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A B S T R A C T

Emerging applications such as remotely-controlled human-to-machine and tactile-haptic applications in the Inter-
net evolution demand stringent low-latency transmission. In realising these applications, current communication
networks need to reduce their latency towards a millisecond order. In our previous study, we exploited super-
vised learning-based machine learning techniques in analysing and optimising bandwidth allocation decisions
in access networks to achieve low latency. In this paper, we propose a reinforcement learning-based solution
to facilitate adaptive bandwidth allocation in access networks, without needing supervised training and prior
knowledge of the underlying networks. In our proposed scheme, the central office estimates the rewards of dif-
ferent bandwidth decisions based on the network latency resulting from executing these decisions. The reward
estimates are then used to select decisions that reduce the latency in turn. In particular, we discuss the algo-
rithms that can be used to estimate the rewards and achieve decision selection in the proposed scheme. With
extensive simulations, we analyse the performance of these algorithms in diverse network scenarios and validate
the effectiveness of the proposed scheme in reducing network latency over existing schemes.

1. Introduction

The Internet-of-Things and Tactile Internet evolution envisions
a plethora of low-latency applications such as remotely-controlled
human-to-machine applications (H2M), haptic teleoperation and real-
time virtual and augmented reality applications in the next-generation
communication networks [1]. These applications demand ultra-low
latency in their transmission. For example, stringent low latency in
1–10 ms is required for H2M and haptic communication [2,3]. As such,
current communication networks need to lower their latency for emerg-
ing applications. This relies on upgrading the underlying infrastructure
in conjunction with effective network control and resource allocation
strategies [4]. Existing literature, along with our previous studies, has
considered converged wireless and optical access networks (PONs) with
edge cloudlets in supporting low-latency applications such as shown
in Fig. 1 [5,6]. Such a converged architecture benefits from both the
mobility and coverage of wireless access and the high reliability and
capacity provided by PONs. By strategically placing edge servers and
cloudlets at the central office (CO) and/or the ONUs that integrate
wireless front-ends, services can be brought close to end users and the
latency can be reduced [7–9]. Nonetheless, when delivering applica-
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tions converged over PONs, the latency bottleneck lies in the uplink
transmission since the ONUs contend uplink bandwidth as shown in
Fig. 1. Particularly, in meeting the 1–10 ms latency requirement of
emerging H2M and tactile-haptic applications, the latency in the PON
segment can be only up to a few hundred microseconds[4]. As such,
bandwidth allocation solutions that reduce the latency caused by the
contentions among ONUs are warranted.

Specifically, uplink bandwidth allocation to ONUs is mainly
achieved by implementing dynamic bandwidth allocation (DBA)
schemes. Typical DBA schemes rely on a report-and-grant process,
whereby an ONU requests bandwidth in a report and the CO allocates
bandwidth accordingly via responding a gate message [10,11]. Depend-
ing on how the CO determines the bandwidth value to be allocated,
existing DBA schemes can be categorised as classic schemes and predic-
tive schemes [12]. In classic DBA schemes such as the fixed-service and
limited-service DBA, the CO primarily allocates bandwidth equal to that
requested by the ONUs. In comparison, the predictive DBA schemes har-
ness traffic prediction to estimate an additional amount of bandwidth,
denoted as BWpred, to the requested amount. This surplus bandwidth
BWpred can be a static value, such as prescribed by the constant and
linear credit DBA schemes [10,13]. The BWpred can also be dynamic
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Fig. 1. Converged low-latency application delivery over access networks.

based on statistical estimation of incoming arrivals to ONUs. The pre-
dictive schemes that incorporate such estimation are known as statis-
tical predictive DBA schemes [14]. Based on these facts, the BWpred is
an important bandwidth decision in existing DBA schemes that impacts
the uplink latency performance. In predictive schemes, prior knowl-
edge, primarily the statistics of arrivals, is required to yield a BWpred.
The BWpred values are determined using specific estimation algorithms,
such as the Bayesian estimation used in Ref. [15] and moving average
in Ref. [16,17].

