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a b s t r a c t

As supervised learning has been successfully applied in mechanics, reinforcement learning is being
attempted to be used to solve mechanical problems more intelligently. In this study, by imagining
the mechanical design as a ‘‘game’’ to make clear what is the ‘‘score’’ to maximize, reinforcement
learning is successfully applied to the design of layered phononic crystals with anticipated band
structures, which can regulate elastic waves by blocking the waves in the range of bandgap. In
order to get the desired bandgaps, it is necessary to design unique topological structure of phononic
crystals. In this work, the topological structure of layered phononic crystals can evolve itself through
interactive reinforcement learning algorithm, and finally reaches the topological structure which meets
the given requirements. The reinforcement learning method performs very well both under the goal
of maximizing the first-order bandgap width and designing the bandgap of the specified range,
respectively. It is worth mentioning that the method is efficient and stable, that is independent of the
initial state and target, and can finally learn an evolution route that will keep the objective function
increasing. Inspired by the results of exploration, the theoretical analysis is also carried out to explain
the design results and gives the feasible bandgap range in layered phononic crystals with given material
properties. This reinforcement learning based interactive design scheme can be easily extended to other
inverse design problems.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Phononic crystal is a kind of artificial acoustic material that
can control elastic waves. It has a vast application prospect in
acoustic focusing, acoustic guidance, vibration isolation, noise
reduction, acoustic stealth, and stress wave protection [1–8].
Inspired by photonic crystal [9], Kushwaha et al. proposed this
kind of composite with periodic structure [10] to regulate the
acoustic wave. The researches show that the periodic structure
can form a discrete band structure. The bandgap is the range
of frequencies in the band structure which there are no wave
vectors corresponding to. If the material has infinite periods of
unit cells, the harmonic elastic wave with the frequency in the
bandgap cannot pass through the material at all. Although only
phononic crystals with finite size can be produced in reality,
the elastic waves in bandgap will have a very low transmission
coefficient [11], thus still having a blocking effect on such waves.
As a complement to traditional phononic crystals, Liu et al. put
forward the concept of ‘‘resonant phononic crystals’’ [12], which
absorb wave energy through local resonance and are usually
composed of three phases of materials [3,5,6,13]. There are many
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topological structures of phononic crystals, as shown in Fig. 1.
Different topological structures of the unit cell of phononic crystal
correspond to different band structures. To control the waves of
different ranges, researchers need to design different topological
structures. However, there is no explicit relationship between
band structures and topological structures. Most of the time, re-
searchers get the band structure of various topological structures
one by one through numerical calculations using FEM, PWE, FTDT,
MST, etc. [14–20].

To adjust and control the acoustic waves in different frequency
ranges, a variety of topological structures are designed, and the
bandgap range can be adjusted by changing the geometry pa-
rameters in the structures [13,21–25]. In order to make tunable
bandgaps, many researchers have studied the phononic crystals
whose band structure can be controlled by mechanical and elec-
tromagnetic means [11,26–30]. Besides, some researchers have
designed the phononic crystals using topology optimization to
achieve the maximum bandgap width, the maximum relative
bandgap width, or desired frequency spectra [31–34]. Although a
lot of work has been done in the research of phononic crystals, the
reverse design of phononic crystals is still an unsolved problem.

Recently, the introduction of machine learning methods into
mechanics provides new ways to solve mechanical problems [35–
43]. Machine learning methods can be divided into supervised
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Fig. 1. Phononic crystals of different topological structures [44].

