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In this paper a multi-agent simulation was implemented to analyze the dynamics of different market mechanisms with
a Reinforcement Learning algorithm in the context of a carpooling market. The agents in the simulation, car owners
(COs) and non car owners (NCOs), had to sell or buy a car seat for multiple rounds by picking one of two possible
mechanisms: Dutch Auction or Fixed Price. In the beginning of the simulation the agents have no information about
the efficiency of these mechanisms and they are chosen with the same probability. In the course of the simulation a
Reinforcement Learning algorithm alters the agents' preferences for the two mechanisms depending on their
cumulative payoffs. The key finding is that sellers have a clear preference for the Dutch auction mechanism with
differing degrees dependent on the seller/buyer ratio. Buyers on the other hand have no significant preference for
any mechanism. If these results are replicable, they suggest that an increased utilization of the Dutch auction could
lead to an expansion of the carpooling market, increasing its impact as an alternative means of transportation.
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1. Introduction

Carpooling, also known as ridesharing, is the term used to describe a
pool of at least two people who travel together to a common destination
using a vehicle owned by one of them (Teal (1987)). Carpooling (as part
of the Sharing Economy) is a sustainable concept to efficiently cover
distances cooperatively. From a societal viewpoint, it is associated with
numerous benefits such as reduced energy consumption and Greenhouse
Gas (GHG) emissions, improved air quality as well as reduced road and
parking infrastructure demand.

Economically speaking, carpooling markets are so-called two-sided
markets. The theory of two-sided markets has been developed to analyze
markets in which two distinct user groups (sets of economic agents) interact
through an intermediary platform and indirect network effects are important
between both user groups (see Rochet and Tirole (2003) and Rochet and
Tirole (2006) for pioneering work). While in traditional one-sided transport
markets firms compete only for the customers and hire workers (e.g. taxi
cab, train or bus drivers), in the carpooling market platform providing
firms compete both for passengers and drivers (Cohen and Zhang (2017))
and the core business of the platform is to bring both sides “on board”. The
success of a carpooling network depends particularly on the number of active
users on both sides of the market equation. Therefore a carpooling provider
must implement an efficient allocation mechanism to attract drivers as well
as passengers (Arning et al. (2013), Knapen et al. (2013) and Galland et al.
D. Kayar).

ier Ltd. This is an open access artic
(2014)). This describes a key research focus of the formal economic two-
sidedmarkets literature, which in particular analyzes pricing choices. Pricing
in two-sided markets is more complex than in one-sided markets and is
strongly affected by indirect network effects (Rysman (2009)). One of the
most prominent allocation mechanisms for online carpooling platforms
works as follows: Drivers can offer free seats for a specific route and search
for potential passengerswho can accept offers or request free seats. The prices
to be paid by the passengers can be set by the car owners (who offer available
seats) only within certain limits.

The main question investigated in the present paper is: Are there more
efficient allocation mechanisms for carpooling platforms? For this purpose
we implemented a multi agent framework for simulating various types of
competing market mechanisms (allocation mechanisms) to allocate drivers
and passengers. In the presented study we compared two market
mechanisms. The first mechanism we refer to as Fixed Price is adopted in
practice by the largest carpooling platform Blablacar (Farajallah et al.
(2016) and Shaheen et al. (2017)) and can be viewed as a standard
mechanism. The second mechanism is a Dutch Auction. A Dutch auction
has the property that it ends immediately after a bidder proposes a price
and could thereby reduce waiting times for the passenger. A similar
approach to the one presented in this paper can be seen in Hailu and
Schilizzi (2004), where they investigated whether an auction performs
better over time then a fixed-price scheme. In the following subsections
we discuss the operationalized Reinforcement Learning algorithm, which
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

http://crossmark.crossref.org/dialog/?doi=10.1016/j.trip.2020.100190&domain=pdf
http://dx.doi.org/10.1016/j.trip.2020.100190
deniz.kayar@hochschule-rhein-waal.de
http://dx.doi.org/10.1016/j.trip.2020.100190
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
https://www.journals.elsevier.com/transportation-research-interdisciplinary-perspectives
https://www.journals.elsevier.com/transportation-research-interdisciplinary-perspectives


T. Pitz et al. Transportation Research Interdisciplinary Perspectives 7 (2020) 100190
is used for agent decision making between the two allocation mechanisms
in the simulation.