In our previous study in Ref. [18], we exploited an artificial neural
network (ANN) to comprehensively compare and analyse the latency
performance of existing DBA schemes. This analysis is achieved by first
training an ANN to characterise the association between the latency
and BWpred. Then, using the trained ANN, the latency of existing DBA
schemes that execute different BWpred in allocating bandwidth is pre-
sented and analysed. By optimising BWpred using the trained ANN, we
show that existing DBA schemes, including both the classic and predic-
tive schemes, are not optimal in terms of reducing latency. Harnessing
the trained ANN, the impact of BWpred allocation in DBA schemes on
the latency is characterised. However, in terms of DBA implementa-
tion, a supervised training phase is required to train an ANN. Optimis-
ing BWpred for bandwidth allocation needs to be performed in an offline
manner. Moreover, using the trained ANN also requires prior knowl-
edge of the underlying network such as configurations and traffic loads
[18,19]. These prerequisites prevent the CO from promptly determining
suitable BWpred in an unknown or changing network environment. In
light of the above, we investigate novel bandwidth allocation schemes
that can optimise this BWpred in reducing latency without relying on
supervised training or knowledge of the network environment. Such
solutions will be beneficial in improving existing algorithm-specific
bandwidth allocation schemes towards an autonomous and intelligent
fashion.

To this end, this paper presents a reinforcement learning (RL)-based
bandwidth allocation scheme. RL is a special branch in machine learn-
ing (ML) that focuses on the interactions between an agent and the envi-
ronment [20]. In RL, the agent reinforces its actions for more rewarding
outcomes by strategically exploring and exploiting actions. It is known
that a scheme that explores an optimal policy over time would be supe-
rior than the ones that adopt fixed policies [21]. As such, RL can be
a promising technique in innovating bandwidth allocation schemes in
PONs [22], and to the best of our knowledge, this potentiality has not
been fully explored. In this paper, we formulate the bandwidth allo-
cation in PONs as a multi-armed bandit RL problem. The CO (as the
agent) adaptively adjusts bandwidth decision BWpred (actions) based on
the latency experienced by the packets (rewards). In RL, the CO esti-
mates rewards by trying different actions. We present different RL algo-
rithms that can be used to achieve reward estimation and bandwidth

decision selection in our proposed scheme. The performance of these
algorithms are then compared and analysed. The effectiveness of the
proposed scheme in reducing the latency compared to existing schemes
is validated with extensive simulations.

The rest of the paper is organised as follows. Section II intro-
duces the existing DBA schemes and our proposed RL-based scheme.
In Section III, we present solution algorithms in making bandwidth
decisions in the proposed scheme. Section IV presents the simulation
performance analysis. Finally, conclusions arising from this work are
presented in Section V.

2. Problem formulation

2.1. Principles of DBA schemes

Fig. 2 presents the round-robin bandwidth allocation by the CO in
existing DBA schemes. Two ONUs are presented for illustrative pur-
poses. The R and G in the figure represent a report and gate message,
respectively. As introduced earlier, ONUs request bandwidth using a
report and the CO grants bandwidth via responding a gate. The time
interval between consecutive transmissions of an ONU is known as a
polling cycle. During each polling cycle, the CO determines the band-
width to be allocated based on that requested, BWreq, by ONUs in their
reports. Then, gate messages are sent to ONUs to indicate the uplink
transmission start time and duration. Let us denote the average uplink
latency as Duplink , referring to the waiting time upon packets arriving at
ONUs until they are transmitted to the CO.

The fixed-service DBA scheme is a simple scheme, by which the CO
allocates a fixed amount of bandwidth to each ONU in each polling
cycle. The limited-service DBA scheme is a commonly-adopted base-
line scheme. In this scheme, the CO allocates min{BWreq, BWmax},
where BWmax is the maximum bandwidth that can be allocated to
an ONU. As such, compared to the fixed-service scheme, the limited-
service DBA achieves low latency while preventing channel monopoli-
sation by heavily-loaded ONUs. The predictive DBA schemes allocate
an additional BWpred to BWreq as shown in Fig. 2. The bandwidth allo-
cated to each ONU by the CO during each polling cycle is therefore
min{BWreq + BWpred, BWmax}. Allocating BWpred in predictive schemes
allows arriving packets at ONUs to be transmitted without needing to
be reported, thereby reducing latency. Note that the limited-service
DBA scheme is a special case of predictive schemes when BWpred = 0 is
constantly allocated. Based on the above technical details, we consider
BWpred as a vital parameter to be determined by the CO.