Fig. 2. The framework of reinforcement learning.

learning, unsupervised learning, and reinforcement learning. At
present, the researches on combining machine learning and me-
chanics are mostly based on supervised learning, aiming to estab-
lish a set of mapping relationship between mechanical problems
and parameters by neural network or other machine learning
methods like supporting vector machine (SVM). However, these
approaches always need a large number of data samples. After
getting enough data samples, they are submitted to the neural
network to train and use the trained neural network to predict
new data samples. These methods separate the process of getting
data and the process of machine learning, which are called ‘‘off-
line’’ machine learning methods. In fact, the machine learning
process can be naturally combined with the process of getting
data, which will reduce the number of needed data samples
and make the process of getting data more intelligent. In recent
years, the applications of reinforcement learning, such as alpha
go, alpha zero, AI gaming, and robots, have attracted a lot of
attention. As supervised learning has been successfully applied
in mechanics [35,37–39,44–47], reinforcement learning can also
be expected to solve mechanical problems. As a method that
can find the optimal solution gradually by interacting with the
environment, reinforcement learning has the potential to provide
new solutions to mechanical optimization problems. In this pa-
per, we made a preliminary exploration in this area, and take the
inverse design of the band structure of layered phononic crystals
as an example to show the application prospect of reinforcement
learning method in mechanical problems.

The model in reinforcement learning includes three parts:
environment, agent, and policy. The agent takes action to get
feedback from the environment and use the feedback to update
the policy, and the policy guides the agent to take the next
action. The description of the agent’s current situation is called
the ‘‘state’’. The reinforcement learning aims to make the agent
learn the policy from the exploration process, to maximize the
rewards from the environment [36]. The process of interaction
between agent and environment is shown in Fig. 2.

There are several reinforcement learning algorithms, such as
Q-learning, A3C, PPO, TRPO, etc. [48–53], which are all based on
the frame shown in Fig. 2, but different in the ways to update
policy. As a representative algorithm in reinforcement learning,
the Q-learning algorithm has made great achievements in the
field of games, which made better achievements than humans in
about 2600 Atari games [36]. Q-learning algorithm lets the agent

play the game and take the score of each game as the feedback
of the environment. The agent does not understand the game
and may perform randomly and get low scores at first, but will
gradually learn to choose a better action under each state and get
a better final score. Making the score higher in the game can be
analogized to the material design in mechanics, where we will
want to get a material more in line with our wishes. In order to
apply the Q-learning algorithm to mechanical problems, we need
to imagine the mechanical design as a game, to make clear what
is the ‘‘score’’ to maximize, and then to define the ‘‘state’’, ‘‘action’’
and ‘‘reward’’ in the game. The procedure of Q-learning algorithm
is as follows:

Initialize Q (s, a) (we make all the values zero at first):
Repeat (for each episode):

Initialize state s
Repeat (for each step):

Choose action a from state s using policy derived from Q-
function(ϵ-greedy):

with the probability of ϵ:
Choose action a with the largest Q(s,a) (if several actions

make the largest value, randomly choose one of them)
with the probability of 1-ϵ:

Choose action a randomly
Take action a, go to state s’, get reward r
update Q-function:
Q (s, a) = Q (s, a) + α[r + γ maxa′ Q (s′, a′) − Q (s, a)]
s = s′

Until the episode ends (e.g. reach the maximum steps).
Here Q (s, a) is a function using state and action as variables.

When the amount of data is small, Q function is recorded in
the form of tables. When the amount of data is too large to be
recorded in tables, usually millions of pieces of data [49], then it
is derived into the DQN algorithm, where the neural network is
used to store the values of the Q-function. As we do not face such
a large number of data, we do not employ a neural network in
this research. Table 1 shows the form of Q-function, and updating
the Q-function is just updating the values in the table. The values
of the Q-function are zero at the beginning, and in the following
exploration process, the function is updated through reward, and
the next action will be determined according to the current Q-
function. Actually, the Q-function is just like the experience of the
agent. On the one hand, the agent updates the experience through
the interaction with the environment, on the other hand, it also
determines what to do through the existing experience, although
it is not brilliant at first. The algorithm to decide which action to
choose is called ε − greedy strategy. The agent will check the Q-
function to see which action gets the largest value at the current
state. The agent will select that action with the probability of ε,
and choose the action randomly with the probability of 1 − ε.ε
is between 0 and 1, and reflects the balance between exploration
and optimization in reinforcement learning. The bigger the ε is,
the faster you can find a satisfactory solution. However, it is not
guaranteed to be the best solution globally. A smaller ε can better
avoid the agent trapping into the local optimal solution, but will
also take more time.is called the ‘‘discount coefficient’’. It is also
between 0 and 1, and it is inspired by the human’s psychology
that one will think higher of the short-term reward than the long-
term reward when the reward is the same. After an enough long
exploration, the value of Q-function will converge to the expected
final score of taking the action from the state.

