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A B S T R A C T

This paper aims to design an intelligent buyer to learn how to decide in an incomplete information multi-
attribute bilateral simultaneous negotiation. The buyer does not know the negotiation strategy of the seller and
only have access to the historical data of the previous negotiations. Using the historical data and clustering
method, the type of seller is identified online during the negotiation. Then, the deep reinforcement learning
method is utilized to support the buyer to learn its optimal decision. In the complete information case, we prove
that the negotiation admits a unique Nash bargaining solution with possibly asymmetric negotiation powers. In
comprehensive simulation studies, the efficiency of the proposed learning agent is evaluated in different sce-
narios and we show that the learning negotiation with incomplete information is converged to a Pareto optimal
solution. Then, using the concept of the Nash bargaining solution, the negotiation power of the buyer is assessed
in negotiation.

1. Introduction

In bilateral contracts, multi-attribute negotiation is a common
practice to reach an agreement (Hao and Leung, 2012), not only due to
the fact that two parties usually have to negotiate on multiple issues of
a trading good (Yu et al., 2015), but also to take the advantage of
reaching possibly to a “win–win” solution (Lai et al., 2008). For ex-
ample, in the navy problem (Lai et al., 2004), commands and sailors
usually have to negotiate multi issues, like payment rate, projection
rotation date, length of service training. In bilateral contracts of energy
in the electricity market (Kebriaei et al., 2009), loads and generators
usually have to negotiate the quantity and price of energy. Also in the
company’s contract (Lai et al., 2008), an employer and a union usually
need to negotiate wage level, health care and vacations.

The essence of bilateral negotiation is the exchange of proposals
(Hao and Leung, 2012). Both the buyer and seller submit their offers
and counteroffers in order to converge to a mutually acceptable
agreement. Research studies on bilateral negotiation have mainly em-
ploy tools from Game Theory (Lai et al., 2006; Chen et al., 2015; Lin
et al., 2004), and Artificial Intelligence (AI) (Camerer et al., 2017; Zhan
et al., 2017; Chen et al., 2017; Francisco et al., 2019; Eshragh et al.,
2019; Buffett and Spencer, 2007). These approaches analyze the pos-
sible optimal solutions of the negotiation (Game Theory) or design an
intelligent agent that learns to maximize its profit during the

negotiation process (AI).
In many researches in the AI field like (Hajimiri et al., 2014; Baek

et al., 2007; S. Jamali, 2012; li Huang et al., 2008), only single attribute
bilateral negotiation is studied, while in many applications, agents need
to go through multi-attribute negotiation. Furthermore, the single at-
tribute negotiation naturally results in a ’win-lose’ situation. As a result,
in recent years, studies have focused more and more on multi-attribute
negotiation (Zhan et al., 2018; Kersten et al., 2013; Kolomvatsos et al.,
2016). Moreover, many researchers assumed that the opponent follows
a predefined strategy (e.g. time-dependent) during the negotiation
while depending on the negotiation’s condition, the opponent’s strategy
may change during the negotiation. This research aims to design a
buyer’s representative learning agent to deal with the bilateral nego-
tiation over the price and the quantity. An agent can observe the price
and the quantity offered by its opponent but it does not know the op-
ponent’s payoff function and conceding strategy. In this work, the buyer
learns how to negotiate with the seller to maximize its long-term ex-
pected payoff using Deep Reinforcement Learning (DRL) approach and
then, the results are assessed through Game Theory and the concept of
Nash bargaining solution with asymmetric negotiation power. We
propose a state-action-reward framework that is learned by Deep Auto-
encoder via the Actor-Critic algorithm (Lange and Riedmiller, 2010; de
Bruin et al., 2018; Maldonado-Ramirez et al., 2018) so that the buyer
agent learns how to negotiate with the seller, without having
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information about the model of seller. The deep auto-encoder used in
this approach helps the agent to learn a suitable low dimensional state
space which is reduced from a high dimensional input space (Hinton
and Salakhutdinov, 2006). Moreover, Actor-Critic as the RL method
helps the agent to learn in a continuous environment and also avoids
the curse of dimensionality (Van Hasselt and Wiering, 2007; Lillicrap
et al., 2015).

Since the buyer has no information about the seller’s behavior, in
this paper; a K-means clustering is designed to help the buyer to re-
cognize the type of opponent from its historical offers. To speed up the
learning process, we have also used a mediator to exclude the un-
reasonable offers from the feasible set of the negotiation offers by the
proposed algorithm. Unreasonable offers are those less beneficial for
both of the agents. In this paper, the mediator does not interfere with
the agents’ offers and it does not require any information about the
agents’ strategies. To analyze the results of the learning process, we
obtain the Pareto optimal solutions of the negotiation with complete
information using the Nash bargaining solution with asymmetric bar-
gaining power. The existence and the uniqueness of the solution to our
problem are also proven. Then, by comparing the agreement resulted
from the DRL method and the Nash bargaining solution with different
bargaining powers, we can verify that the DRL method maintains the
Pareto optimality while the bargaining power of the agents can be as-
sessed by this comparison.

The main contributions of this paper are as follows:

• The opponent’s type is identified online adaptively by using K-
means clustering according to the seller’s offers during the nego-
tiation process.
• The buyer agent is designed to learn how to concede using a DRL
method in a continuous environment, by extracting effective ele-
ments as a state from high-dimensional input via deep auto-encoder,
without having information about the model of the seller agent.
• In order to increase the learning speed, a mediator-based algorithm
is proposed to exclude the unreasonable offers (less beneficial offers
for both of the agents) from the feasible set of the negotiation offers.
The mediator does not influence the agents’ offering strategies nor
enquire any information about the agents’ payoff functions.
• The existence and the uniqueness of the Nash bargaining solutions
for the proposed bilateral negotiation have been proven.
• The Pareto efficiency of the learning mechanism and the bargaining
power of the negotiating agents are examined by comparing the
agreement resulted from the DRL method and that of the Nash
bargaining solution with asymmetric bargaining powers.

The rest of the paper is organized as follows: In Section 2, we review
the literature about negotiation. Preliminaries needed in this paper are
given in Section 3. Section 4 provides the problem statement and pro-
poses the assumed model. In Section 5 Nash bargaining solution with
complete information is described. Automated negotiation with in-
complete information is described in Section 6. Learning in negotiation
is studied in Section 7. Section 8 includes a case study, the simulation
study of negotiation with the proposed deep actor-critic agent and their
analysis. The conclusion is presented in the final section.

2. Literature review

There are three types of multi-attribute negotiation; separate, si-
multaneous and sequential/hierarchical negotiation (Lai et al., 2004).
Separate negotiation means that agents negotiate each attribute, in-
dependently. While in simultaneous negotiation, the agents negotiate a
complete package on all the attributes, concurrently. In the sequential/
hierarchical negotiation, agents negotiate “attribute-by-attribute”.

Separate negotiation is like multiple single attribute negotiation. So,
it is not possible to achieve a win–win solution in this type of nego-
tiation. On the other hand, in sequential negotiation, an agent needs to

determined its desired order of attributes. Therefore, if the agents have
different order of attributes, we cannot use this type of negotiation
(Gerding et al., 2000; Fershtman, 2000). In addition, if the attributes
are interdependent, it would be probable that we cannot either prior-
itize the attributes or prioritization of attributes leads to sub-optimal
solution. Nevertheless, in such cases, using simultaneous multi attribute
negotiation can lead to a Pareto-optimal win–win solution (Lai et al.,
2004). The problem under study in this paper is the simultaneous multi-
attribute negotiation.