In the predictive schemes, BWpred is primarily estimated based on
traffic features such as network load or arrival rate at ONUs. For exam-
ple, a static BWpred is allocated for constant bit rate (CBR) arrivals to
ONUs, i.e., constant credit DBA scheme [10]. By estimating packet
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Fig. 2. An illustration of DBA operation timing diagram.

inter-arrival time or arrival rate to ONUs such as in the statisti-
cal predictive DBA schemes [15,23], BWpred can be estimated using
BWpred = 𝜆 × Tpoll × Lpacket, where 𝜆 is the estimated arrival rate,
Tpoll is the duration of a polling cycle, and Lpacket is the average packet
length. It can be noted that the above BWpred estimation requires knowl-
edge of the feature of network traffic, e.g., CBR, an estimation of the
arrival rate 𝜆, etc. To analyse the latency performance of existing DBA
schemes, we exploited supervised learning-based ML techniques in our
previous study [18]. The impact of BWpred on Duplink was analysed using
an artificial neural network (ANN). The details of our analysis and main
conclusions are as follows.

2.2. Supervised learning-based bandwidth allocation decision

In this section, we present the understandings on exiting DBA
schemes attained by using an ANN. An ANN adopts layered learning
architecture, i.e., input, output, and hidden layers, comprising neuron
units, which are non-linear activation functions to map inputs to an
output [24]. With supervised training, an ANN iteratively adjusts the
parameters in its neuron units and the weights and bias in each layer to
yield a desired output. As such, ANNs are advantageous in character-
ising complex associations among input and output features. Existing
schemes estimate BWpred mainly based on the arrival rate, equivalently
the traffic load, and using specific algorithms such as discussed above.
In our study, we take multiple network features including the traffic
load, ONU-to-CO distance, the number of ONUs and packet statistics
into account and train an ANN in making BWpred decisions for these
different network scenarios.

Via supervised training, we train a multi-layered ANN to learn the
association between Duplink and BWpred together with the multiple net-
work features discussed above. When the training is complete, given
any BWpred and features of the underlying network, the trained ANN
can yield an output, which is the average latency Duplink resulting from
executing this BWpred in DBA operation. Detailed supervised training
process is explained in Ref. [18]. In Fig. 3, we show the analysis on the
performance of existing DBA schemes using the trained ANN. Fig. 3(a)
illustrates an example of the Duplink corresponding to different BWpred
in a 10 Gbps PON comprising 16 ONUs and 10 km ONU-to-CO fiber
links. Analytical results show that the BWpred estimated and allocated
in existing DBA schemes is not optimal in reducing Duplink . Either band-
width under-granting such as BWpred = 0 in the limited-service scheme
or over-granting such as in the fixed-service scheme indicated in Fig. 3
yields a high Duplink . In comparison, based on the network traffic load,
denoted by lnetwork in Fig. 3(a), the statistical predictive DBA scheme
estimates a BWpred along the red curve as plotted in the figure. Fig. 3(b)
further shows the BWpred and Duplink in PONs with different ONU-to-CO
distances, denoted by dO2C . This result implicates that multiple network
features, not only the traffic load, impact the selection of BWpred in

Fig. 3. Latency analysis using the trained ANN as a function of BWpred and
network features such as lnetwork and dO2C [18].

reducing Duplink. Compared to the BWpred in existing schemes, the opti-
mal BWpred values that minimise Duplink corresponding to lnetwork and
dO2C are highlighted in the blue curve in Fig. 3.

From the above analysis, in both existing schemes and the use of
ANN for DBA, prior knowledge of the underlying network such as net-
work configuration and traffic load is needed. Compared to existing
schemes, the use of ANN yields better BWpred decisions that reduce
latency since multiple network features are considered in determining
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Fig. 4. A 10-armed bandit model illustration (adapted from Ref. [20]).

BWpred. However, supervised training is required for this purpose. The
time cost in training, optimising BWpred using the trained ANN and the
CPU memory usage at the CO are presented in our study [25]. Unsur-
prisingly, supervised training, including training the ANN and training
set storage, is the main contributing factor to the time cost and CPU
usage at the CO. In order to facilitate the CO to allocate bandwidth
intelligently, without relying on specific BWpred estimation algorithms
or supervised training, we explore the potential of reinforcement learn-
ing. The problem formulation is described as follows.