By properly defining the state, action, and reward, the Q-
learning algorithm can be used on a wide range of mechanical
problems. In this paper, we employ layered phononic crystals
design as an example, taking maximizing the first-order bandgap
width and realizing any specified bandgap range as two tasks, to
show the feasibility of reinforcement learning on mechanical in-
verse problems. This paper is organized in the following scheme.
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Table 1
The representation of Q-function.
States Value for action a1 Value for action a2
s1 Q(s1 , a1) Q(s1 , a2)
s2 Q(s2 , a1) Q(s2 , a2)
. . . . . . . . . . . . . . . . . .

Table 2
Physical parameters of materials.
Material Shear modulus (GPa) Density (kg/m3)

Aluminum 28.7 2730
Epoxy 1.59 1180

Fig. 3. The framework of reinforcement learning for layered phononic crystals.

Section 2 introduces the framework of using reinforcement learn-
ing in mechanics design problems and the way in our specific
problems. Then the results of using reinforcement learning to
maximize the first-order bandgap width and to realize speci-
fied bandgap range are given in Section 3. Section 4 discusses
the characteristics of the evolution route, and the achievable
bandgap range is analyzed when the materials are fixed. At last,
the summary is concluded in Section 5.

2. Method and the framework of reverse design

2.1. Framework of using reinforcement learning in mechanical de-
sign

In this paper, we choose the bandgap of layered phononic crys-
tal as the design object, whose band structure can be calculated
by the transfer matrix method. We take epoxy and aluminum as
materials, which are commonly used for phononic crystals [54].
Their physical parameters are shown in Table 2. By changing the
thickness of the unit cell of two layers, different band structure
can be obtained. Although we take the shear wave as an example,
the method is valid for the longitudinal wave by replacing shear
modulus with young’s modulus or bulk modulus.

The framework of this design problem is shown in Fig. 3,
where the reinforcement learning part is separated from the
mechanical calculation part, which can be easily used for other
problems. The environment part can be a commercial software
like Comsol, Abaqus, but in this work, the bandgap is calcu-
lated using our own program based on the theory described in
Section 2.2.

In a periodic unit cell, different combinations of thicknesses
will bring different band structures and different bandgap width.

The thicknesses of two layers in a unit cell are denoted by a1 and
a2, respectively. We limit (a1, a2) in the range of:

a1 ∈ [0.02, 0.12] m
a2 ∈ [0.02, 0.12] m

The initial thickness is a1 = a2 = 0.07 m, and the increment
for a step is:

∆a1 = 0.002 m, ∆a2 = 0.002 m

In the reinforcement learning part, the agent can choose either
a1 or a2 to increase or decrease with the fixed increment. This
increment size is small enough so that only causes a slight change
to the bandgap. In the given design area, there are 51×51 = 2601
kinds of combinations of geometry. In this paper, we success-
fully use the Q-learning method to achieve the desired bandgap
quickly in the given design area.

The implementation process of the Q-learning algorithm is as
follows. We define the ‘‘state’’ as (a1, a2), like a coordinate in the
Cartesian coordinate system. The actions can be ‘‘a1+’’, ‘‘a1−’’,
‘‘a2+’’ or ‘‘a2−’’. They represent which thickness to change, and
to increase or decrease. If the state exceeds the range of the
given design area after an action, the new state is considered
to be the same as the previous state. The ‘‘reward’’ is set as the
increment of the objective function π (a1, a2) from the old state to
the new state, where π (a1, a2) is determined by design objectives.
The objective function must satisfy such a property: the larger
the objective function is, the better the goal is achieved. The
objective function is the score in this ‘‘game’’, and the reinforce-
ment learning algorithm will always learn to make the value of
objective function larger. We let the agent explore 70 steps in
each episode, and take the result of the final state as the result of
this episode. After an episode finished, the agent goes back to the
initial state (0.07, 0.07) to begin the new episode. The experience
of the previous episode has been recorded and the policy has been
updated. The agent will perform better and better in the process
of exploration.