1.1. Learning algorithm: reinforcement learning

The agents in this paper can choose between the two mechanisms,
Dutch Auction and Fixed Price. They can be seen as the agents' two
strategies, which have to be selected in each period of the simulation.
After each period the outcome of a strategy is used to update the
propensities in the Reinforcement Learning algorithm. That means future
decisions depend on preceding outcomes. This algorithm is described in
detail in Section 2.

The agents' decision behavior was altered by a Reinforcement Learning
process (Bush and Mosteller (1955)). The Reinforcement Learning
algorithm was chosen in this paper because except from the initialization
it is one of the few basic parameter free learning algorithms. Additionally
in (Chmura (2005), p.107), Chmura and Pitz (2007), Selten et al. (2006),
Chmura et al. (2012) and Goldbach et al. (2019) it was shown that it is
an appropriate algorithm to describe human behavior, where participants
in experiments are confronted with a scenario of interactive and iterative
binary decision making. For example observed fluctuations around a
Nash equilibrium could be predicted quite well. The software presented
in this paper has an open architecture, which allows implementing further
types of learning algorithms.

In the Reinforcement Learning process, agents' attitudes are represented
as natural numbers,which are called propensities. In each period propensities
are altered proportionally to the payoffs of previous periods. The normalized
propensities are used as probabilities, which control future strategic
decisions. The system determines the probabilities for specific future
decisions based on past experiences. There is a positive correlation between
successful strategies and the probability of choosing the same strategy
again (Moriarty and Schultz, 1999). This approach has gained significant
attention and extensive study in the last 20 years (Kaelbling et al., 1996).
Particularly in economic literature it was discussed in Cross (1973), Harley
(1981), Arthur (1991), Arthur (1993), Roth and Erev (1995), Erev and
Roth (1998), Camerer and Ho (1998), Camerer and Ho (1999) and Chen
and Hsieh (2009).

There are different applications of Reinforcement Learning with the
general aim to solve similar sequential decision tasks through non-
supervised interactions with the environment ((Moriarty and Schultz,
1999, p. 242); (Barto et al., 1990). Reinforcement Learning is widely
used in the field of Artificial Intelligence, especially in combination
with Artificial Neural Networks (ANN) and Deep Learning. Besides
Supervised and Unsupervised Learning, it is an additional paradigm to
train an ANN.

1.2. Allocation mechanisms and related work

The Dutch Auction (having its origin in the 17th century flower sales
of the Netherlands) is a sequential descending bid auction with a
successively decreasing price. Aalsmeer, for example, the largest flower
auction in the world, has an annual turnover of 4.6 trillion euros and
2956 employees. They sold 12.5 trillion flowers and plants in 2016
(FloraHolland, 2018). In a Dutch Auction the first bidder who accepts
the price wins and the auctions terminates immediately. In the present
paper Dutch Auctions on the simulated carpooling market will be
conducted simultaneously (the quantity of auctions depends on the
number car owners who decide to find a passenger via auction). Its
advantage in comparison to an English Auction (ascending) is, that a
buyer can stop the auction if the reservation price is reached. Therefore,
a buyer is not forced to wait for the end of the auction to find out if a bid
was successful. For this reason Dutch Auctions are more suitable for
carpooling markets, where supply and demand exist only for limited
time periods. The Dutch Auction is a sequential auction where bids are
made in steps, so after every round additional information about
bidding behavior will be disclosed.
2

There are already some approaches, which apply Reinforcement
Learning to simulated bidding behavior in auctions. See for example
Pentapalli (2008), Hailu and Schilizzi (2004) or Guerci et al. (2013,
2014) for the evaluation of the performance of auctions under dynamic
settings using agent-based modeling. In contrast we focus not on bidding
behavior but on the decision between two market mechanisms.