2.3. From supervised learning to reinforcement learning: proposed
RL-based DBA scheme

RL typically participates an agent and an environment. Different
actions taken by the agent interact with the environment, thereby yield-
ing different rewards. In RL, the agent is not told which actions to take
such as that in supervised learning, but needs to estimate which actions
produce the most long-term reward by trying them, and then optimises
its actions. According to the principle of policy improvement in RL,
any scheme that optimises its action/policy via exploration over time
is anticipated to outperform schemes that take fixed actions/policies
[20,21].

In this paper, we formulate the bandwidth allocation in PONs
described above as a k-armed bandit problem. The k-armed bandit
model is a simple and well-known RL model. Since our goal is to opti-
mise BWpred in reducing the uplink latency for low-latency applications,
a simple model such as the k-armed bandit model and learning algo-
rithms with quick convergence, which will be discussed in the follow-
ing, are preferred.

In a k-armed bandit problem, an agent pulls one of the k arms
in one play such as illustrated in Fig. 4, and receives an immediate
reward associated with this action. This reward is a random variable
and its underlying distribution is not known by the agent. Based on the
rewards in previous plays, the agent determines which arm to pull for
the next play, expecting that the long-term reward sum is maximised. In
our problem formulation, we consider the CO as the agent and BWpred
is the decision to be optimised. Note that we use the term ‘decision’
in this paper, which is equivalent to the ‘action’ in RL terminology.
Upon receiving a report, the CO allocates min{BWreq + BWpred, BWmax}
amount of bandwidth to the ONU. The objective of the CO is to deter-
mine a BWpred such that the average uplink latency can be reduced. As
such, the reward is defined as the negative latency associated with a
BWpred decision. The key definitions and notations used in our model
are specified as follows:

• Decision, BWpred(t) — the BWpred determined by the CO at the t-th
time step. At any t = 0,1,2…, BWpred(t) is selected from a deci-
sion set, denoted as D. This D set contains l numbers of discretised
bandwidth values, i.e., D = {BW1,BW2, …BWl}.

• Reward, R(t) — the reward received by the CO when BWpred(t) is
exploited, i.e., allocated to ONUs. This reward is defined as the neg-
ative packet queuing latency reported by ONUs.

• Time step, tstep — decision update interval. Every tstep polling cycles,
ONUs report the R(t) in their report messages. The CO selects
BWpred(t + 1) from D based on the received rewards.

Note that the CO does not have prior knowledge on the network
environment and the rewards associated with each decision in D. Thus,
the CO needs to estimate the rewards by exploring the decisions in D.
As such, we consider periodic reward reporting and decision update.
As described above, every tstep polling cycles, ONUs report the aver-
age queuing latency of packets in their buffer, i.e. R(t), to the CO.
Based on the received rewards, the CO selects a BWpred(t + 1) from
D for the next tstep polling cycles. The pseudocode of the proposed RL-
based DBA scheme is detailed in Algorithm 1. The criterion to update
BWpred(t + 1) as shown in Algorithm 1 (line 12 and 13) is that the CO
expects to select a BWpred from D that yields maximum future rewards.
In the next section, we present the algorithms for BWpred(t + 1) deci-
sion optimisation upon the CO receiving the rewards R(t).

Algorithm 1 RL-based DBA scheme.

1: Operation at an ONU in its transmission time slot:
2: send the buffered packets to the CO.
3: sum up packet queuing latency to dqueue and the number of
packets sent to nsend.
4: if t = (polling cycle number/tstep) is integer then
5: average latency davg = dqueue∕nsend.
6: R(t) ← (−davg).
7: reset dqueue and nsend.
8: end if
9: BWreq ← remaining packets in the buffer.
10: send a report with BWreq and R(t) to the CO.
11: Operation at the CO upon receiving a report from an
ONU:
12: if R(t) is updated by the ONU
13: update BWpred.
14: else
15: retain current BWpred.
16: end if
17: allocates min{BWreq + BWpred, BWmax}.

3. Bandwidth decision selection algorithms in the proposed
scheme

In RL, the concept of action-value function is instrumental for the
agent to select actions [20]. The action-value function indicates which
action or actions can lead to the most long-term rewards, thereby guid-
ing the agent to select an action at a particular time. This function is
typically estimated by the agent via exploiting and exploring actions.1
Let us denote Qt as the value function of the decisions in D = {BW1,

BW2, …, BWl} at time t. For an arbitrary BWi in D, Qt(BWi) implicates
the expected future reward sum if exploiting this BWi at time t.