In our work, we set maximizing the first-order bandgap and
designing the bandgap of the specified range as the goals, respec-
tively. To achieve these different goals, the only thing that needs
to do is to change the objective function π (a1, a2).

2.2. Calculation of band structure of layered phononic crystals

The sketch map of a layered phononic crystal is shown in
Fig. 4. Each layer is infinitely long in the z-direction and y-
direction, and each layer is a homogeneous material. We use µn,
ρn, an to represents the shear modulus, density, and thickness of
the material of the nth layer, respectively. Assuming a harmonic
stress wave with an angular frequency of incidents at an angle of
, we consider the steady-state solution of this problem by using
the transfer matrix method [54].

From Snell’s theorem in sound wave, the kz , which is the wave
vector along the z-direction, is constant in all layers. kn represents
the wave vector of x-direction in the nth layer, which can be
calculated as kn =

√
( ω
cn
)2 − k2z . Here cn represents the shear wave

velocity in the nth layer, which can be calculated as cn =

√
µn
ρn

. In
each layer, the stress and displacement field in the kn-space can
be expressed as:

σn(x) = σ+

n ei(ωt−knx) + σ−

n ei(ωt+knx) (1)

un(x) =
σ+
n

ρnc2nkn
ei(ωt−knx) −

σ−
n

ρnc2nkn
ei(ωt+knx) (2)
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Fig. 4. Sketch map of layered phononic crystal.

Here σ+
n , σ−

n , u+
n , u−

n represent the amplitude of stress and
displacement of waves forward and backward along y-direction,
respectively.

Using the continuous condition of the displacement and stress
on the boundary between the nth layer and the (n+1)-th layer, we
have the equations:

σn(an) = σn+1(0) (3)

un(an) = un+1(0) (4)

Take Eq. (1)(2) into (3)(4), we have[
σn+1
σ ′

n+1

]
= Tn

[
σn
σ ′
n

]
(5)

Here we call Tn as the transfer matrix from the nth layer to
the (n+1)th layer, which can be expressed as:

Tn =

⎡⎣ 1 1
ρnc2nkn

ρn+1c2n+1kn+1

ρnc2nkn
ρn+1c2n+1kn+1

⎤⎦−1 [
ei(−knan) ei(knan)

ei(−knan) −ei(knan)

]
(6)

According to Eq. (5), we have the relationship between the
(n+1)th layer and the first layer:[

σn+1
σ ′

n+1

]
= T

[
σ1
σ ′

1

]
(7)

T = TnTn−1 . . . T1

For a layered phononic crystal with n layers as a unit cell, the
Bloch–Floquet periodic condition [55] can be expressed as:[
σn+1
σ ′

n+1

]
= e−ika

[
σ1
σ ′

1

]
(8)

For a series of, calculate the wave vector k to make⏐⏐T − e−ikaI
⏐⏐ = 0 (9)

and the band structure is get. Those which have no real solution
for k is in the bandgap. In the problem we consider, there are two
layers in a unit cell, and the materials are aluminum and epoxy.
When the thicknesses of the two layers are both 0.07 m, θ = 0◦,
we calculate the band structure using the above method, and get
the band structure as Fig. 5.