Despite the high efficiency of auctions, which is also demonstrated in
the presented simulations, existing carpooling platforms generally do not
use Dutch Auctions but rather Fixed Price (Posted prices) as an allocation
mechanism. The reason could be that carpooling providers assess Dutch
Auctions as less understandable and thus unsuitable for the average
consumer. Nevertheless this decision needs further investigation.

The Fixed Price (price for a free seat) in the presented simulation
corresponds to the individual reservation price of a car owner. A buyer
can decide to take the lift for the specified price or not. Bargaining (a further
alternative mechanism) is not possible with posted prices. Analysis of
the use of auctions versus posted prices has a rather long tradition (for
pioneering work see e.g. Wang (1993, 1998). Kultti (1999)(see also Kultti
and Virrankoski (2004)), demonstrating an equivalence of auctions and
posted prices under specific conditions (e.g. large market and homogeneous
buyers), whereas compared to bargaining, posted -price markets dominate.

While auctions are associated with optimal results if transaction costs
are zero, posted pricesmay be superior if auctions are costlier. Observations
in the real world appear to support this theoretical insight. Whereas Fixed
Price seems to be the dominating allocation mechanism for standardized
goods with a commonly understood value, auctions are typically used for
the sale of more specialized and (often) more scarce goods. Auctions have
also traditionally been the predominant mechanism used for the sale of
goods over the internet. Virtual internet platforms allow for a significant
reduction of the transaction costs associated with auctions compared to
physical platforms. However, more recently, there has been an increasing
tendency towards the use of posted prices within online platforms (Einav
et al., 2018).

1.3. Contributions

In the following sections we describe the dynamics of two complex,
competing allocation mechanisms. There already exists a well-developed
mathematical framework for equilibrium and revenue analysis for each
mechanism (for example (Ricardo, 1817) for the Fixed Price Mechanism
and (Klemperer, 1999) for Auctions). Nevertheless, the advantage of an
“‘experimental”’ multi agent simulation is, that it focuses on aspects
which can be only analyzed mathematically, taking enormous effort: An
example of this is a dynamic combination of both mechanisms, their
competing behavior over many periods and the effect of variation of a
high number of parameters. The authors believe that this method – in
addition to standard mathematical theories, provides a profound insight
into the problem of designing market and allocation mechanisms.

2. Methodology and problem formulation

In the presented simulation a fixed number of agents have to travel from
one location to another by car or train. This is repeated for a fixed number of
periods T. The agents are divided into two groups: car owners (COs) and non
car owners (NCOs). The first group are the drivers and sellers of seats and the
second group are potential passengers and buyers of seats. In each period t,
with t ∈ [1,...,T], each CO offers one of his car seats to NCOs. Each agent,
whether CO or NCO, has a reservation price pr which is a natural number
between [prmin, prmax]. For each agent in each period, pr is independently and
randomly chosen according to a uniform distribution on [prmin, prmax].

In each period, each agent has to choose randomly between two
strategies: Fixed Price or Dutch Auction. In the first period the mechanisms
are picked with the same probability. In the following periods the
probabilities change by updating propensities due to a Reinforcement
Learning algorithm (Section 2.4). The propensities depend proportionally
on the cumulative payoffs of the previous periods. The payoff is defined
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in Section 2.3. COswho chosemechanism x in period t can only bematched
with NCOs who also chose the mechanism x in period t.

If NCOs do not find a lift they have to travel by train. The train price is
ptrain with ptrain ≥ prmax.
2.1. Dutch auction

If a CO i chooses Dutch Auction in period t, the price of the auction for i's
seat is set to a start price p1 with p1> prmax in thefirst step of this auction. The
price of a Dutch Auction is decreased in each step s of the auction by the
step width w ∈ [wmin, wmax], a natural number which is determined at the
beginning of a Dutch Auction and stays constant throughout the lifetime
of the auction. If the price in step s is larger than the reservation price of
all NCOs, who chose Dutch Auction, the next step s + 1 is started and the
auction price lowered by w. The maximal step count for Dutch Auctions is
set to smax in order to ensure that each auction stops.