The study on simultaneous multi-attribute negotiation is mainly
conducted by cooperative multi-attribute negotiation in Game Theory.
Cooperative Game Theory aims to specify the number of fair axioms in
which agreement on those axioms naturally leads to a fair optimal so-
lution. Among different axioms, Pareto optimality is the main condition
that guarantees the bargaining solution lay on the Pareto frontier. The
Nash bargaining solution is the most popular one (Nash, 1950) which is
generalized also to the asymmetric Nash bargaining solution depending
on the bargaining powers of the agents (Gerding et al., 2000). Kalai and
Smorodinsky also proposed some modifications on the Nash bargaining
solution (Kalai and Smorodinsky, 1975).

In practice, a negotiator can observe the offers proposed by the
opponent, but it doesn’t have access to the information of payoff
function and other parameters of the opponent, like reservation payoff
or negotiation deadline. Negotiations with incomplete information in
the Game Theory field are divided into two broad categories: mediated
negotiation (Chen et al., 2014; Lin et al., 2004; Ehtamo et al., 1999;
Klein and Faratin, 2003) and non-mediated negotiation (Lai et al.,
2008). Sycara in (Lai et al., 2006) and Ehtamo in Ehtamo et al. (1999)
have considered a mediator into the negotiation procedure to help the
agents to reach the Pareto optimal solution with incomplete informa-
tion. In this method, a mediator generates constraints in each step of
negotiation and asks agents to propose an offer under those constraints.
Although the Pareto optimality is achieved, however, due to the in-
fluence of the mediator on the agent’s offers, the agents cannot make a
decision independently based on their own negotiation strategy. Klein
and Faratin (2003) propose a more tractable and decentralized med-
iating approach for binary valued but complex negotiations where the
mediator generates an offer in each step and proposes it to both of the
agents. The agents then decide whether to accept the offer based on
their own strategies. Two types of negotiation strategies are proposed
and the equilibrium outcomes are examined as well as the system ef-
ficiency. In the non-mediated negotiation, Sycara in Lai et al. (2008)
suggests that agents propose an offer on their indifferent curve, which
has the shortest distance to the offer made by the opponent in the
previous step. Sycara verifies that the result obtained by this method is
close to Pareto frontier but not exactly on the Pareto frontier. In this
work, the conceding behavior of both agents is modeled by the fixed
time-dependent strategy.

Research on Artificial Intelligence has mainly focused on two areas:
learning an opponent model and learning the negotiation method. In
the literature, Bayesian-learning (Eshragh et al., 2019; Buffett and
Spencer, 2007), non-linear regression (Yu et al., 2013),and neural
network (Lee et al., 2009) have been used to learn different opponent
attribute like acceptance strategy, deadline, preference profile and
bidding strategy (Baarslag et al., 2016). In learning the negotiation
method, Sycara (1991), Theory et al. (1990) has presented a plausible
approach in the negotiation where the agents make their offer based on
the similarity of the current negotiation to previous negotiations. In
Faratin et al. (2002) Faratin has proposed a trade-off strategy to in-
crease the chance of reaching an agreement without decreasing the
payoff. In this method, agents have fuzzy criteria to approximate the
preference structure of the other agents. In Carbonneau et al. (2008), an
Artificial Neural Network (ANN) is constructed with three layers for
predicting the opponent’s offers during the negotiation process. The
network exploits information from offers made by agents in prior ne-
gotiations to predict future offers. In 2017, Zhan et al. (2017) designed
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a fuzzy algorithm to update the agents’ payoff in each negotiation
round. The paper shows how different features like regret, risk, and
patience influence on agents’ payoff. Further to the above AI studies,
Reinforcement learning (RL) has become an important part of AI that
has been applied to the negotiation problem in recent years (Hajimiri
et al., 2014; Chen et al., 2014; Takadama, 2008). Takadama (2008)
studied the agent behavior in a single state negotiation model, where
only the opponent’s previous proposal was considered as the agent’s
state in the Q-learning method. In Lao and Zhong (2010) Lao and Zhong
proposed another version of the Q-learning method for the negotiation.
The main promotion of Lao’s paper is considering two parameters to
define the agent’s state vector at each step of the negotiation. The first
parameter was a distance between the last offers of the agents and the
second parameter was the current time in the negotiation. Since the
environment is continuous, using discrete methods would increase the
number of states and make convergence of the algorithm difficult. li
Huang et al. (2008) proposed a Temporal Different learning (TD)
method in the negotiation. They used Neural Network (N.N) as a
function to approximate Q-values. Hajimiri et al. (2014) proposed a
Fuzzy-Sarsa Learning (FSL) method for a single attribute negotiation. In
this method, different parameters can be used to define the agent’s state
vector without the threat of the curse of dimensionality. A distance
between the last offer of the agents and the reservation price and time
are three parameters those define the state vector.

3. Preliminaries

3.1. Deep reinforcement learning

RL is a semi-supervised learning method to enable the agent to learn
its optimal decision by interacting with the environment. The RL makes
realistic assumptions about the information available to the agent
where an agent does not have any information about the payoff func-
tion or the parameters of the opponent (Sutton and Barto, 1998). The
agent may only have some sensory information from the previous
rounds of the negotiations. The RL agent learns its optimal action in
each state, by moving from random decision making to greedy one,
while receiving reward and punishment from the environment in dif-
ferent states, and updating the value of each state-action pairs after
each decision making (Sutton and Barto, 1998).

The advent of deep learning has had a significant impact on RL due
to the property of finding compact low-dimensional representations of
high-dimensional data. This property enables DRL to face with decision-
making problems that were previously intractable, i.e., the curse of
dimensionality in state and action spaces (Bengio et al., Aug 2013).
Solving DRL tasks is usually divided into two steps. The first is, mapping
high-dimensional input data into a low-dimensional representation
(which here, our focus is using the unsupervised learning methods of
deep architectures). The second is, designing an agent to learn how to
propose an offer to get the most payoff. These two steps are depicted in
Fig. 1 and explained in more detail below.

3.1.1. Deep auto-encoder
To be able to learn properly, the RL agent needs a state vector as

input that sufficiently includes information about the output, and yet, it
should be minimal in size. A possible solution is to find a transformation
that turns the high dimensional input data to a low dimensional re-
presentation that encapsulates all the necessary details and feeds it as
the RL input. In this paper, a “deep auto-encoder” was proposed as a
tool to find the transformation between input and a state of a reason-
able size, so that the RL system would be able to learn the system in a
reasonable time (Hinton and Salakhutdinov, 2006). A deep auto-en-
coder can be defined as a deep neural network capable of learning ef-
ficient data coding in an unsupervised way (Bengio et al., 2007). A deep
auto-encoder consists of two main parts, a deep encoder and a deep
decoder, which can be defined as the following mapping function:

=f g x fog x, argmin ( )
f g,

2

(1)

where x is the input feature vector, g R R: n m is the encoding function
that maps the input vector to its encoded representation and
f R R: m n is the decoding function that maps the encoded re-
presentation to a reconstruction of the input vector. n is the dimension
of the input vector and m is the dimension of encoded representation of
the input.

3.1.2. Actor-critic
The actor-critic method is one of the continuous RL methods that is

base on a temporal difference learning. This method consists of two
neural networks, actor and critic (Barto et al., 1983). The actor network
is responsible for selecting the action according to the current policy,
which is the decision mechanism that chooses an action from the state.
The critic network receives the reinforcement feedback and comparing
it with its estimation of the feedback, and then it updates the para-
meters of itself and actor network to minimize the error. The overview
of the actor-critic method is depicted in Fig. 2.

Critic network assigns a value to each state by a neural network,
which is formulation in Eq. 2:

=
=

V s w s( ) ( )
i

h

i i
1 (2)

where wi is the weight of the network and s( )i is the Radial basis
function (RBF). Eq. 3 shows the RBF.

=s
s c

( ) exp
2j

j

j

2

2
(3)

where cj and j are the mean and the standard deviation of RBF.
The actor network employs a neural network as shown in Eq. 4 to

evaluate the probability of selection of action in a particular state.