In our proposed scheme, the CO estimates Qt based on each R(t)
received and then selects BWpred(t + 1) following the Bellman optimal-
ity equation as follows:

BWpred(t + 1) = arg max
BWi∈ D

Qt(BWi) (1)

This allows the CO to iteratively optimise BWpred online. The greedy
decision selection in (1), i.e., exploiting the current best decision, is to

1 Exploitation refers that an agent strategically chooses actions and obtains
rewards based on existing experience. Exploration refers that an agent inten-
tionally experiences different actions for better future action selections.
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facilitate quick convergence of Qt and BWpred(t + 1) to a steady-state
solution Q and BW∗

pred that meet BW∗
pred = arg maxQ [26]. Given (1), the

Qt(BWi)(i = 1,2,… , l) estimation is critical in selecting decisions and
impacts the performance of the proposed scheme. Several well-known
methods to estimate an action-value function in RL include dynamic
programming (DP), Monte Carlo (MC), temporal difference (TD), Q-
learning, action-critic, etc. These methods, however, are not all suit-
able in solving our formulated problem. For example, DP relies on the
knowledge of the underlying environment. MC requires the presence of
termination states in a problem [27]. In the following, we discuss the
existing methods and present the algorithms developed based on them
to estimate Qt for our proposed scheme.

3.1. Sample average algorithm

Note that up to the time step (t + 1), the CO observes a sequence
of decisions and rewards as BWpred(0), R(0), BWpred(1), R(1), BWpred(2),
R(2), …, BWpred(t), R(t). A heuristic algorithm to estimate the Qt(BWi)
is by averaging the rewards tied to this BWi in the sequence as follows:

Qt(BWi) =
∑t

k=1 R(k) × 𝟙BWi∑t
k=1 𝟙BWi

(2)

where 𝟙BWi
is an indicator function, indicating if the BWi is selected at

one particular time step. By simplifying (2), an iterative algorithm to
update Qt for each BWi is derived as follows:

Qt(BWi) = Qt−1(BWi) +
R(t) − Qt−1(BWi)∑t

k=1 𝟙BWi

(3)

Then, based on this Qt , BWpred(t + 1) can be selected by the CO follow-
ing (1). We refer to this algorithm as sample average (SA) algorithm in
this paper and its pseudocode is detailed in Algorithm 2.

Algorithm 2 SA algorithm.

1: Q — array of existing Q estimates.
2: N — array of the number of decision exploitations
3: Operation at the CO upon receiving rewards R(t) at
time step (t+1):
4: Q(BWpred(t)) ← Q(BWpred(t)) +

R(t)−Q(BWpred(t))
N(BWpred(t))

.

5: BWpred(t + 1) = arg maxBWi∈DQ
6: N(BWpred(t + 1)) ← N(BWpred(t + 1)) + 1

Using the SA, the CO estimates Qt(BWi) purely relying on allocat-
ing this BWi together with the BWreq to ONUs and waiting the latency
to be reported. As such, exploring different BWi is crucial for the CO
to optimise the BWpred. This reliance on exploration and waiting for
reports tends to incur a slow convergence rate in SA. Since our focus
is to improve the latency performance of the network, algorithms that
enable the CO to explore decisions more efficiently, i.e., faster con-
vergence to an optimal decision, than the SA are preferred. Therefore,
we further consider TD- and Q-learning based algorithms. The design
details are presented as follows.

3.2. TD-based value iteration algorithm

TD learning is an important method in RL whereby an agent learns
directly from experience such as that in the SA, and concurrently
updates estimates using the learnt knowledge, i.e., existing estimates.
In particular, defined by (2) in the SA, Qt(BWi) can not be estimated
by the CO if this BWi has not been exploited. The received rewards of
a BWi can only be used to estimate its own Qt(BWi) value. In compar-
ison, based on TD, the CO can iteratively updates Qt(BWi) using both
received rewards R(t) and existing estimates Qt . A straightforward algo-
rithm based on this idea is described as follow.

By definition, the value function Qt represents the expected future
rewards summation when exploiting a BWi at time step t. As such

Qt(BWi) can be re-written into (4).