If the current price of the auction is smaller than or equal to the
reservation price of a randomly chosen NCO j, who has chosen Dutch
Auction, i's auction stops and j travels in i's car. Otherwise, if the current
price in a given step s of the auction is smaller than i's reservation price
the auction stops and no agent is found to travel in i's car.

The starting time is determined randomly for each auction with the
parameter ŝ, which serves as a price increment, so that the auctions start
asynchronously and the sequential character of carpooling auctions is
simulated: Each Fixed Price or Dutch Auction starts at a predetermined
start time ŝ∈½̂smin; ŝmax�. Different price increments are used to represent
different starting times.

It has to be noted, that bid behavior and risk attitude of NCOs in the
present simulation is elemental. Also information changes during bidding
phases do not alter the agents bid behavior or risk aversion. There are
merely two lists - one for auctions and one for bidders. Auctions from the
auction list are matched with bidders from the bidders list if the bidders
reservation price is greater than or equal to the auctions current price.
The algorithm starts with the top most auction and compares its price
with the first bidders reservation price. If it doesn't fit, it checks the
following bidders it finds one bidder that meets the requirement ((see
Fig. 1) for example matchings).
2.2. Fixed price

For the Fixed Price mechanism seats are sold immediately without
waiting for any auction mechanism (e.g. falling or rising prices) to take
place. For a CO i in period t the price of i's seat is set to i's reservation
price in that period. If there is a randomly determined NCO j, whose
reservation price is larger or equal to the price of i's seat, j chooses i's
offer. Otherwise, if the price of i's offered seat is greater than the reservation
price of all NCOs, who chose Fixed Price, the Fixed Price offer is finished
and no agent is found to travel in i's car.

At each time step the matching of an offer and a demand with fitting
reservation prices is performed randomly. Technically the list of open offers
and the list of potential buyers is mixed randomly in each step for both
mechanisms.
Fig. 1. Auction and bidder list matching (g
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2.3. Payoff

If the strategy chosen by CO i does not result in finding a NCO in period
t, i has to travel alone and the seat could not be sold, i.e. the revenue for i in
period t is 0. That means for a CO the total payoff is 0 − pri = − pri.

If a NCO j does not find a seat in period t, j has to take the train and
therefore has to pay the train price, which is higher than prmax. In conclusion
the total payoff for j in period t is (prj − ptrain) ≤ 0.

If otherwise an NCO j takes the seat in i's car for paying the price p in
period t the resulting payoffs for these two agents in period t are: πi = p −
pri for i and πj = prj − p for j.

2.4. Reinforcement learning

In the present paper the Reinforcement Learning described in Chmura
and Pitz (2007) and Selten et al. (2006) was implemented, which can also
handle negative payoffs. Each agent in the simulation chooses one strategy
x out of n strategies for each period t of the simulation, where t∈ (1,..,T) and
T denotes the number of periods. The probability Pxt+1, that an agent
chooses strategy x in period t + 1 is proportional to its propensity Qx

t+1.
Whenever a strategy x has been chosen in period t the corresponding

payoff πt is added to the propensity Qx
t if the payoff is positive. For positive

payoffs the propensity can be interpreted as the payoff sum of the previous
periods.

Initialization:
For each agent let [Q1

1, ...,Qn
1] be the initial propensities, where n is the

number of possible strategies.
Period 1:
Each agent chooses strategy x with probability

Q1
xP

y¼1
nQ1

y

ð1Þ

where Qy
1ε[Q1

1, ...,Qn
1], the initial propensities of all possible strategies.

Periods t + 1:
For each agent, let πt be the payoff in period t and x the chosen strategy

in period t. Then the propensities for period t + 1 are calculated as follows:

CASEI πt≥0ð Þ : Qtþ1
y ≔

Qt
y þ πt ; if y ¼ x

Qt
y; if y≠x

CASEII πt < 0ð Þ : Qtþ1
y ≔

Qt
y; if y ¼ x

Qt
yþ j πt j; if y≠x

Each agent chooses strategy x with probability

Qtþ1
xP

y¼1
nQtþ1

y

ð2Þ

In period 1 the probabilities for each strategy x are initialized with 1/n
and propensities are initialized with 1. In the present paper n=2 and the
possible strategies are Dutch Auction and Fixed Price.
reen arrows are successful matchings).