=
=

p s v s( ) ( )
i

h

i i
1 (4)

where vi is the weight of the network. In each state, the critic network
calculates the error according to Eq. 5:

Fig. 1. Overview of proposed DRL method.
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= + +r V s V s( ) ( )k k k1 (5)

and then updates the parameters in both actor and critic networks to
minimize the error.

3.2. Nash bargaining solution

In cooperative bargaining, the agents are supposed to have access to
all joint feasible payoffs and the solution of bargaining is obtained by
some rational axioms which are called axiomatic solution. The main
feature of the cooperative bargaining solution which is common in
different axiomatic methods is Pareto optimality. The Pareto optimal
solution is the point that none of the agents can be made better off
without making at least one agent worse off. The all of these Pareto
optimal points create a boundary which is called Pareto frontier. The
Nash bargaining solution is a well-known axiomatic solution to the
bargaining that satisfies the following axioms (Nash, 1950).

1. Pareto efficiency: the agreement will represent a situation that none
of the agents can be made better off without decreasing the payoff of
at least one agent.

2. Summitry: the payoff should not discriminate between the indis-
tinguishable agents.

3. Invariant to affine transformation: An affine transformation of the
payoff and disagreement point does not change the shape of the
solution although it changes the numerical value of the solution

4. Independent of irrelevant alternative: if s is Nash bargaining solu-
tion for bargaining set x then for any subset of x like y y x( ) that
contains s, s is still a Nash bargaining solution.

Based on Nash (1950), when the payoff set of the agents is convex
and closed, the Nash bargaining solution v v( , )1 2 can be obtained by
solving the following optimization problem.

=v v v d v d subjectto v v U( , ) argmax ( ). ( ) ( , )
v v

1 2
,

1 1 2 2 1 2
1 2 (6)

where d1 and d2 are the disagreement payoff pair and U is the payoff set
of the agents. In Binmore et al. (1986), Binmore demonstrates that
different factors like the asymmetry in the agent’s payoffs, different
treat points, different beliefs about the environment and different bar-
gaining procedures, cause an asymmetry in the bargaining procedure.
Therefore, the asymmetric version of the Nash bargaining solution can
be characterized by the pair of payoff v v( , )1 2 that solve the following
problem.

=v v v d v d subjectto v v U( , ) argmax ( ) . ( ) ( , )
v v

1 2
,

1 1 2 2
1

1 2
1 2 (7)

where represents the bargaining power of agents.

4. Problem statement

We consider a two attribute bilateral negotiation with a seller and a
buyer as the negotiator and the price and the quantity as the attributes
of trading goods, respectively. The negotiation procedure is according
to the general alternating-offer negotiation protocol (Rubinstein, 1982).

In the alternating-offer protocol, the buyer (proposer) suggests an
offer to the seller, by specifying its desired values for each attribute.
Then, the seller (responder) reacts to that offer by either accepting or
rejecting the buyer’s proposal. If the responder accepts the offer, the
negotiation comes to an end; otherwise, the agents exchange their roles
and the seller proposes a counter-offer in the next step of negotiation.
This process continues until an agreement occurs or the negotiation
deadline is met for an agent.

Accepting or rejecting a proposal, and also making an offer/counter-
offer is decided based on the payoff functions of the agents. For a buyer
and a seller, we can generically model the payoff functions, respectively
as follows:

=payoff p q u q p q( , ) ( ) .b (8)

=payoff p q p q c q( , ) . ( )s (9)

where p is the price and q is the quantity of the trading good that
=q q q[ , ]min max and =p p p[ , ]min max . u q( ) is the utility function

of the buyer and c q( ) is the cost function of the seller which u q( ) is
concave, c q( ) is convex and both of them are positive.

In our methodology, first, we perform a thorough theoretical ana-
lysis of the negotiation with complete information, which gives the
ideal results for the more complex incomplete information case. To this
aim, we derive the Nash bargaining solutions of the proposed bar-
gaining model with asymmetric negotiation powers. In addition, the
existence and uniqueness of the solution have been proven. In the next
step, assuming incomplete information about the type and payoff
function of the opponent, we employ tools from clustering and deep
reinforcement learning to design an intelligent agent (buyer) to be able
to negotiate with the opponent (seller) over two attributes (price and
quantity). In the final step, we study the results of both approaches by
comparing the agreement achieved by designing an intelligent agents
with incomplete information and the Nash bargaining solution with
asymmetric negotiation powers with complete information.

5. Nash bargaining solution with complete information

In this paper, we begin by analyzing bargaining with complete in-
formation. We show that the proposed negotiation has a unique Nash
bargaining solution. The payoff values for the buyer and the seller can
be calculated from Eqs. (8) and (9). Since the agents are not willing to
reach an agreement with a negative payoff, the following constraint is
imposed on the agreement price:

=p q p c q
q

p u q
q

( ) { | ( ) ( ) }
(10)

The payoff set of agents is defined as follows:

= = =U u u u payoff p q u payoff p q p q{( , )| ( , ), ( , ) , }b s1 2 1 2

(11)

In the following theorem, we prove that the set of possible joint
payoffs of the negotiation defined above i.e. U is closed and convex, and
therefore the Nash bargaining solution exists and is unique for this
bargaining problem (Nash, 1950).

Theorem 1. The set U is convex and closed.

Proof. The total payoff of a seller and a buyer which only depends on
the quantity of the trading good (q) is as follows:

+ =payoff payoff u q c q( ) ( )b s (12)

Fig. 2. Schematic diagram of actor-critic method.
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First, we show that U is equal to a set S which is defined as follows:

= > > + =S s s s s s s u q c q q{( , )| 0, 0, ( ) ( ) }1 2 1 2 1 2 (13)

To show =S U one can verify S U and U S.
If u u U s s S( , ) , ( , )1 2 1 2 then there is q p,1 1 such that

= =u payoff p q u payoff p q( , ), ( , )b s1 1 1 2 1 1 . As a result

+ =u u u q c q( ) ( )1 2 1 1 (14)

Therefore, based on 13 and 14, u u S( , )1 2 .
On the other hand, if s s S( , )1 2 then there is q such that:

=s u q c q s( ) ( )1 2 (15)

By considering s1 as a feasible payoff for the buyer, we have:

= =s u q c q s u q p q( ) ( ) ( ) .1 2 (16)

By solving Eq. 16, we obtain:

= + + + = + =p c q s
q

c q s s
q

c q u q c q
q

u q
q

( ) ( ) ( ) ( ) ( ) ( )2 1 2

(17)

Which is a feasible value for p. Similar to previous part, by con-
sidering s2 as a feasible payoff of the seller, we have:

= =s u q c q s p q c q( ) ( ) . ( )2 1 (18)

By solving Eq. 18, we obtain:

= = + =p u q s
q

u q s s
q

u q c q u q
q

c q
q

( ) ( ) ( ) ( ) ( ) ( )1 1 2

(19)

According to Eq. 17 and 19 we find s s U( , )1 2 . As a result =S U
and the proof is completed. Now by considering:

=q u q c qargmax ( ( ) ( ))m q (20)

=q u q c qargmin( ( ) ( ))n q (21)

The upper and lower bound of the total payoff functions of a buyer
and the seller are obtained as follow:

= + = + =J s s payof f payoff u q c qmax( ) max( ) ( ) ( )b s m mmax 1 2 (22)

= + = + =J s s payof f payof f u q c qmin( ) min( ) ( ) ( )b s n nmin 1 2 (23)

The set of S is shown in Fig. 3. The upper and lower bounds of
+s s1 2 is determined according to Eqs. 22 and 23. As a result, S is a

trapezoid. Since trapezoid is a polygon with all interior angles less than

or equal to 180, it is a convex quadrilateral. So S and therefore U are
convex and closed.