As can be seen from Fig. 5, the first-order bandgap range is
from 3.2 KHz to 7.8 KHz. To verify this result, we create the model
as shown in Fig. 6(a), which consists of three unit cells, where
a1 = a2 = 0.07 m. By calculating the transfer coefficient of

Fig. 5. The band structure when the thickness of two layers are both 0.07 m.

the composite, which is defined as the ratio of the amplitudes of
stresses in the output section and in the input section, the block-
ing effect of the phononic crystal on waves can be quantified.
The graph of transfer coefficient versus frequency is shown in
Fig. 6(b). Compare Fig. 6(b) and Fig. 5, the first region in Fig. 6(b)
with very low transmission coefficient exactly corresponds to the
first-order bandgap in Fig. 5, and the second-order bandgap corre-
sponds to the second region with low transmission coefficient in
Fig. 6(b), which proves the correctness of our calculation method
and show the validity of bandgap. It shows that with only three
unit cells, the phononic crystal can significantly block the wave
in the bandgap.

3. Implementation and inverse design results

In this section the interactive reinforcement learning algo-
rithm is implemented to maximize the first-order bandgap width
and to realize the specified bandgap range.

3.1. The maximization for first-order bandgap width

In many cases of applications, it is desired that the phononic
crystal could block the waves in a wide range of frequency. There-
fore, the first goal for reinforcement learning is to maximize the
first-order bandgap width within a given range of thickness. We
take the objective function π (a1, a2) as the first-order bandgap.

At the initial state (0.07, 0.07), the first-order bandgap width is
4597 Hz. Through the Q-learning algorithm, as shown in Fig. 7(a),
after several episodes, the final first-order bandgap width of each
episode has converged to 16988 Hz, where a1 = 0.032 m and
a2 = 0.02 m. As will be proved in Section 4.1, it is the maximum
bandgap.

In Fig. 7(a) we can see, after about 40 episodes of exploration,
the result converges to the optimal result. When the episodes
have been convergent, the first-order bandgap width of steps in
the last episode is shown in Fig. 7(b), from which we can see the
bandgap width increases continually with steps.

Next we make more explorations to see if the result is stable.
We make six tests, in which the agent should clear the experience
and start from the same initial state. In all of the tests, the agent
finally finds the same final state, as shown in Fig. 8. In addition,
it can be found that the routes of evolution for the six tests are
very similar. They are not the straight line from the start state to
the final state, but all goes to about (0.08,0.05) first, then turn a
corner. The principle of the route will be discussed in Section 4.1.
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Fig. 6. (a) The phononic crystal with three unit cells; (b)The transfer coefficient versus frequency.

Fig. 7. (a) The final first-order bandgap width in each episode; (b)The bandgap width in every step at the final episode.

Fig. 8. Route of evolution at final episode for 6 tests.

In order to study whether the result is sensitive to the ini-

tial state, several tests from different initial states are made. In

this study, we try four different initial points to see if the re-
sult is stable: (0.07,0.07), (0.12,0.12), (0.032,0.12) and (0.02,0.07).
Though these four initial states vary substantially, all of these
cases reached the same final state (0.032,0.02) finally. The evolu-
tion routes of different initial states are shown in Fig. 9(a). They
all reach the same final state.

In order to quantify the efficiency of the algorithm on the
problem, we define the parameter ‘‘states ratio’’ as:

states ratio =
explored states

all states
The ‘‘explored states’’ includes all the arrived states from the
beginning to the end. The lower the states ratio is, the less time it
takes to converge to the final state. The states ratios of different
initial states are shown in Fig. 9(b). It can be seen from the figure
that although the initial state and the final state are far away,
the final state can still be found in a very short relative time,
which shows that reinforcement learning is feasible and efficient
in this mechanical design problem. In addition, unlike many
optimization algorithms [56–60], the reinforcement learning not
only concerns about the final result but also concerns about the
route of evolution. It learns the mapping from states to actions,
which leads the route of revolution having principles behind. This
will be discussed in Section 4.1.
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Fig. 9. (a) Routes of evolution of different initial states; (b) States ratio of different initial states.

3.2. Customized design of bandgap range

In many scenarios, the requirement of the phononic crystal is
to block the waves in the specified frequency range. It requires
designing a phononic crystal with a specified bandgap. We just
modify the objective function as follows and achieve the goal.
We record the bandgap range from x Hz to y Hz as [x, y]. If
the specified bandgap range is [a, b], and the current first-order
bandgap is [x, y], we take the value of objective function as −[(x−
a)2 + (y− b)2]. The agent will make [(x− a)2 + (y− b)2] as small
as possible, and the bandgap range will be close to the target
bandgap.