Qt(BWi) = E

[ ∞∑
k=t

𝛾k−tR(k) |||BWpred(t) = BWi

]
(4)

where E denotes the expectation operator and 𝛾 is know as the dis-
count rate (0 ≤ 𝛾 ≤ 1). As 𝛾 approaching 1, the estimation in (4)
weights strongly on future rewards, whilst a small 𝛾 accounts immedi-
ate rewards. Following (1), the next decision is BWpred(t + 1), which
depends on existing Qt . Formula (4) hence can be re-written as:

Qt(BWi) = R(t) + 𝛾E

[ ∞∑
k=t+1

𝛾k−(t+1)R(k) |||BWpred(t + 1)
]

= R(t) + 𝛾E
[
Qt+1(BWpred(t + 1))

]
(5)

In (5), the Qt+1 is unknown. However, the CO can still update its esti-
mates by trusting and using existing Qt . Having BWpred(t) = BWi and
its corresponding R(t), the CO estimates Qt(BWi) as:

Qt(BWi) = R(t) + 𝛾Qt(BWpred(t + 1)) (6)

Since BWpred(t + 1) is selected following (1) greedily, (6) can be further
derived as:

Qt(BWi) = R(t) + 𝛾 max Qt (7)

The pseudocode of the TD-based algorithm is presented in Algorithm 3.
Note that the knowledge of Qt is used to update the estimate for each
BWi in D, thereby expediting the convergence of Qt and BWpred(t + 1).

Algorithm 3 TD-based value iteration algorithm.

1: Q∗ — the maximum value of existing Q estimates.
2: Operation at the CO upon receiving rewards R(t) at
time step (t+1):
3: Q(BWpred(t)) ← R(t) + 𝛾Q∗

4: BWpred(t + 1) = arg maxBWi∈DQ
5: update Q∗ ← maxQ

3.3. Q-learning-based algorithm

Q-learning is a special TD method that is widely utilised. It is known
by its quick convergence to find an optimal solution [20]. Q-learning
aims to estimate the action-value function of a Markov decision pro-
cess (MDP) with a series of state and action pairs, denoted as Si and
Ai respectively, and the rewards, R(Si,Ai), associated with states and
actions. A multi-armed bandit model can be viewed as a MDP with a
single state, S, and multiple actions. As such, we further explore the use
of Q-learning in estimating Qt for our proposed scheme.

For a single state MDP, Q-learning estimates its action-value func-
tion, termed Q(S,Ai), as follows:

Q(S,Ai) ← (1 − 𝛼)Q(S,Ai) + 𝛼

[
R(S,Ai) + 𝛾 max

A
Q(S,A)

]
(8)

where A is the current best action and 𝛼 is the learning rate, balancing
the weighting between existing Q estimates and experienced rewards.
Smaller 𝛼 values lower the convergence rate in trading for a potential
good accuracy. The arrow sign in (8) indicates overwriting Q(Si,Ai)
with a new value, which is calculated by using its current value. The
iteration in (8) ensures the convergence to an optimal solution when
the number of states and actions are finite and the rewards have finite
variance [24]. These conditions are met in our formulated model where
bandwidth decisions are discretised and packet latency as reward is
bounded. Following (8), Qt(BWi) can be estimated by:

Qt(BWi) ← (1 − 𝛼)Qt(BWi) + 𝛼[R(t) + 𝛾 max Qt] (9)
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The pseudocode of Q-learning-based algorithm for Qt estimation is pre-
sented in Algorithm 4.

Algorithm 4 Q-learning-based algorithm.

1: Q — array of existing Q estimates.
2: Operation at the CO upon receiving rewards R(t) at
time step (t+1):
3: Q(BWpred(t)) ← (1 − 𝛼)Q(BWpred(t)) + 𝛼[R(t) + 𝛾maxQ]
4: BWpred(t + 1) = arg maxBWi∈DQ

It can be noted that the TD-based value iteration algorithm is a spe-
cial case of Q-learning where 𝛼 equals 1. This Q-learning based algo-
rithm allows the CO to control the learning rate by tuning 𝛼. Note that
the parameters 𝛼 and 𝛾 generally are selected based on experiments or
experience. Usually 𝛾 is a small value close to 0 and 𝛼 is within the
range of 0–1. In the next section, we implement simulations to analyse
and compare the performance of the above discussed algorithms and
validate the effectiveness of the proposed RL-based DBA scheme.