Algorithm 1
auctionSimulationMain().
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In Fig. 2 each step in a period of the simulation for a bidding agent is
depicted. The algorithm is analogical for a selling agent. The algorithm is
described in pseudocode in Algorithm 1. Other subroutines can be found
in Section 6.

2.5. Implementation

The simulation has been implementedwith Java. Single simulation runs
are independent from each other, so the software has been designed
multithreaded to accelerate the execution. That means that with increasing
CPU core count more simulations can be executed at the same time.
Therefore, depending on the CPU and the count of simulation runs the
execution will vary in run time. The code is available online and can
be accessed here: Kayar (n.d.). The software architecture is expandable by
different distributions for the reservation prices, learning algorithms and
allocation mechanisms. Right now there are uniform and normal
distributions available for the generation of reservation prices, a
reinforcement learning algorithm serves as the learning algorithm and
Dutch Auction and Fixed Price are implemented as allocation mechanisms.

In Algorithm 1 the pseudo code for the simulation's main function is
depicted. In the beginning the configuration file (input XML file) is read
and all relevant variables are initialized with the values specified in the
XML tags. For each period of a simulation the reservation prices and
strategies are randomly determined. Depending on the chosen strategies
all agents are put into one of four lists depending on whether they are
NCOs or COs andwhether their strategies are Dutch Auction or Fixed Price.

After these first initialization steps the “execAuctions” (Algorithm 2)
function is called once for the two Dutch Auction lists and once for the
two Fixed Price lists. The function is executed recursively. That means it
calls itself (nested calls) until an exit condition is met. With each call the
auctions and NCOs, that were matched in the superordinate function
calls, are removed from the input lists.

Before the auctions are executed the input list sizes are checked. If one of
them is empty it means either all COs found a buyer (count of COs is 0) or all
NCOs have found a seat in a car (count of NCOs is 0) then the execution of
“execAuctions” will be interrupted. For the first case (all seats are sold) the
remaining NCOs take the train and are removed from the NCOs list. For the
Fig. 2. One period of the simulation for a bidder.
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second case all remaining auctions are marked as finished, their foundBuyer
flag is set to false and the auctions are removed from the COs list.

If neither of the conditions are met all auctions that belong into the
current global time step are randomly permuted and executed in the new
order. The algorithm then again tries to match buyers with the currently
available auctions.

The matching of buyers and auctions is described in Algorithm 3. First
the current price of an auction is updated according to its step width. If
the current price is lower than the reservation price of the owner, the
auction is finished and no buyer was found for this auction. The payoff
for the CO is 0 then and the auction is removed from the auction list. If
the current price is still higher than the reservation price, the list of possible
buyers is randomly shuffled and NCOs try to match with the current
auction, startingwith thefirst NCO in the list. If there is amatch the payoffs,
propensities and probabilities are updated for the involved COs and NCOs
according to the Reinforcement Learning algorithm (Section 2.4).

Propensities are updated in Algorithm 4. The sum of payoffs for a
strategy is increased by the current payoff if the strategy has been chosen
for the current round. The cumulative sums over all strategies are updated
accordingly.

Depending on the propensities the probabilities are updated in
Algorithm 5. The CDF (cumulative distribution function) object is a map
data structure, that holds the probability ranges for each strategy. In the
first simulation step these ranges are [0,0.5] and ]0.5,1] for the two possible
strategies. In further rounds these ranges shift depending on the payoffs and
propensities of chosen strategies and the evaluation of Formula 2.

Finally, Algorithm 6 generates a random number and chooses a strategy
if the random number falls into its probability range.



Table 1
Simulation parameters.