6. Automated negotiation with incomplete information

Here we consider the bargaining with incomplete information. In
this case, the agreement may not occur in one-step and therefore, the
agents try to reach an agreement through a negotiation process which
can be looked as a repeated game with incomplete information. An
agent can observe only the price and the quantity offered by its oppo-
nent but it doesn’t know the opponent’s payoff function.

In bilateral negotiation with incomplete information, each agent has
three decision-making tasks including conceding, proposing and re-
sponding. Conceding means how much an agent needs to concede from
its current payoff toward reaching an agreement, considering its re-
servation utility. The proposing task determines the suggesting offer
(the value of attributes) to the opponent associated with the value of
the current (conceded) payoff. It should be noted that in a multi-attri-
bute negotiation it is likely to have many feasible offers with the same
payoff for an agent. These offers constitute an indifference curve in the
attributes’ space. Therefore, it is important for an agent to develop an
effective strategy to propose the best point on its indifferent payoff
curve to the opponent. The responding strategy as the third task de-
termines whether the agent accepts or rejects the opponent’s proposal.
Naturally, an agent accepts the offer that gives a payoff greater or equal
to its last offer.

The general procedure of the negotiation is presented in Fig. 4. In
what follows we explain the different components of this scheme. At the
end of this section, we give an overview of our approach shown in
Algorithm 1.

6.1. Conceding

In this paper, the seller concedes its payoff by its own strategy which
is not known to the buyer, while the buyer is designed using a DRL
method to learn how to concede, considering the current state of ne-
gotiation, without having information about the model of the seller.
The details are discussed in what follows.

6.1.1. The buyer agent
In this paper, the buyer is designed to learn the policy of how to

concede in each step of negotiation to maximize its payoff gained from
the agreement. But as the buyer may face different types of opponents
in different negotiations, employing a static policy is not helpful
(Monteserin et al., 2013). Therefore, the buyer needs to adapt its con-
ceding policy to the different types of sellers. DRL is a powerful ap-
proach that can accomplish this goal. In this paper, the buyer is de-
signed using a DRL method to learn how to negotiate with different
types of sellers, without having information about the payoff function
of the opponent. The deep actor-critic method as a deep and continuous
RL method helps the buyer to maximize its payoff via the appropriate
definition of the state vector, action, and rewards. Actor-critic, as one of
the famous RL methods, helps the buyer to learn the continuous state-
action space without facing the curse of dimensionality. Moreover, the
deep auto-encoder which is added to actor-critic helps the buyer to
consider a variety of inputs that sufficiently includes information about
the negotiation to be able to learn the property of negotiation and make
the right decision. The number of steps passed from starting the ne-
gotiation and left until its deadline, the distance between the buyer’s
payoff of its offer and its reservation payoff, the distance between the
buyer’s payoff of its offer and the buyer’s payoff of the seller’s offer, the
distance between the buyer’s payoff from the two consecutive seller’sFig. 3. the set of S which shows S is convex and closed.
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offer, the distance between the two successive seller’s offers and the
class of the opponent are considered as an input of deep auto-encoder in
this paper which are explained in detail in Section 7. The performance
of the deep actor-critic learner as the buyer (compared to other well-
known traditional negotiation techniques) is studied in the case study.

6.1.2. The seller agent
In this paper, the seller concedes its payoff by its own strategy. The

buyer does not have the information about the function of the nego-
tiation strategy of the seller and tries to recognize the type of the seller
only based on the available historical data of the previous rounds of
negotiation. To this end, a K-means clustering is designed to help the
buyer to cluster the seller’s conceding behavior into three classes
(types): boulware, normal, and conceder behavior. The boulware agents
look towards to the maximum profits. Therefore, they maintain the
offered value until the deadline is near up. The conceder agents nor-
mally like to make deal with opponents as soon as possible. So the
conceder agents go to their reservation value very quickly (Faratin
et al., 1998). If the concession rate of an agent is rather smooth during
the negotiation process, we call this type of agent the normal one. The
normal agents have an intermediate behavior between boulware and
conceder agents (Ho and Zhou, 2008). Contrary to the previous articles,
those have considered a fixed behavior for the seller during negotiation,
in this paper; the seller can also change its negotiation strategy, de-
pending on the state of the negotiation.

6.2. Proposing

In the proposing part, the agent determines the offer to be proposed
to the opponent in each step of negotiation. In a multi-attribute nego-
tiation, usually there exist many proposals with the same payoff for the
agent (the indifferent curve). Therefore, the agent needs to follow an
effective strategy to select a point from the indifference curve and
propose it to the opponent. In this paper we have used the method by
Sycara introduces in (Lai et al., 2008). The heuristic in this approach is
that the agent chooses a point from its current indifference curve which

has the shortest distance to the previous offer made by the opponent.
The intuition behind this heuristic is that such an offer has a higher
probability to be accepted by the opponent in comparison with the
other offers on the indifference curve.

Fig. 5 presents an example of a two-attribute (Issue1 and Issue2)
negotiation where the agents follow the shortest distance strategy to the
opponent. The dashed curves are the indifferent curves of agent 2 and
the solid curves are the indifferent curves of agent 1. In the first step,
agent 1 makes the offer x1, but agent 2 rejects it. Then in the second
step, agent 2 finds an offer x2 which has the shortest distance to the
point x1 on its indifferent curve. Agent 1 rejects this offer and it con-
cedes to the second left solid curve in the third step. It finds offer x3
which is the closest one to x2 on this curve. This procedure continues
until an agreement or the deadline is met. The proposed strategy is
shown in Fig. 5 and formulized as follows:

Fig. 4. The general flowchart of the proposed method in the paper.

Fig. 5. The shortest distance algorithm that Sycara introduces in Lai et al.
(2008) for proposing the payoff in each step of negotiation.
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=x x xargminb
t

x c
s
t 1

(24)

where c is the set of offers that have the special payoff (indifferent
curve), xs

t 1 is the sellers offer that proposed at t 1 , xb
t is the buyers

offer that proposes at t and x y represents the distance between x
and y.

6.3. Responding

The agent decides to accept or reject the opponent’s offer by com-
paring the opponent’s offer with its own offer in the next step. In this
kind of responding strategy, the agent accepts the opponent’s offer, if
the payoff gained from the opponent’s offer is greater than or equal to
the payoff which is expected from the acceptance of its offer in the next
step. Otherwise, the agent rejects the opponent’s offer and proposes a
new offer to the opponent. Moreover, the agent leaves the negotiation,
if the deadline is met. This responding strategy is formulized as follows:

=

<
>

>

>

+

+
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payof f x payoff x
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payof f x payoff x and t
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accept if ( ) ( )
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t

b b
t

b s
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b b
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b s
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b b
t

b s
t

b

1

1

1

(25)

where t is the time that the seller proposes an offer to the buyer, ab
t is

the buyer’s decision about the seller’s offer, payof f x( )b s
t is the payoff of

the buyer from the seller’s offer at time step t and +payoff x( )b b
t 1 is the

payoff of the buyer from its offer at step +t 1 and deadlineb is the
deadline of the buyer.

6.4. The mediator

To speed up the learning process, a mediator is implemented to
exclude the offers that are less beneficial for both of the agents. Most of
the previous studies about a mediator in the negotiation can limit the
authority of the agents in decision-making by manipulating the agents’
offers or needing private information of the agents (Chen et al., 2014;
Lai et al., 2006; Ehtamo et al., 1999). But in this paper, the mediator
does not manipulate the agents’ offers. Moreover, it does not enquire
any information about the agents’ strategies and payoff functions.