4. Performance evaluation

Performance analysis in this section is based on packet-driven net-
work simulations in MATLAB. We apply the proposed scheme and the
algorithms discussed above to a 10 Gbps PON with 16 ONUs and 10 km
ONU-to-CO distance. Each ONU has a 1 Mbps buffer. Packet arrivals fol-
low a Poisson process and packet length varies from 64 to 1518 bytes
[18]. The maximum polling cycle duration is set as 1 ms in DBA opera-
tion. Performances of our proposed RL-based DBA scheme using above
algorithms are compared with the baseline limited-service DBA scheme
and statistical predictive DBA scheme (given prior knowledge of the
arrival rate) presented in Section 2.1.

In implementing the RL-based scheme, we set the decision set D
to include 100 number of BWi with a 200-byte interval for illustrative
purpose. This granularity is small enough to yield favourable latency
improvements. The initial Q values of the decisions are set as 0 and the
time step of reporting rewards is set as 5 polling cycles. The parameter
𝛾 and 𝛼 are selected as 0.01 and 0.3 based on our simulation trails, and
the impact of these parameters will also be analysed in the following.

4.1. Latency performance

Fig. 5 compares the latency performance under different net-
work load scenarios, i.e., light load (lnetwork = 0.2), medium load
(lnetwork = 0.5), and high load (lnetwork = 0.8). As shown in Fig. 5(a)–(c),
the network experiences about 200–500 polling cycles to stabilise,
which is less than 0.5 s in the simulation. Since using RL the CO opti-
mises BWpred iteratively in an online fashion, there is no extra time
cost and memory usage for supervised training. Only the decision value
Q(BWi), and N(BWi), the number of BWi exploitations (when using SA
algorithm), need to be stored and updated iteratively at the CO fol-
lowing the Algorithms in Section 3. The impact of the computation
time in updating the Q(BWi) per iteration on the uplink latency can
be negligible. Results show that the baseline scheme yields the highest
latency due to the report-and-grant process, whereby packets need to
be reported before they can be allocated bandwidth for transmission.
The predictive scheme estimates BWpred based on packet arrival rate.
This reduces the latency compared to the baseline scheme as shown
in Fig. 5, but on the basis that the packet arrival rate is given in our
simulation.

The proposed RL-based scheme reduces up to 50% latency compared
to the baseline scheme in Fig. 5(a)–(c) when the algorithms converge.
At the initial 500 polling cycles, the RL-based scheme incurs greater
deviations, depending on the underlying learning algorithms. This is

Fig. 5. Latency performance comparisons under different network loads.
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because at the beginning, the CO tends to explore different decisions in
order to estimate the rewards. Nevertheless, compared to the baseline
scheme, the latency is still reduced effectively during this exploitative
period. Then, with iterative Qt updates, the CO adapts its BWpred deci-
sions and eventually outperforms the predictive scheme. Particularly,
under light load such as lnetwork = 0.2 in Fig. 5(a), the proposed scheme
outperforms both the baseline and predictive schemes. In comparison,
the network load increase slows the average latency convergence as
shown in Fig. 5(b) and (c). The RL-based scheme attains lower latency
than the predictive scheme after 1400 polling cycles and 2000 polling
cycles in Fig. 5(b) and (c) respectively.

In the RL-based scheme, performances of the SA, TD and Q-learning
based algorithms are compared. As shown in Fig. 5(a) and (b), SA
and TD-based algorithms have similar convergence performance, except
that at the initial stage, the TD-based algorithm is slightly better. In
comparison, under high load scenario in Fig. 5(c), the TD-based algo-
rithm shows a faster convergence than the SA. This is because the TD-
based algorithm updates Qt values by using both experienced rewards
and existing Qt estimates following the Bellman optimality equation.
In the SA algorithm, however, rewards are only used to estimate the
value of its corresponding decisions. The Q-learning based algorithm
can also converge to the same optimal BWpred, and average network
latency, as the SA and TD-based algorithm. However, the convergence
rate is controlled by the 𝛼 as introduced in Section 3.3, and this param-
eter generally needs to be determined via simulation or experimen-
tal trials. Note that the TD-based algorithm is a special case of Q-
learning where 𝛼 = 1. In Fig. 5, we plot the Q-learning based algo-
rithm using 𝛼 = 0.3 in analysing the impact of 𝛼 on its performance.
Clearly, a small 𝛼 lowers the convergence rate as shown in Fig. 5.
Since in our considered scenarios, stable network loads are simulated,
applying 𝛼 = 1, i.e., the TD-based algorithm, provisions faster con-
vergence to an optimal BWpred decision. However, given the flexibil-
ity to adjust 𝛼, we consider Q-learning based algorithm may have
the potential in more complex network scenarios such as networks
with varying network loads. Overall, based on the above analysis, TD-
based algorithm shows a faster convergence rate in finding an opti-
mal decisions among the discussed algorithms. In the following, we
apply the proposed RL-based scheme (TD-based algorithm) in different
network scenarios and compare its latency performance with existing
schemes.