We use [10000,20000], [6000,8000], [3000,9000], [6000,
20000], [4000,12000] as our specified bandgap ranges, respec-
tively. These bandgap ranges are set so differently to see if
reinforcement learning can achieve all kinds of goals.

As a result, they all reach the target bandgap range at a satis-
factory accuracy, although some targets are limited by the design
area. The evolution route and the bandgap of the final states
are shown in Fig. 10(a). The goal of [10000,20000] achieves at
[9291,19900], [6000,8000] achieves at [5328,8398], [3000,9000]
achieves at [2817,8747], [6000,20000] achieves at [6522,19542].
Their final bandgap range is very close to the target bandgap. The
first three goals finally stop at the boundary of the design area
and may get better performance if the design area is larger. The
state ratios of different optimization objectives are calculated and
shown in Fig. 10(b). It can be seen that on this task, the Q-learning
method still has very high exploration efficiency, even faster than
the task in Section 3.1.

Through above research, it shows that the Q-learning method
performs well in realizing the specified range of bandgap. In
addition, the research shows that layered phononic crystals can
achieve rich bandgap ranges. However, the goal of [6000,20000] is
not achieved very accurately. In Section 4.2 we will prove that the
goal is not achievable and discuss the achievable bandgap when
the materials are given.

4. Discussion

From the above two tasks, it shows that Q-learning algorithm
is applicable in finding the inverse design of mechanical prob-
lems, and has advantages in efficiency. For different goals, the
only thing to do is to change the objective function, which greatly
increases the adaptability of this method. On the basis of the
above study, we make a further analysis about the characteristics
of revolution route and the achievable bandgap range.

4.1. The characteristics of revolution route

The reinforcement learning learns the mapping from states
to actions, so its choice in each state is of special meaning. The
consistency of the routes in Fig. 8 proves that the evolution routes
are not random. In order to study the characteristics of revolution
routes in Fig. 8 and in Fig. 9(a), we need to know the bandgap
width of every state. Through the derivation of band structure of
the layered phononic crystal, it can be proved that the bandgap
width g(a1, a2) satisfies:

g(ka1, ka2) =
1
k
g(a1, a2) for all k > 0 (10)

So by fixing a2, study how the value of g(a1, a2) changes with
a1, the value of g(a1, a2) at every state can be deduced. We fix
a2 = 0.02, the curve of bandgap width with a1 is shown in
Fig. 11(a). Thus, the first-order bandgap width in the whole area
can be calculated by applying Eq. (10) and is shown in Fig. 11(b).
It can be seen that a1 = 0.032, a2 = 0.02 is the state with
the largest first-order bandgap width, which suggests that the
final result of reinforcement learning in this problem is the global
optimal solution. In Fig. 7(b) we can see, the bandgap width
is continuously increasing along the evolution route. And from
Fig. 11(b) it can be inferred that when there are several actions
that can increase the objective function, the agent will choose one
of them with equal probability. In the path from (0.07,0.07) to
about (0.08,0.05), increase a1 or decrease a2 can both increase the
bandgap width, and from (0.08,0.05) to the final state, decrease
a1 or decrease a2 can both increase the bandgap width. When the
agent reaches the boundary, only one action could increase the
bandgap. The choices with probability make the routes in Fig. 8
different but similar. Therefore, the evolution route learned from
the Q-learning method, can be used in the scenarios where the
continuous increase of the objective function is required.

4.2. The achievable bandgap range

From the research in Section 3.2, we get abundant bandgaps
through reinforcement learning in the design area. And the result
of explorations inspires us to study which bandgap ranges are
achievable when the materials are given and the design area is
not limited. Apply Eq. (9) to the unit cell of two layers, it can be
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Fig. 10. (a) Evolution routes and final results of different goals; (b) States ratios of different goals.