At each round of negotiation which is equivalent to a learning
episode for the buyer agent, the seller and buyer inform the mediator
about all of the offers/counteroffers they have proposed/received to/
from the opponent and their corresponding payoffs. Among those, for
any offer/counteroffer if there exist at least another offer/counteroffer
with larger payoff for both of the agents, then the mediator removes
that dominated offer/counteroffer from feasible strategy set of the
agents. In this way, in each round, the strategy space of the agents are
reduced to more effective one, which leads to faster learning process of
the Pareto optimal solution.

6.5. Pareto optimality and negotiation power assessment

At the end of the learning process, by comparing the agreement
offer with Pareto frontier we expect that, if the learning process is
successful, the agreement occurs close to Pareto frontier. After that, the
bargaining power of the agents can be determined using the concept of
the Nash bargaining solution with the asymmetric negotiation power
which was explained in Section 3.2. In other words, we can arrange an
equivalency between the result of the negotiation process with in-
complete information and the corresponding complete information
bargaining. Through this, the relationship between the bargaining
power and the agents’ behavior during negotiation can be assessed. This
argument is studied in the case study in Section 8.

The proposed methodology for bilateral negotiation is summarized
in Algorithm 1.

Algorithm 1: The proposed methodology for bilateral negotiation

Input: feasiblesetofoffers
Output:

payof f , payof f ,agreement offer, bargaining power,feasible set of offersbuyer seller
t 1
c { }s

k a x( )b s
1 1

if = =k accept then
payoff payof f x( )buyer b s

1

payoff payof f x( )seller s s
1

agreement xoffer s
1

GototheGameAnalysis
else if = =k leavethe negotiation
payoff punishment of not reaching the reaching the agreementbuyer

payoff punishment of not reaching the reaching the agreementseller
agreementoffer
Go to the Game Analysis
end if
while = =k reject do

+t t 1
sellers k means xbehavior clustering( )s

t

u deep RL function(current state)b
t

x x xargmin c is the set of offers that have the utility equal to ub
t

x c
s
t

b
t1

G a x( )s
t

b
t

if = =G accept
if = =G accept
payoff payof f x( )buyer b b

t

payoff payof f x( )seller s b
t

agreement xoffer b
t

else if = =G leave the negotiation
payoff punishment of not reaching the reaching the agreementbuyer

payoff punishment of not reaching the reaching the agreementseller
agreementoffer
else if = =G reject

+t t 1
u seller s tconceding function( )s

t

x x xargmin cisthesetofoffersthathavetheutilityequaltous
t

x c b
t

s
t1

k a x( )b
t s

t

if = =k accept
payoff payof f x( )buyer b s

t

payoff payof f x( )seller s s
t

agreement xoffer s
t

else if = =k leave the negotiation
payoff punishment of not reaching the reaching the agreementbuyer

payoff punishment of not reaching the reaching the agreementseller
agreement offer
end if
end if
feasible set of offers function for excluding undesired offer from feasible set
end while
GameAnalysis

=equal Nash
Bargaining power

arg ( Bargaining Solution(Bargaining power) agreement offer)
Ba iningrga power

7. Learning negotiation through reinforcement

As mentioned in Section 3 states, action, and rewards play an im-
portant role in the DRL method. This section provides meaningful de-
finitions for states, action, and rewards to utilize the DRL method for
the buyer in the negotiation process.

In the previous works, when RL in the negotiation is employed
(Takadama, 2008; Lao and Zhong, 2010) the last offer of the opponent
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is used as the state of the agent. However, it’s not a comprehensive state
definition and moreover, adding more factors into the state definition
results in the curse of dimensionality. To solve this problem, Hajimiri
et al. (2014) used fuzzy RL. The fuzzy feature of the proposed method
helps the agent to select three different factors as the elements of the
state vector. Nonetheless, it is possible to further improve by adding
more factors than three elements to the state vector. With this goal, the
paper uses deep auto-encoder. Deep auto-encoder facilitates the inclu-
sion of more factors into the state definition, without emerging the
curse of dimensionality (Maldonado-Ramirez et al., 2018). We include
four categories of elements as the deep auto-encoder input which are
explained as follows:

• Time: The agreement should occur before the deadline. Moreover,
the payoff is commonly discounted over time, which makes the time
an important factor that should be taken into account in con-
structing the state of the agent. Hence, both the number of steps
passed from the starting of the negotiation and the number of steps
left until the deadline is considered as the auto-encoder input.
• Reservation payoff: The distance between the buyer’s payoff out of
its current offer and its reservation payoff (RP) is considered as
another input of the deep auto-encoder. This value determines the
flexibility of the buyer agent for the next concessions/offers.
• opponent’s offer: The history of the opponent offers is one of the
useful elements in the decision making of the agent. There are dif-
ferent representations of the opponent’s offer that the agent can use
as a state vector. In this paper, some of these representations that
could do more to help the agent decision making has been con-
sidered as the input of deep auto-encoder. These representations are
as follows:
– The distance between the buyer’s payoff from its offer and the
buyer’s payoff from the seller’s offer is an effective element in the
decision making of the buyer. Based on the value of this distance
and the time of the negotiation, the buyer may change its behavior
to concede more or less in the current step.

– The distance between the buyer’s payoff from the two consecutive
seller’s offers is considered as another effective element in the
auto-encoder input. Based on this distance in different steps of
negotiation, the buyer can learn the behavior of the seller and
predict the seller’s next offer.

– The distance between the two successive seller’s offers of each
attribute is intended as another input of auto-encoder. As the
above element, this distance in different steps of negotiation helps
the buyer to learn the behavior of the seller.

• Seller’s behavior: The type of the seller which is determined by K-
means is considered as another input of auto-encoder. This element
represents the behavior of the seller

Therefore, the input vector of deep auto-encoder is determined as
follows.

=

…
…

s t deadline t payof f x RP payof f x

payof f x
payof f x payof f x payof f x payof f x
x x x x class seller

[ , , ( ) , ( )

( ) ,
( ) ( ) , , ( ) ( ) ,
, , , ( )]

t b b b
t

b b
t

b s
t

b s b s b s
t

b s
t

s s s
t

s
t

2 2

1

3 1 1 3

3 1 1 3

(26)

where t and deadlineb is the current time-step of the negotiation and the
deadline of the buyer, Respectively. xs

t 1 is the sellers offer that pro-
posed at t 1, payof f x( )b s

t 1 is the payoff the buyer from the sellers
offer at time step t 1 and payof f x( )b b

t 2 is the payoff the buyer from its
offer at time step t x y2, represents the distance between x and y.
class seller( ) refers to the class of the opponent which is determined by
K-means clustering. The agent uses deep auto-encoder output (low di-
mensional data) as its state and decides on its action according to its

state. The action of the buyer in the actor-critic is defined as the amount
of concession payoff. When the buyer proposes an offer to the seller, the
seller can respond in three different ways: it can accept the offer, reject
the offer and respond to it with a counter-offer, or reject the offer and
leaves the negotiation table because the deadline is passed. The
learning algorithm should assign appropriate rewards/punishments
with respect to these three incidents. In this paper, three different
scenarios are provided for the definition of rewards/punishments as
follows.

• In the first scenario, the algorithm assigns a reward proportional to
the agreement payoff, just at the end of the negotiation. Moreover, if
the deadline is passed and the buyer loses the negotiation, the agent
gets a big punishment. This scenario is formulized as follows:

=
==

payoff x

payoff x t
Reward

( ) if agents reach an agreement

. ( ) if deadline and agents can not 
reach an agreement

0 otherwise

b agreement

b b
t deadline

(27)

where payoff x( )b agreement is the payoff of the buyer from the agree-
ment offer. =payoff x( )b b

t deadline is the payoff of the buyer from its offer
at the deadline. > 10 is a parameter that determines the power of
punishment when the buyer loses the negotiation.
• In the second scenario, besides the reward that the buyer receives at
the end of the negotiation, it gets a minor reward based on the
suitability proposed offer in each step of negotiation. The same as
the first scenario, if the deadline is passed and the agent cannot
reach an agreement, it gets a big punishment.