Parameter Description Value

#COs Count of car owners 25
#NCOs Count of non car owners 100
prmin

Minimal reservation price 1
prmax

Maximal reservation price 100
ptrain Train price 100
ps Dutch auction start price 110
wmin Minimal Dutch Auction price step width 1
wmax Maximal Dutch Auction price step width 5
ŝmin Minimal Dutch Auction start time 1
ŝmax Maximal Dutch Auction start time 10
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3. Results

Several simulations have been conducted: multiple runs with varying
agent counts. All analyzes were done with R 3.3.2 (R Development Core
Team, 2008). The data visualization library ggplot2 2.2.1 (Wickham,
2009) was used to generate the figures.

If not stated otherwise all simulation runs were executed with the
parameters listed in Table 1. The train price was set to prmax

=100.
Therefore, taking the train results in the lowest possible payoff for an
NCO. In each period the reservation price for each agent was determined
by a random uniform distribution between 1 and 100. The number of
NCOs was set to 100 and the number of COs was set to 25. Dutch auction
step widths were randomly chosen between 1 and 5 and starting times
were randomly chosen between 1 and 10.

3.1. Multiple runs

The simulations was repeated 100 times independently and the mean
values for payoffs and strategic preferences have been analyzed. As can
be seen in Fig. 3 (left) there is a clear increasing preference for Dutch
Auctions for COs in the course of the simulation runs.

The mean payoff (πi) for all COs (Fig. 3 (right)) is 12.85 with a mean
inner standard deviation of 50.58 per period and simulation and a standard
deviation of 9.96 over 1000 periods. These values are close to the values of
the previous single simulation run. The mean payoff seems to stay almost
constant throughout the simulation although there is a clear preference
Fig. 3. Mean fraction of COs who chose Dutch A
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change to Dutch Auction early in the simulation runs. We assume that
due to the cumulative behavior of Reinforcement Learning there is a
noticeable effect on the preference but not on the mean payoff. The
situation is not completely clear and this may be attributable to modeling
limitations. Potentially it is possible to clarify this through deeper analysis
of the model by variation of the Reinforcement Learning propensities.

For NCOs on the other hand the payoff starts negative and decreases in
the first few periods of the simulation (Fig. 4 (right)). The average payoff
for NCOs is −44.38 with a mean inner standard deviation of 35.27 per
period and simulation and a standard deviation of 2.86 over 1000 periods.

NCOs stay indifferent regarding the Dutch Auction and Fixed Price over
all periods and simulation runs (Fig. 4 (left)). On average 50.21 out of 100
NCOs chose Dutch Auction with a standard deviation of 5.17.

3.2. Multiple runs with varying car owner count

In this section a few sequences of multiple simulations with a different
CO/NCO ratios are described. The ratios were varied as follows: There
was a constant number of NCOs in each simulation: 100. The number of
COs on the other hand took values between 10% up to 200% of the number
of NCOs. For each of these 5 configurations we conducted 100 simulation
runs with each run consisting of 500 periods, with the first period being
indexed with 0 and the last period with 499 (Fig. 5). In Tables 2 and 3, 5
of the results of the last periods for the different configurations are listed .

In Fig. 6 (left) the fraction of COs, who chose Dutch Auction for all five
configurations is depicted. In all scenarios the preferences converge
uction (left) and their mean payoff (right).



Fig. 4.Mean fraction of NCOs who chose Dutch Auctions (left) and their mean payoff (right).

Fig. 5. The payoffs from Table 3 as boxplots.
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towards the Dutch Auction in different degrees. The convergence seems to
depend on the CO/NCO ratio. For simulations with high numbers of COs
the preference is lower than the ones with small numbers of COs, but it
still holds true (see also Fig. 7). This is in line with economic intuition in
regard to supply and demand ratios.

In the simulations with high CO counts (100 and 200) there is one peak
in the starting periods where the preference stops growing and falls back to
a specific value, settles and stays there until the end of the simulations. In
these case the Dutch Auctions seem to be overrated in the first few periods.
In the other scenarios (10, 20 and 50) the probabilities for choosing Dutch
Auction is continually increasing without any relapse.
Table 2
Results for final periods with varying CO counts (COs: Number of COs; NCOs:
Number of NCOs; FoundBuyers: Mean number of COs, that found a buyer;
TookTrain: Mean number of NCOs, that took the train; NCO Dutch: Mean fraction
of NCOs that Dutch Auction; CO Dutch: Mean fraction of COs that chose Dutch
Auction).