Fig. 11. (a) Bandgap width versus a1 when a2 = 0.02; (b) Bandgap width in the selected area.

deduced that solving the bandgap structure is just to solve this
equation:

cos ka = cos(
ωa1
c1

) cos(
ωa2
c2

) −
1
2
(F +

1
F
) sin(

ωa1
c1

) sin(
ωa2
c2

) (11)

where F =
ρ1c1
ρ2c2

is the impedance ratio of the two materials.
If an makes the right side of Eq. (11) between −1 and 1, then
the is in pass band, otherwise it is in the bandgap. By defining
the first-order relative bandgap as 2 ·

ωmax−ωmin
ωmax+ωmin

, where , ωmin are
the upper boundary and the lower boundary of the first-order
bandgap, respectively, it can be deduced from Eq. (10) that the
relative bandgap is only related to a1c2

c1a2
and F , that is to say:

2 ·
ωmax − ωmin

ωmax + ωmin
= f (

a1c2
c1a2

, F ) (12)

The first variable in function f depends on the material and the
geometry, and the second variable only depends on the material.
Next we will give a theorem and prove it.

Theorem. Whether the bandgap range [x,y] is achievable only
depends on if its relative bandgap width, 2 ·

x−y
x+y is achievable.

Proof. If its relative bandgap width is achievable, it means that
there exists an achievable bandgap range [x’, y’], whose relative
bandgap is the same as [x,y]. We assume the state of [x’, y’] is
[a1, a2]. Eq. (10) shows by dividing a1, a2 by k, we can obtain the
bandgap range [kx’,ky’]. Find k to make ky’=y, then the following
equation holds:

ky′
− kx′

ky′ + kx′
=

y − kx′

y + kx′
=

y − x
y + x

(13)

From Eq. (13) we can get

kx′
= x (14)

So the bandgap range [x,y] is achieved at the state of [ka1, ka2].
The proof finishes.

From the theorem, we only need to find the range of function
in Eq. (12). In addition, it is obvious that f (x, y) = f ( 1x , y) =

f (x, 1
y ). So we only need to calculate the range of f (x, y)|0 ≤ x ≤

1, y ≥ 1.
By calculation we have the graph of relative bandgap width

as shown in Fig. 12. It shows that the function f increases as x
increases, and the larger the F(F≥1) is, the larger the range of
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Fig. 12. Graph of relative first-order bandgap width at several impedance ratios.

bandgap is. When F=1, there is no bandgap at all. In the materials
we choose, the F is 6.46. So it is proved that the maximum relative
bandgap width is 1.05.

Among the bandgaps we specified in Section 3.2, the relative
bandgap width of [6000,20000] is 1.08, which is out of the range
of 1.05, while the other four goals are all in the range. It means
the bandgap range [6000,20000] cannot be exactly realized. That
is why the final bandgap range of this goal has still a little distance
from the specified bandgap range, though it is still acceptable.

5. Conclusion

In this paper, the Q-learning algorithm, which is one of the
reinforcement learning methods, is successfully applied in the
inverse design of the band structure of layered phononic crystals.
Taking maximizing the first-order bandgap width and achiev-
ing the specified bandgap range as examples, the application
prospect of reinforcement learning in mechanical design prob-
lems is demonstrated. Conclusion remarks are drawn as follows:

(1) As can be seen from the flow of the Q-learning algorithm,
the interactive inverse design method can be applied to
various mechanical design problems by defining different
states, actions, and rewards. For the problem of the same
model, it is easy to achieve different goals by changing the
objective function.

(2) The method has a great advantage in efficiency. Different
from general optimization methods, the evolution route
will keep the objective function increasing, which can be
useful in some special scenarios. When there are several
actions to increase objective function, the agent will ran-
domly choose one of them.

(3) The achievable bandgap range of the layered phononic
crystals with two materials has been discussed. It can be a
reference for choosing the size and the materials to design
phononic crystals.
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