=
=

=

payoff x

payof f

x
payoff x

Reward

( ) ifagentsreachanagreement

.

( )

if t deadline and agents can not 
reach an agreement

. ( ) otherwise

b agreement

b

b
t deadline

b b
t

(28)

where < 1 is a discount factor that specifies the amount of the
reward in each step of negotiation.
• In the last scenario, in addition to the two mentioned kinds of re-
wards and punishments, the buyer gets a minor punishment as a
result of postponing the negotiation to the next step. Because in this
situation, the agent still has a chance to reach an agreement, the
assigned punishment should not be as high as the punishment of
situations in which the deadline is passed and the agent cannot
reach an agreement.

=
=

=

payoff x

payof f

x
payof f x µ

Reward

( ) if agents reach an agreement

.

( )

if t deadline and agents can not 
reach an agreement

. ( ) . t otherwise

b agreement

b

b
t deadline

b b
t

(29)

where >µ 1 is a parameter that determines the amount of the
punishment the agent receives as a result of postponing the nego-
tiation to the next step.

These three different scenarios are compared to each other in the
case study.

8. Case study

This section presents a case study for bilateral contracts of energy to
show the applicability of the proposed negotiation method. Assume that
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we have a pair of generator and load as the seller and buyer, respec-
tively. In this situation, there are two methods to purchase/sell elec-
trical energy in the wholesale market. The first one is through the
electricity pool, on which the generators and loads submit their bids to
the market and then, the independent system operator (ISO) clears the
price and power to be exchanged in the grid. In the second approach,
each pair of generator and load can sign a bilateral contract of energy
(Kirschen and Strbac., 2004) (Kebriaei et al., 2011). That is an agree-
ment between two parties to exchange electric power under a set of
specified attributes like price, quantity, penalty to be paid by the gen-
erator to the load if the generator declines to supply the agreed power
and penalty to be paid by the load if it withdraws the contract (Chung
et al., 2003). In this kind of contract, the parties have more control over
the cleared attributes which is a hedge against the risks in the spot
electricity market. In many power grids the major share of power ex-
change is covered by bilateral contracts; e.g., in PJM bilateral contracts
account for about twice the volume traded in its spot market, and in
Britain’s NETA system they are nearly 100% (Chao et al., 2008).
Therefore, the buyer and seller need to learn their optimal negotiation
strategies in bilateral contracts to maximize their profit. Further, since
such negotiation involves multiple attributes and also incomplete in-
formation of the seller and buyer from each other, the proposed ne-
gotiation method in this paper can be used as an effective tools to deal
with this problem.

8.1. Two attribute negotiation

To implement this negotiation, first, we assume the parties ne-
gotiate on two attributes including power and price. The cost function
of the generator as the seller and the utility function of the load as the
buyer in Eq. 8 and 9 are defined as follows (Samadi et al., 2010; Huang
et al., 2014):

= + +c q a q b q c( ) . .1
2

1 1 (30)

= + +u q a q b q c( ) . .2
2

2 2 (31)

where >a b c, , 0i i i are the coefficients of the cost function and the
utility function of the seller and the buyer.

In the simulations, the generator’s offer is generated using the time-
dependent strategy at each step of negotiation. Nevertheless, the load is
not aware of the strategy of the generator. In the time-dependent
strategy, the acceptable value of payoff for an agent to reach an
agreement changes from its maximum value to the reservation value
according to the following time-dependent function:

= +payoff t t ru t mu( ) ( ). [1 ( )]. (32)

=t t
T

( )
1

(33)

where payoff t( ) is the target payoff of the generator at time t ru, is the
reservation utility obtained using the marginal price of the generator,
mu is the maximum utility, t is the current time and T is the negotiation
deadline. represents the behavior of the agent from boulware to
conceder. In time-dependent strategy, constant and the time-varying
strategies are called fixed time-dependent strategy and variable time-
dependent strategy, respectively.

8.1.1. Learning analysis
To show the learning process of the DRL, the negotiations are si-

mulated in two different situations. In the first situation, the load ne-
gotiates with the generators that concede using the fixed time-depen-
dent strategy in each round. In this situation, when the load is faced
with a new generator, based on the initial clustering, it determines the
class of the generator and then negotiates with the generator using the
deep actor-critic algorithm. In the second situation, the load negotiates
with the generators concede by the variable time-dependent strategy in
each round. In this strategy, the generator’s behavior changes during
the negotiation. In this situation when the load faces a new generator it
determines the class of the generator and negotiates until the special
step of negotiation. The load will then revise the class of the generator
by considering the new generator’s behavior and continue the nego-
tiation. This process will be performed once again until the end of the
negotiation.

To compare the learning process of the buyer in the three scenarios
described in Section 7, three different markets are simulated. The load
is rewarded in each market according to one of the scenarios. If the
generator concedes using a fixed time-dependent strategy, each market
will be 1000 rounds of negotiations. Otherwise, when the generator
concedes by a variable time-dependent strategy, each market will be
4000 rounds of negotiations. For a more accurate comparison, each
market is run 10 times with the same stored data, the average payoff of
these 10 times is considered as the mean payoff. The load has a different
behavior with the different classes of fixed time-dependent generators.
Therefore, to see the progress of learning it’s better to analyze the
learning progress of the load when dealing with each class of the gen-
erator separately. In 1000 rounds of negotiations, the load determines
320, 300 and 380 generators as the conceder, normal and the boulware
generators, respectively. The average of the load’s payoffs in the
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Fig. 6. The average of the achieved payoff when the load negotiates with the different class of fixed time-dependent generators and rewarded by various scenarios.
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negotiation with the 1000 fixed time-dependent generators in each
market is shown in Fig. 6.

To analysis the learning progress when the load negotiates with the
variable time-dependent generators, we divide generators into 24 ca-
tegories and observe the learning progress of the load in dealing with
each category separately. The number of each generator in each cate-
gory in the 4000 rounds that determined by the load and the load’s
payoff in the last round when it is rewarded by the various scenarios
outlined in Table 1.

The simulation results show that the load performs better when it is
rewarded by the third scenario (the load receives the reward and the
punishment in each step of negotiation). This is because of the minor
reward and the punishment in each step of the negotiation encourage
the load to reach an agreement as quickly as possible. Moreover, due to

the low complexity of the fixed time-dependent strategy in comparison
with the variable time-dependent strategies, the load can learn better
and faster when faced with a generator that has a fixed time-dependent
strategy. Therefore, as illustrated in Fig. 6 and Table 1, the average
payoff of the load when the generators concede by the fixed time-de-
pendent strategy is more than when the generators concede by variable
time-dependent strategies.

The variance of payoffs in 1000 rounds for the fixed time-dependent
generators and 4000 rounds for variable time-dependent generators are
shown in Figs. 7 and 8. According to these figures, as the learning
process continues, the variance of payoffs gradually reduces.

The negotiation procedures for both the fixed time-dependent and
the variable time-dependent generators are presented in Figs. 9 and 10,
respectively. The curves show the indifference curves of the agents. The

Table 1
The average of the achieved payoff when the load negotiates with the different class of the variable time-dependent generator and rewarded by various scenarios.