COs NCOs FoundBuyers TookTrain NCO Dutch CO Dutch

10 100 9.08 90.92 0.49 0.97
20 100 17.14 82.86 0.49 0.89
50 100 39.36 60.64 0.49 0.71
100 100 67.57 32.43 0.47 0.59
200 100 89.59 10.41 0.45 0.55
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In Fig. 6 (right) the payoffs for COs for the different configurations
are depicted. As expected there is a negative correlation between CO
numbers and mean payoff. With decreasing CO numbers the mean
payoff increases. That means COs were less likely to sell a seat, which
is caused by the higher number of competing sellers. With increasing
numbers of COs less seats will be taken and the mean payoff for COs (πi,
see Section 2.3) decreases. The observed higher variance in the mean
payoff for low CO numbers is caused by the lower number of data points
for calculating the mean.

Fig. 8 (left) shows the fraction of NCOswho chose Dutch Auctions in the
different scenarios. With increasing numbers of COs, the NCOs show a
preference for Fixed Price. Nevertheless, the probability of choosing
Dutch Auction is lower for NCOs than for COs.
Table 3
Mean Payoffs for final periods with varying CO counts (πi: Mean payoff for COs; π j:
Mean payoff for NCOs; σ: standarddeviation).
COs NCOs πi σð Þ π j σð Þ

10 100 30.49 (16.26) −48.09 (2.96)
20 100 18.14 (10.02) −46.19 (2.89)
50 100 0.74 (6.09) −35.48 (3.33)
100 100 −13.93 (3.68) −18.47 (3.67)
200 100 −30.08(2.48) −0.65 (4.58)



Fig. 6. Fraction of COs who chose Dutch Auction (left) and their mean payoffs (right) with varying CO/NCO ratios.
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The mean payoff for NCOs is depicted in Fig. 8 (right). The payoff is
negative in almost all cases. But it improves with a higher number of
COs, since the possibility to get a seat increases with the number of
COs.

3.2.1. Simulation runs with deactivated learning behavior
The two mechanisms Dutch Auction and Fixed Price were investigated

separately. In Table 4 the resulting mean payoffs for COs and NCOs (Only
Dutch Auction and Only Fixed Price) are shown.

There are higher mean payoffs for COs in the Dutch Auction scenario
compared to the Fixed Price scenario. They range from −25.96 to 37.85,
whereas in the Fixed Price scenario they range from −33.06 to −0.99.
Fig. 7.Mean fraction of COs who chose Dutc
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For the NCOs on the other hand there is only a slight difference between
the two scenarios, at least for the first three CO/NCOs ratios with CO
numbers lower than NCO numbers. Dutch Auctions lead to slightly lower
mean payoffs for NCOs: a range of−11.68 to−48.72 opposed to a range
of−0.65 to−43.96 in the Fixed Price scenario.

We assume that the better performance of Dutch Auctions for COs and
the only slightly lower mean payoffs for NCOs in Dutch Auctions compared
to Fixed Price lead to the observed preference for Dutch Auctions by COs in
the simulations with active learning behavior.

Also shown in Table 4 are the standard deviations of the mean
payoffs. There is a relatively high variation compared to the regular
simulations with active learning behavior (Table 3). We assume that
h Auction with varying CO/NCO ratios.



Fig. 8. Fraction of NCOs who chose Dutch Auctions (left) and their mean payoffs (right) with varying CO/NCO ratios.

Table 4
Mean Payoffs for final periods with varying CO counts for runs with deactivated learning behavior (πi: Mean payoff for COs; π j: Mean payoff for NCOs; σ: standard deviation.

