex = 6 [26]
Periodicity of RAOs 5 ms [26]
Subframe length 1 ms [26]
Available preambles for
contention-based random access 𝑟 = 54 [26]

Maximum number of preamble
transmissions preambleTransMax = 10 [26]
RAR window size 𝑊RAR = 5 subframes [26]
Maximum number of uplink
grants per subframe 𝑁RAR = 3 [26]
Maximum number of uplink
grants per RAR window 𝑁𝑈𝐿 = 𝑊RAR ×𝑁RAR = 15 [26]
Preamble detection probability 𝑃𝑑 = 1 − 1

𝑒𝑘
[35]

for the 𝑘th preamble transmission
Backoff Indicator BI = 20 ms [26]
Re-transmission probability for 0.1 [26]Msg3 and Msg4
Maximum number of Msg3 and
Msg4 transmissions 5 [26]

Preamble processing delay 2 subframes [28]
Uplink grant processing delay 5 subframes [28]
Connection request processing
delay 4 subframes [28]

Round-trip time (RTT) of Msg3 8 subframes [28]
RTT of Msg4 5 subframes [28]
Discount factor 𝛾 = 0.7 [3]
Num. hidden layers (feedforward
neural network) 𝑁𝐿 = 10 [3]

Update period (events) of the
second neural network 𝜏 = 100 [3]

Buffer size for experience replay 𝐸𝑅 = 500 [3]

simulation ends as all the UEs are served, the value for the rest of RAOs
is set to zero by default. Therefore, the normal behavior when the load
goes back to low values is to set 𝑇𝑅𝐴𝑂 to 5.

In Fig. 6, the performance of the Delay-Aware DDQL mechanism
can be observed when there are 30 000 M2M contending UEs. It can
be seen that the system maintains the number of successful accesses
below 10, according to the definition of our reward function. In fact,
it is kept most of the time between 7 and 8, which is sufficient to keep
the collision number below 6. Let us recall that the system can control
only the number of UEs contending for the first time, and therefore we
can see that the total number of transmitted preambles reaches almost
18.

In Table 4, we compare three solutions for the primary three KPIs.
The first solution is our previously presented DDQL mechanism [3] that
only adapts 𝑃𝐴𝐶𝐵 . It can be seen that it shows the worst performance
in terms of access delay, although it uses the lowest value of Backoff
Indicator (BI = 20 ms) that guarantees the lowest mean access delay.
The second solution is our proposed Delay-Aware DDQL mechanism,
evaluated with a BI = 120 ms. It can be seen that the total delay
is considerably reduced (more than 2s) due to the variation of 𝑇𝑅𝐴𝑂.
The last solution was the dynamic resource allocation (DRA) proposed
by Duan et al. [13], and it also dynamically modifies 𝑃𝐴𝐶𝐵 and the
umber of available preambles for MTC UEs. In order to compare this
lgorithm accurately, we increased the number of maximum retries in
he system from 10 to 150. By doing this, and increasing the BI value to
60 ms, it is possible to reach a 100% probability of successful access.
t can be seen that the mean delay is close to the one obtained by our
resented solution, although the mean number of transmissions is a
ot higher, which is detrimental for the energy consumption of MTC
evices. The proposed Delay-Aware mechanism can maintain the mean
umber of transmissions below 2, although it is moderately higher than
ur previous DDQL mechanism. This is expected since, for the DDQL
nd Delay-Aware schemes, the maximum number of retries follows
he standard (i.e., 10 preamble retransmissions), and therefore a mean
alue as the one shown by [13] would result in a meager value of 𝑃 .
𝑠
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Fig. 4. 𝑃𝐴𝐶𝐵 variation for Delay Aware DDQL mechanism with 30 000 M2M users.

Fig. 5. 𝑇𝑅𝐴𝑂 variation for Delay Aware DDQL mechanism with 30 000 M2M users.

Fig. 6. Preamble transmissions for Delay-Aware DDQL mechanism with 30 000 M2M users.
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s
U

Fig. 7. Mean Access Delay for Delay Aware DDQL mechanism vs. Duan et al. [13] for various M2M loads.
Fig. 8. Probability of Successful Access for all users: DDQL mechanism vs. Duan et al. [13] for various M2M loads.
Table 4
Performance of Access Control Mechanisms for 30 000 M2M UEs.