First behavior Second
behavior

Third
behavior

Number of each
category in 4000
rounds

Loads’s payoff in the last round
when it rewarded by the first
scenario

Load’s payoff in the last round
when it rewarded by the second
scenario

Load’s payoff in the last round
when it rewarded by the third
scenario

1 Boulware Boulware Conceder 152 830 831 843
2 Boulware Boulware Normal 203 816 825 830
3 Normal Normal Boulware 148 841 848 850
4 Normal Normal Conceder 184 861 869 881
5 Conceder Conceder Normal 153 876 880 889
6 Conceder v Boulware 180 862 876 880
7 Conceder Boulware Boulware 152 832 834 861
8 Normal Boulware Boulware 173 852 854 838
9 Boulware Normal Normal 200 852 861 869
10 Conceder Normal Normal 137 868 871 882
11 Normal Conceder Conceder 164 881 883 891
12 Boulware Conceder Conceder 180 862 876 880
13 Boulware Conceder Boulware 144 831 836 841
14 Boulware Normal Boulware 162 811 820 832
15 Normal Boulware Normal 143 832 828 841
16 Normal Conceder Normal 167 858 861 872
17 Conceder Normal Conceder 170 863 869 880
18 Conceder Boulware Conceder 178 862 865 869
19 Boulware Normal Conceder 195 860 866 873
20 Boulware Conceder Normal 150 835 843 850
21 Normal Conceder Boulware 175 852 857 861
22 Normal Boulware Conceder 162 830 841 849
23 Conceder Boulware Normal 158 846 849 861
24 Conceder Normal Boulware 170 833 848 852
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Fig. 7. The variance of the achieved payoff for the fixed time-dependent generators when the generator is rewarded by the various scenarios.
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stars marked on the indifference curve are the points that the agents
propose as the offer in each step of negotiation. The green circles are
the points that the mediator excludes them from the feasible set of of-
fers during all rounds with the Algorithm 1. Finally, the red bold point
is the agreement offer. As shown in Fig. 10, the generator changes its
behavior after step 3 from the boulware to the conceder because the
generator thinks that it cannot reach an agreement by continuing this
process.

8.1.2. Game-theory analysis
In this section, we will compare the results of the negotiation pro-

cess with incomplete information and complete information. First, it is
shown that the agreement of the negotiation with incomplete in-
formation occurs close to the Pareto frontier. Then, the relationship
between the bargaining power of the agents and the behavior of the
agents is studied. To this aim, the agreements resulted from the DRL
method and the Nash bargaining solution are compared and the

bargaining power of the generators is assessed.
After 1000 rounds of learning negotiations, the results of the ne-

gotiation with the normal, conceder and the boulware generators are
studied, separately. Blue stars in Fig. 11 represent the joint load’s and
the generator’s feasible payoff set. The outer boundary of blue stars
represents the Pareto frontier, which means that no agent can make its
payoff better without making the opponent’s payoff worse off. As
shown in Fig. 11, the payoffs of all three negotiations are close to the
Pareto frontier curve. Therefore, we can verify that the DRL method
maintains the Pareto optimality.

For more accurate studies, different generators negotiate with the
learner (the load that uses the deep actor-critic algorithm) 400 rounds
of negotiations. By comparing the generator’s and the load’s payoffs
(achieved by the DRL method) with that from the Eq. 7 for complete
information bargaining, the equivalent bargaining power of the agents
for the Nash bargaining solution for each round of negotiation is de-
termined. If the agents cannot reach an agreement before the deadline,
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Fig. 8. The variance of the achieved payoff for variable time-dependent generators when the load is rewarded by the various scenarios.
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Fig. 9. The negotiation procedure for fixed time-dependent generator and Learner load.
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we determine the bargaining power of the agents by taking the time to
reach an agreement. The average of the bargaining power in 400 rounds
of negotiations is considered as the bargaining power that fits the
agent’s behavior. The results are shown in Table 2.

As shown in Table 2, the different behavior of the generator causes
an asymmetry in the bargaining procedure and therefore it causes a
change in the bargaining power of the agents. The analysis indicates
that although the boulware generator (whose concessions are only
made when the deadline is almost reached, otherwise the proposals are
only slightly changed) has more bargaining power than the conceder
generator, it does not gain the highest accumulated payoff in compar-
ison with the other generators, as it cannot reach an agreement most of
the time and therefore, faced with a big punishment. In contrast, the
conceder generator reaches an agreement in most of the negotiations,
but due to conceding during the primary steps of the negotiation, the
payoff of the agreement offer and its bargaining power is not notice-
able. The normal generator has a tradeoff between gaining a higher

utility and reaching an agreement before the deadline. Therefore, al-
though it does not have the most bargaining power, it gains the highest
accumulated payoff.

8.1.3. Comparison
To show the superiority of the deep actor-critic in comparison with

the other conceding algorithms, that are commonly used in literature
(Lai et al., 2006; Lai et al., 2008; Hajimiri et al., 2014; Takadama,
2008), seven different markets (each market consisting of 1000 rounds
of negotiations) are simulated. In the first, second, and third markets,
the load uses the fixed time-dependent algorithm respectively as the
conceder, the boulware and the normal (Lai et al., 2008). In the fourth
to eighth markets, the load learns how to concede its payoff by different
kinds of Rl methods. In the fourth market, the load learns its strategy by
Q-learning method (Takadama, 2008). In this market, the last offer of
the opponent is considered as the only element of the state vector in the
Q-learning method. In the fifth and the sixth markets, the load learns
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Fig. 10. The negotiation procedure for variable time-dependent generator and Learner load.
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Fig. 11. The load’s and the generator’s payoff and the Pareto frontier of negotiation.
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how to concede its payoff by the proposed FSLA method introduces in
Hajimiri et al. (2014). A distance between the last offer of the agents,
the reservation price and time are three elements that define the state
vector. The main difference between these two markets is in the pre-
sence of the mediator. There is a mediator (as introduced in Lai et al.
(2006)) in the sixth market that changes the users’ offers in such a way
that the agreement offer converges to the Pareto frontier (Lai et al.,
2006), but there is no mediator in the fifth market. Finally, in the last
market, the load learns how to concede its payoff in each step of ne-
gotiation using the deep actor-critic algorithm proposed in this paper.
In this case, all effective elements are defined as the deep auto-encoder
inputs, and the deep auto-encoder makes the state vector of the actor-
critic by decreasing these inputs’ dimensions. In all of these markets,
the load proposes the offer from the indifference curve by the shortest
distance algorithm (Lai et al., 2008).

For a more accurate comparison, the load negotiates with the same
group of generators concede by the fixed time-dependent strategy in all
seven markets. The accumulative payoff due to each of the markets in
the 1000 rounds is calculated. Each of these markets is run 5 times with
the same stored data. The average of the accumulative payoffs of the
seventh different markets in the 1000 rounds is shown in Fig. 12.

As shown in Fig. 12, the accumulative payoff of the learner who uses

the deep actor-critic algorithm is more than the other buyers. The
conceder agent concedes a lot during the primary steps, so although it
reaches an agreement in most of the negotiations, due to conceding
during the primary steps of the negotiation the payoff of the agreement
offer is not noticeable. The boulware agent has the weakest perfor-
mance in comparison with the other agents that use the time-dependent
algorithm; as a result of not conceding during the primary steps of
negotiation. Although there is a higher payoff when agents reach an
agreement, they cannot always reach an agreement most of the time
and therefore faced the big punishment. The learner (the load in the
forth to the seventh markets) keeps the balance between gaining higher
utility and reaching an agreement before the deadline. After almost 200
rounds, it learns how to negotiate such that it can receive a noticeable
payoff, and is able to reach an agreement in most negotiations.
Therefore, the accumulative payoff curves of the learner in the forth to
the seventh markets are above the other agents’ curves.

Comparing the fourth to the seventh markets (the markets where
the load proposes an offer by the RL methods), in the markets 5 and 6,
since the agent uses FSLA method, it can increase the number of ele-
ments in its state vector to more than one, therefore, other effective
elements would be placed in the state vector. This leads to better cu-
mulative payoff for the learner in markets 5 and 6, comparing to market

Table 2
The payoff and the bargaining power that fits the different groups of fixed time-dependent generators.