Only Dutch Auction Only Fixed Price

COs NCOs πi σð Þ π j σð Þ πi σð Þ π j σð Þ

10 100 37.85 (43.34) −48.72 (29.88) −0.99 (9.90) −43.69 (36.06)
20 100 30.78 (48.72) −47.26 (31.58) −1.52 (12.12) −38.83 (41.29)
50 100 10.95 (56.46) −41.79 (37.08) −6.33 (23.53) −25.33 (48.73)
100 100 −8.03 (57.09) −29.23 (39.89) −18.16 (34.22) −4.66 (46.05)
200 100 −25.96 (51.53) −11.68 (31.95) −33.06 (36.33) −0.65 (27.90)

Fig. 9. Fraction of COs, who chose Dutch Auctions in increment scenario.
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Fig. 10. Empty rides in increment scenario.
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this might be caused by the higher number of NCOs available as
potential buyers compared to the regular simulation runs, which causes
higher variance in the payoffs of completed deals. If we take the 10 to
100 CO/NCO ratio for example we only have about 50 NCOs available
in the simulations with learning behavior, whereas in the runs without
learning behavior all 100 NCOs are available for the chosen allocation
mechanism.

4. A modified fixed price scenario

The design of allocation mechanisms in the present paper - Dutch
Auction and Fixed Price - favors Dutch Auctions. Obviously Fixed Price
sellers can only achieve selling prices, which are equal to their reservation
price, whereas in Dutch Auctions, selling prices are greater than or equal to
the reservation prices in the worst case.

Therefore, the scenario has been modified by adding a positive
increment to the initial fixed selling prices, which were equal to the
reservation prices in the original scenario. This causes strictly positive
payoffs for sellers if a trade is successful, which generates higher
propensities. The parameters are identical to the ones in the other
simulations (see Table 1) and the following increments have been used: 0,
5, 10, 15 and 20.

Nevertheless, the changed scenario doesn't increase the preference for
choosing the Fixed Price mechanism. In fact, the opposite is true. With
higher increments on the sellers reservation prices the preference for
Dutch Auctions increases (see Fig. 9). This is caused by the fact, that with
higher selling prices it is less likely to find a matching buyer. This leads to
more unsold seats (see Fig. 10), which has a negative effect on the average
payoff with a Fixed Price strategy.

5. Conclusion

In the present paper an artificial and simplified scenario is described,
which compares two carpooling mechanisms. Under the parameter
initializations, which are described in Section 3, where sellers (COs) and
9

buyers (NCOs) had to decide between two mechanisms - Dutch Auction
and Fixed Price - the Dutch Auction was clearly preferred by sellers. Buyers
slightly preferred the Fixed Price mechanism.

It was shown, that the seller/buyer ratio determine how strong these
preferences are. If less sellers were available, then sellers leaned more
towards the Dutch Auction. The preference for Fixed Price for buyers was
only present if the number of sellers was high, relative to the number of
buyers.

Obviously, the presented simulations do not describe a fully realistic
scenario of the discussed mechanisms. For example, in further investigations
bidding behavior and risk attitudes could be implemented in a more realistic
way. Additionally one could use a more dynamic and event based allocation
algorithm for matching buyers and sellers. Nevertheless the program is
designed to realize these options quite easily.

The Fixed Price mechanism is more common in online platforms.
Nevertheless, in this simulated scenarios the Dutch Auction seemed to
be more attractive for sellers. Under the given parameter initializations
in the presented Reinforcement Algorithm the results show that a Dutch
Auction mechanism in the presented carpooling markets increases the
number of sellers and therefore the number of offered seats. An
increased number of offers then leads to more options for buyers. As a
conclusion this might have a growing effect for the carpooling market
and its impact as an alternative for transportation. Under these
conditions the Dutch Auction performs better than the Fixed Price
mechanism. Thus, Dutch Auctions seem to be recommended for use on
online platforms.
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Algorithm 4
agent.reinforcementLearning.updatePropensities()
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Appendix A: Pseudocode

Algorithm 2

execAuctions()

Algorithm 3
searchBuyers()

Algorithm 5
agent.reinforcementLearning.updateProbabilites()

Algorithm 6
agent.reinforcementLearning.getStrategy()
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