KPI DDQL Delay Aware DDQL Duan et al. [13]

𝐸(𝐷)𝑇 𝑜𝑡𝑎𝑙 (s) 5.87 3.43 3.66
𝐸(𝐷)𝑀2𝑀 (s) 5.96 3.47 3.69
𝐸(𝐷)𝐻2𝐻 (s) 2.98 1.65 2.18

𝐸(𝐾)𝑇 𝑜𝑡𝑎𝑙 1.77 1.89 8.38
𝐸(𝐾)𝑀2𝑀 1.77 1.90 8.45
𝐸(𝐾)𝐻2𝐻 1.63 1.72 5.36

𝑃𝑠𝑎−𝑇 𝑜𝑡𝑎𝑙 (%) 100 100 100
𝑃𝑠𝑎−𝑀2𝑀 (%) 100 100 100
𝑃𝑠𝑎−𝐻2𝐻 (%) 100 100 100

In Fig. 7, we compare our proposed solution against the DRA
olution proposed in [13] as the M2M load varies from 1000 to 40 000
Es. For the Delay-Aware DDQL mechanism, we use a BI = 120 ms

and maintain the maximum number of retries is 10, as it is proposed
in the 3GPP standards. For the DRA solution, we use a BI = 960 ms
9

and increase the maximum number of retries to 150. These changes
on the DRA solution are done in order to do a fair comparison that
guarantees that the acceptance rate is 100% for 30 000 UEs. It can be
seen that our proposed solution can maintain a lower delay than the
DRA mechanism for every value of M2M UEs. Also, it can be seen that
when there are only 1000 M2M UEs, the system can adapt in order
to reduce the mean access delay to 56 ms. This value is increased to
5 s when there are 40 000 M2M UEs, less than the mean access delay
for our previous DDQL solution with 30 000 M2M UEs. The ability of
the system to adapt to different loads shows that it is not necessary to
retrain the system as the traffic changes. One interesting aspect is that
the DRA solution seems to be reaching the performance of our proposed
Delay-Aware DDQL mechanism as the number of UEs grows. However,
this behavior is a result of our effort to pick the parameters for DRA that
would guarantee full access with a load of 30 000 M2M UEs. Therefore,
as the load of M2M is farther from 30 000 UEs, the performance of that
algorithm degrades, as can be seen when we have 1000 UEs, or 40 000
UEs. This tendency would continue if we tried with 50 000 UEs.

In Fig. 8, we compare the 𝑃𝑠 for all UEs for the two previously
mentioned mechanisms as the M2M load varies from 1000 to 40 000
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Fig. 9. Mean number of transmissions for all users: DDQL mechanism vs. Duan et al. [13] for various M2M loads.
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Es. It can be seen that the DRA mechanism can maintain 𝑃𝑠 = 100%.
his occurs because we have increased the maximum number of retries
o 150, which is 15 times more than what is proposed in the standards.
f we reduce this value, the performance of this mechanism will suffer
onsiderably. On the other hand, our proposed mechanism is not able
o maintain 𝑃𝑠 = 100% for the full range of M2M values tested. In
act, when there are 40 000 M2M UEs, 𝑃𝑠 = 99.99%, that is, we have a
inimal error of around 0.01%. This is an acceptable value considering

hat we have increased the load 30% over the maximum load proposed
n the standards.

In Fig. 9, we compare the mean number of transmissions for all
Es between our proposed Delay-Aware scheme and the DRA solution
s the M2M load varies from 1000 to 40 000 UEs. It can be seen that
ur solution maintains E[K] below 2, even when there are 40 000 UEs.
hen there are 1000 UEs, E[K]=1.44, and when there are 40 000 UEs,

his value increases to 1.96. On the other hand, for the DRA mechanism,
his value goes from 2.26 when there are 1000 M2M UEs to 26.89 when
here are 40 000 UEs. Having such a high number of transmissions
an reduce the lifetime of IoT devices considerably, and therefore can
irectly affect the long-term performance of the applications.

. Conclusion

In this work, we proposed a Delay-Aware Double Deep Q-Learning
echanism for access control that dynamically adapts in order to allow

uccessful mMTC access while reducing the mean access delay. This
echanism can coordinate the modification of two parameters (𝑃𝐴𝐶𝐵

nd 𝑇𝑅𝐴𝑂) under different traffic conditions. We have evaluated our
ystem when two types of traffic coexist: M2M and H2H communi-
ations. The former was modeled as bursty traffic according to the
pecifications. The latter was defined following traces from a Telco. Our
roposed scheme shows a significant improvement over our previous
ouble Deep Q-Learning scheme in terms of delay, while it slightly

ncreases the mean number of transmissions. Also, it performs better
han a previously well-known dynamic solution. We have validated its
erformance under different traffic scenarios, showing its ability to per-
orm in real conditions without retraining. The approach proposed in
his work shows that it is possible to control several parameters through
nline tools based in reinforcement learning in order to address multi-
bjective problems in wireless networks, which could be used for other
oS problems. As future work, we intend to apply similar techniques to

ulfill more stringent requirements in wireless communications through
he orchestration of several parameters.
10
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