Type of generator Generator’s accumulated payoff Load’s accumulated payoff Bargaining power of generator Bargaining power of load (learner)

Boulware 217573 261049 0.75 0.25
Normal 263829 297753 0.62 0.38
Conceder 236885 318398 0.51 0.49
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Fig. 12. The accumulative payoff of seven different markets.

Table 3
The payoff and the bargaining power that fits the different type of loads in different markets.

Number of market Type of load Bargaining power that fits the load’s behavior Load’s accumulated payoff

1 Conceder 0.34 251135
2 Boulware 0.43 225940
3 Normal 0.39 269889
4 Learner proposed in Takadama (2008) 0.43 278022
5 Learner proposed in Lai et al. (2008), Hajimiri et al. (2014) 0.45 283710
6 Learner proposed in Lai et al. (2006),Hajimiri et al. (2014) 0.45 297211
7 Learner (deep actor-critic) 0.47 326032
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4, which has only one element in its state vector. However, using the
FSLA method cannot increase the state vector dimensions to any op-
tional value; thus, in the market seven auto-encoder is used to place all
the effective elements in the state vector. That’s why the cumulative
payoff of the learner at the market 7 is higher than the rest of the
markets. In this market, all effective elements are defined as the auto-
encoder inputs, and the auto-encoder decreases these inputs’ dimen-
sions and fed them to the system as the state vector.

A statistical T-test was used to ensure the competency of the deep
actor-critic learner against the other buyers in all six markets. The re-
sults show that there is a relatively significant statistical difference
between the performance of the deep actor-critic learner and the other
loads. The accumulative payoff of the deep actor-critic learner com-
pared to other loads in six markets studies has a confidence percentage
exceeding 99 %.

In Table 3 The average of accumulative payoff and the bargaining
power of these seven different markets are shown. In each market, the
load negotiates with the same group of generators (concede by the fixed
time-dependent strategy) 400 rounds of negotiations.

As shown in Table 3, when the buyer uses the fixed time-dependent
algorithm, it earns the most accumulative payoff if it has a normal
behavior. As explained above, due to the trade off between gaining
higher utility and reaching an agreement before the deadline, the
normal load earns the most accumulative payoff, although it does not
have the highest bargaining power. When the load uses the RL algo-
rithm for conceding (market 4 to 7), it learns how to concede the payoff
and can keep a balance between gaining higher utility and reaching an
agreement before the deadline. In this regard, the proper definition for
the state vector has a significant impact on the learning process and as
mentioned in the 8.1.1, the load in Market 7 has the most compre-
hensive state vector. Therefore, it gains a higher accumulative payoff
and bargaining power than when it uses the other conceding algo-
rithms.

8.2. Multi attribute negotiation

To generalize the negotiation to more than two attributes, three
different scenarios are provided as follows.

• In the first scenario, the load and generator negotiate two attributes
including the power quantity and the price.
• In the second scenario, the load and generator negotiate three at-
tributes including the power quantity, the price and the penalty to
be paid by the generator to the load if the generator declines to
supply the agreed power in the contract. In this case, the payoff
functions of the load and generator can modeled, respectively as
follows (Chung et al., 2003; Kirschen and Strbac., 2004):

= +payoff p q u q p q k q( , ) (1 ). ( ( ) . ) . .l g (34)

= +payoff p q p q c q p q k q c q( , ) (1 ). ( . ( )) . ( . . ( ))g g
m

g

(35)

where p and q are the price and the quantity of energy, respectively.
kg is the monetary penalty per unit of energy to be paid by the
generation to the load if the generator decline to supply the con-
tract. and are the load and generator’s forecast about the
probability of the generator to contract cancellation. pg

m is the
generator’s forecast about the price of energy in the market when it
decides to sell its energy to the market instead of sells to the load.
• In the third scenario, we add the penalty to be paid by the load if it
withdraws the contract as the fourth attribute. In this case, the
payoff function of the load and generator are modeled as follows
(Chung et al., 2003; Kirschen and Strbac., 2004):

= + +

payoff p q

u q p q k q u q p q k q

( , )

(1 ). ( ( ) . ) . . . ( ( ) . . )
l

g l
m

l1 2 1 2

(36)
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Fig. 13. The average of the achieved payoff when the load negotiates with the different classes of fixed time-dependent generators on various attributes.
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where kl is the monetary penalty per unit of energy to be paid by the
load to the generator if the load decline to buy the energy from
generator. 1 and 2 are the load forecast about the probability of the
generator and the load to contract cancellation, respectively. 1 and

2 are the generator forecast about the probability of the generator
and the load to terminate the contract, respectively. pl

m are the
load’s forecast about the price of energy in the market when it de-
cides to buy its energy from the market.

To show the generalization of negotiation to more than two attri-
butes, the aforementioned three scenarios are compared to each other.
1000 generators with different time-dependent behavior are considered
and the average load’s payoff in each negotiation scenario is shown in
Fig. 13. In 1000 round of negotiation, the load determines 320,300 and
380 generators as the concider, normal and boulware generator, re-
spectively. To better compare the learning speed of the three different
scenarios in Fig. 13, each market’s reward is normalized.

The simulation results show that as the number of attributes in-
creases the buyer learns more slowly. This is because by adding attri-
bute to the negotiation, the complexity of the problem increases.
However, as shown in Fig. 13, the load learns how to bid to maximize
its payoff in all of the three scenarios.

9. Conclusion

This paper firstly proposes an intelligent buyer (using the DRL ap-
proach) to negotiate on the multi-attribute (the price and the quantity)
simultaneously under incomplete information. In the negotiation pro-
tocol, the proposer suggests an offer to the responder. The responder
then reacts to that offer by either accepting or rejecting the buyer’s
proposal. If the responder accepts the offer, the negotiation comes to an
end; otherwise, the agents will exchange their roles and the negotiation
proceeds to the next step. In this paper, the seller uses a conceding
strategy in which depending on the negotiation conditions, its behavior
can be changed during the negotiation. While the buyer learns how to
concede each step to maximize its long-term payoff using the deep
actor-critic algorithm. The existence of deep auto-encoder in this al-
gorithm and consequently the ability to consider the comprehensive
and appropriate definition of the state vector, rewards and action will
result in the buyer (learner) to achieve higher payoff during negotia-
tions. Considering the buyer has no information about the seller’s be-
havior, a K-means clustering is designed to help the buyer to determine
the type of the seller. To speed up the learning process, we have also
used a mediator to exclude the unreasonable offers from the feasible set
of negotiation offers. The superior performance of the deep actor-critic
learner is illustrated through different market simulation studies and
statistical T-test (the buyer uses different conceding algorithms in each
market). We have also discussed the effects of the seller’s conceding
strategy and assigning the appropriate reward functions in the deep
actor-critic algorithm for the learning process. Moreover, we generalize
the negotiation to more than two attributes in the case study.

Finally, our research presents a useful Game Theory analysis based
on the empirical results to compare the result of the negotiation process
with incomplete information and complete information. First, the paper
proves the existence and the uniqueness of the Nash bargaining solution
for the proposed negotiation with complete information. The experi-
mental results show that this model can help agents reach a Pareto-
efficient agreement very closely. Moreover, the relationship between
the bargaining power of the agents and the behavior of the agents is
studied. By reviewing the behavior of different sellers, it became clear
that although the boulware seller has more bargaining power than the

conceder seller, it does not gain the highest accumulated payoff in
comparison with other sellers. This is because the boulware seller
cannot reach an agreement in most of the negotiations. The highest
accumulated payoff can be received by the normal seller that has a
tradeoff between gaining higher payoff and reaching an agreement
before the deadline. To show the ability of the deep actor-critic in
comparison with the other conceding algorithm in literature, buyers
with different behaviors negotiate with the same group of sellers.
Simulation results show the superiority of the deep actor-critic learner
performance in terms of accumulated payoff and power factor com-
pared to other buyers.
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