4.2. RL-based scheme in different network scenarios

Fig. 6 compares the latency of the proposed scheme, baseline and
predictive scheme in a 16 PON with 20 km ONU-to-CO distance. Two
network load scenarios, i.e., lnetwork = 0.2 and lnetwork = 0.5 are simu-
lated. Compared to Fig. 5, the ONU-to-CO distance increase, i.e., from
10 km to 20 km, increases the latency of the baseline scheme and
predictive scheme significantly. The proposed scheme effectively pre-
vents this network latency increase and yields superior latency perfor-
mance, i.e., less than 100 μs latency, compared to the 150 μs and 250 μs
latency in the predictive and baseline scheme, respectively. In addition,
under lnetwork = 0.5, the RL-based scheme outperforms the predictive
after about 700 polling cycles, which is half the time compared to that
shown in Fig. 5. These observations validate that the RL-based scheme
can effectively optimise the BWpred to suit the underlying network envi-
ronment.

Fig. 7 shows that the latency of a 32-ONU PON under different
schemes. Similar latency trends can be observed compared to that in
Figs. 5 and 6. The RL-based scheme converges to a BWpred that reduces
the latency compared to the existing schemes. However, this time, we
observe a longer time for the RL-scheme to lower the latency from the
predictive scheme under lnetwork = 0.5. This is partly because in this sce-
nario, the BWpred estimated in predictive scheme is close to the BWpred
selected in the RL-based scheme. The predictive scheme provisions such
BWpred at the beginning of the simulation, a low latency is achieved, and

Fig. 6. Latency performance comparisons in a PON with 20 km ONU-to-CO
distance.

Fig. 7. Latency performance comparisons in a 10 km 32-ONU PON.

hence it takes longer time for the RL-scheme to reduce latency from this
value. However, in many cases such as shown in Figs. 5 and 6, the pre-
dictive scheme can not estimate a suitable BWpred, and therefore incurs
a higher latency than the RL-based scheme. Moreover, the knowledge
of the arrival rate is required in estimating BWpred in the predictive
scheme.

Overall, simulation results in Figs. 5–7 validate the effectiveness
of the proposed RL-based scheme in optimising BWpred and reducing
latency for emerging low-latency H2M and tactile-haptic applications.
Using RL, the CO self-adapts BWpred decisions to best suit the underlying
network environment. The allocation of optimal BWpred in the RL-based
DBA scheme achieves less than 100 μs uplink latency in the 16- and
32-ONU optical access network shown in Figs. 5–7, attaining up to 60%
improvement compared to the baseline scheme.

5. Conclusions

Current communication networks need advanced resource alloca-
tion strategies to improve their latency in realising the emerging
remotely-controlled H2M and haptic communications that demand
1–10 ms transmissions. In supporting converged applications deliv-
ery over PONs, this paper presented the first exploitation of RL to
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facilitate intelligent bandwidth decisions in DBA operation at the CO.
We formulated bandwidth allocation in PON as a multi-armed bandit
model and proposed the RL-based scheme, whereby the CO explores
and exploits bandwidth decisions and ONUs report the corresponding
rewards. Then, we discussed several algorithms based on SA, TD and Q-
learning methods in RL to iteratively estimate the decision value func-
tion. Based on the value estimation, bandwidth decisions are selected
greedily in expediting algorithm convergence and reducing the latency
of the network. With extensive simulations, we analysed the latency
of the proposed scheme and the convergence performance of the SA,
TD and Q-learning based algorithms. Overall, different from existing
schemes that rely on specific bandwidth estimation algorithms and
prior knowledge of the network, the RL-based scheme self-adaptively
optimises bandwidth decisions in DBA operation, and thereby effec-
tively reduces the latency under diverse network scenarios. A promising
latency performance improvement, i.e., up to 60% reduction compared
to the commonly-adopted baseline scheme, is attained towards support-
ing future low-latency applications.
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